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Abstract

In this paper we address the problem of query rewriting in the context of semi-structured
data. We present a method for computing the rewriting of a regular expression E in terms of
other regular expressions. The method computes the exact rewriting (the one that defines the
same regular language as E) if it exists, or the rewriting that defines the maximal language
contained in the one defined by E, othwerwise. We present a complexity analysis of both the
problem and the method, showing the latter is essentially optimal. Finally, we illustrate how
to exploit the above mentioned method in order to devise an algorithm for rewriting regular
path queries for semi-structured data using views. The complexity results established for
the rewriting of regular expressions apply also to the case of regular path queries.

1 Introduction

The basic querying mechanism over semi-structured data is the one that retrieves all pairs
of nodes of the graph representing the database that are connected by a path conforming to
a given pattern. Since a user may ignore the precise structure of the graph, the mechanism
for specifying path patterns should be flexible enough to allow for expressing regular path
queries, i.e. queries that provide the specification of the requested paths through a regular
language [AQM+97, BDHS96, FFK+98]. For example, the regular path query ( ∗ · (rome +
jerusalem) · ∗ · restaurant) specifies all the paths having at some point an edge labeled rome or
jerusalem, followed by any number of other edges and by an edge labeled with a restaurant.

In semi-structured data, as well as in data integration, data warehousing, and query opti-
mization, the problem of query rewriting using views is receiving much attention [Ull97, AD98]:
Given a query Q and k queries Q1, . . . , Qk associated to the symbols q1, . . . , qk, respectively, gen-
erate a new query Q′ over the alphabet q1, . . . , qk such that, first interpreting each qi as the result
of Qi, and then evaluating Q′ on the basis of such interpretation, yields the same result as eval-
uating Q. Several papers investigates this problem for the case of conjunctive queries (with or
without arithmetic comparisons) [LMSS95, RSU95], queries with aggregates [SDJL96, CNS98],
recursive queries [DG97], and queries expressed in Description Logics [BLR97]. Rewriting tech-
niques for query optimization are described, for example, in [CKPS95, ACPS96, TSI96], and
in [FS98, MS99] for the case of path queries in semi-structured data.

None of the above papers provides a method for rewriting regular path queries. Observe
that computing the of rewriting regular expressions is a special case of the above problem, and
is still an open problem.

In this paper we present the following contributions:

• We describe a method for computing the rewriting of a regular expression E0 in terms of
other regular expressions. The method computes the exact rewriting (the one that defines
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the same regular language as E0) if it exists, or the rewriting that defines the maximal
language contained in the one defined by E0, otherwise.

• We provide a complexity analysis of the problem of rewriting regular expressions. We show
that our method computes the rewriting in 2EXPTIME, and is able to check whether the
computed rewriting is exact in 2EXPSPACE. We also show that the problem of checking
whether there is a nonempty rewriting is EXPSPACE-complete, and demonstrate that
our method for computing the rewriting is essentially optimal. Finally, we show that the
problem of verifying the existence of an exact rewriting is 2EXPSPACE-complete.

• We illustrate how to exploit the above mentioned method in order to devise an algorithm
for the rewriting of regular path queries for semi-structured databases. The complexity
results established for the rewriting of regular expressions apply to the new algorithm as
well. Also, we show how to adapt the method in order to compute rewritings with specific
properties. In particular, we consider partial rewritings (which are rewritings that, besides
E1, . . . , Ek, may use also symbols in E0), in the case where an exact one does not exist.

This paper is a shorter version of [CDGLV99], to which we refer for more details.

2 Rewriting of regular expressions

We present a technique for the following problem: Given a regular expression E0 and a (finite)
set E = {E1, . . . , Ek} of regular expressions over an alphabet Σ, re-express, if possible, E0 by a
suitable combination of E1, . . . , Ek.

We assume that associated to E we always have an alphabet ΣE containing exactly one
symbol for each regular expression in E , and we denote the regular expression associated to the
symbol e ∈ ΣE with re(e). Given any language ℓ over ΣE , we denote by expandΣ(ℓ) the language
over Σ defined as follows

expandΣ(ℓ) =
⋃

e1···en∈ℓ

{w1 · · ·wn | wi ∈ L(re(ei))}

where L(e) is the language defined by the regular expression e.

Definition 1 Let E0 be a regular expression over Σ, and E = {E1, . . . , Ek} a set of regular
expressions over Σ. Let R be any formalism for defining a language L(R) over ΣE . We say that
R is a rewriting of E0 wrt E if expandΣ(L(R)) ⊆ L(E0).

We are interested in maximal rewritings, i.e. rewritings that capture in the best possible way
the language defined by the original regular expression E0.

Definition 2 A rewriting R of E0 wrt E is Σ-maximal if for each rewriting R′ of E0 wrt E we
have that expandΣ(L(R′)) ⊆ expandΣ(L(R)). A rewriting R of E0 wrt E is ΣE -maximal if for
each rewriting R′ of E0 wrt E we have that L(R′) ⊆ L(R).

Intuitively, when considering Σ-maximal rewritings we look at the languages obtained af-
ter substituting each symbol in the rewriting by the corresponding regular expression over Σ,
whereas when considering ΣE -maximal rewritings we look at the languages over ΣE . Observe
that by definition all Σ-maximal rewritings define the same language (similarly for ΣE -maximal
rewritings).

Theorem 3 Let R be a rewriting of E0 wrt E. If R is ΣE -maximal then it is also Σ-maximal.
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Given E0 and E , we are interested in deriving the maximal rewriting of E0 wrt E , i.e., the
rewriting that defines the maximal language contained in the one defined by E0. The algorithm
we propose takes E0 and E as input, and returns an automaton RE,E0

built as follows:

1. Construct a deterministic automaton Ad = (Σ, S, s0, ρ, F ) such that L(Ad) = L(E0).

2. Define the automaton A′ = (ΣE , S, s0, ρ
′, S−F ), where sj ∈ ρ′(si, e) iff ∃w ∈ L(re(e)) such

that sj ∈ ρ∗(si, w).

3. RE,E0
= A′, i.e. the complement of A′.

Theorem 4 The automaton RE,E0
is a ΣE -maximal rewriting of E0 wrt E.

Notably, although we do not constrain in any way the form of the rewritings, Theorem 4
shows that the language defined by the maximal rewritings is in fact regular (indeed, A′ is a
finite automaton).

To verify whether the RE,E0
is an exact rewriting of E0 wrt E we proceed as follows:

1. We construct an automaton B = (Σ, SB, sB0, ρB, FB) that accepts expandΣ(L(RE,E0
)), by

replacing each edge labeled by ei in RE,E0
by an automaton Ai such that L(Ai) = L(re(ei))

for i = 1, . . . , k. (Each edge labeled by ei is replaced by a fresh copy of Ai. We assume,
without loss of generality, that Ai has unique start state and accepting state, which are
identified with the source and target of the edge, respectively.) Observe that, since RE,E0

is a rewriting of E0, L(B) ⊆ L(Ad).

2. We check whether L(Ad) ⊆ L(B), that is, we check whether L(Ad ∩ B) = ∅.

Theorem 5 The automaton RE,E0
is an exact rewriting of E0 wrt E iff L(Ad ∩ B) = ∅.

We analyze now the computational complexity of both the problem of rewriting regular
expressions, and the method described above. By considering the cost of the various steps in
computing RE,E0

, we immediately derive the following upper bounds.

Theorem 6 The problem of generating the ΣE -maximal rewriting of a regular expression E0

wrt a set E of regular expressions is in 2EXPTIME.

Theorem 7 The problem of verifying the existence of an exact rewriting of a regular expression
E0 wrt a set E of regular expressions is in 2EXPSPACE.

The established upper bounds are essentially optimal, as shown by the following theorems.

Theorem 8 The problem of checking whether there is a nonempty rewriting of a regular ex-
pression E0 wrt a set E of regular expressions is EXPSPACE-complete.

Theorem 9 For each n > 0 there is a regular expression En
0 and a set En of regular expressions

such that the combined size of En
0 and En is polynomial in n, but the shortest nonempty rewriting

(expressed as either a regular expression or an automaton) of En
0 wrt En is of length 22n

.

Note that Theorem 8 already implies that the upper bound established in Theorem 6 is essentially
optimal. If we can generate maximal rewritings in, say, EXPTIME, then we could test emptiness
in PSPACE, which is impossible by Theorem 8. However, Theorem 9 shows an even sharper
lower bound on the size of rewritings.

Theorem 10 The problem of verifying the existence of an exact rewriting of a regular expression
E0 wrt a set E of regular expressions is 2EXPSPACE-complete.
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3 Query rewriting in semi-structured data

All semi-structured data models share the characteristic that data are organized in a la-
beled graph, where the nodes represent objects, and the edges represent links between ob-
jects [BDFS97, Bun97, Abi97, QRS+95]. From a formal point of view we can consider a (semi-
structured) database as a graph DB whose edges are labeled by elements from a given domain
D which we assume finite.

In order to define queries over a semi-structured database we start from a decidable, com-
plete1 first-order theory T over the domain D. We assume that the language of T includes one
distinct constant for each element of D and one unary predicate of the form λz.z = a (or simply
a), for each constant a in D. Finally, following [BDFS97], we consider both the size of T , and
the time needed to check validity of any formula in T to be constant.

We consider regular path queries (which we call simply queries) i.e., queries that denote all
the paths corresponding to words of a specified regular language. The regular language is defined
over a (finite) set F of formulae of T with one free variable. Such formulae are used to describe
properties that the labels of the edges of the database must satisfy. Regular path queries are the
basic constituents of queries in semi-structured data, and are typically expressed by means of
regular expressions [BDHS96, Abi97, FS98, MS99]. Another possibility to express regular path
queries is to use finite automata.

When evaluated over a database, a query Q returns the set of pairs of nodes connected by
a path that conforms to the regular language L(Q) defined by Q, according to the following
definitions.

Definition 11 Given an F-word ϕ1 · · ·ϕn, a D-word a1 · · · an matches ϕ1 · · ·ϕn (wrt T ) iff
T |= ϕi(ai), for i = 1, . . . , n.

We denote the set of D-words that match an F-word w by match(w), and given a language ℓ

over F , we denote
⋃

w∈ℓ match(w) by match(ℓ).

Definition 12 The answer to a query Q over a database DB is the set answer(L(Q),DB),
where for a language ℓ over D

answer(ℓ,DB) = {(x, y) | there is a path x
a1→ x1

a2→ · · ·
an→ y in DB s.t. a1 · · · an ∈ match(ℓ)}

In order to apply the results on rewriting of regular expressions to query rewriting in semi-
structured data we need to take into account that the alphabet over which queries (the one we
want to rewrite and the views to use in the rewriting) are expressed, is the set F of formulae
of the underlying theory T , and not the set of constants that appear as edge labels in graph
databases.

Let Q0 be a regular path query and Q = {Q1, . . . , Qk} be a finite set of views, also expressed
as regular path queries, in terms of which we want to rewrite Q0. Let F be the set of formulae
of T appearing in Q0, Q1, . . . , Qk, and let Q have an associated alphabet ΣQ containing exactly
one symbol for each view in Q. We denote the view associated to the symbol q ∈ ΣQ with
rpq(q).

Given any language ℓ over ΣQ, we denote by expandF (ℓ) the language over F defined as
follows

expandF (ℓ) =
⋃

q1···qn∈ℓ

{w1 · · ·wn | wi ∈ L(rpq(qi))}

1The theory is complete in the sense that for every closed formula ϕ, either T |= ϕ, or T |= ¬ϕ [BDFS97].
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Definition 13 Let R be any formalism for defining a language L(R) over ΣQ. R

is a rewriting of Q0 wrt Q if for every database DB , answer(expandF (L(R)),DB) ⊆
answer(L(Q0),DB), and is said to be (i) maximal if for each rewriting R′ of Q0 wrt
Q we have that answer(expandF (L(R′)),DB) ⊆ answer(expandF (L(R)),DB), (ii) exact if
answer(expandF (L(R)),DB) = answer(L(Q0),DB).

Theorem 14 R is a rewriting of Q0 wrt Q iff match(expandF (L(R))) ⊆ match(L(Q0)). More-
over, it is maximal iff for each rewriting R′ of Q0 wrt Q we have that match(expandF (L(R′))) ⊆
match(expandF (L(R))), and it is exact iff match(expandF (L(R))) = match(L(Q0)).

We say that R is ΣQ-maximal if for each rewriting R′ of Q0 wrt Q we have that L(R′) ⊆ L(R).
By arguing as in Theorem 3, and exploiting Theorem 14, it is easy to show that a ΣQ-maximal
rewriting is also maximal.

Next we show how to compute a ΣQ-maximal rewriting, by exploiting the construction
presented in Section 2. Applying the construction literally, considering F as the base alphabet
Σ, we would not take into account the theory T , and hence the construction would not give us
the maximal rewriting in general. As an example, suppose that T |= ∀x.A(x) ⊃ B(x), Q0 = B,
and Q = {A}. Then the maximal rewriting of Q0 wrt Q is A, but the algorithm would give us
the empty language.

In order to take the theory into account, we can proceed as follows: For each query Q ∈
{Q0} ∪ Q we construct the automaton Qg accepting the language match(L(Q)). This can be
done by viewing the query Q as a (possibly nondeterministic) automaton Q = (F , S, s0, ρ, F )
and construct Qg as (D, S, s0, ρ

g, F ), where sj ∈ ρg(si, a) iff sj ∈ ρ(si, ϕ) and T |= ϕ(a). Observe
that the set of states of Q and Qg is the same. We denote {Qg

1, . . . , Q
g
k} with Qg. Then we

proceed as before:

1. Construct a deterministic automaton Ad = (D, Sd, s0, ρ
g
d, Fd) such that L(Ad) = L(Qg

0).

2. Define the automaton A′ = (ΣQ, Sd, s0, ρ
′, Sd − Fd), where sj ∈ ρ′(si, q) iff ∃w ∈

match(L(rpq(q))) such that sj ∈ ρ
g
d
∗
(si, w).

3. Return RQ,Q0
= RQg ,Q

g

0
= A′.

Theorem 15 The automaton RQ,Q0
is a maximal rewriting of Q0 wrt Q.

To check that RQ,Q0
is an exact rewriting of Q0 wrt Q we can proceed as in Section 2, by

constructing an automaton B that accepts expandD(L(RQg ,Q
g

0
)), and checking for the emptiness

of L(Ad ∩ B).
Observe that both the size of Q

g
0 and Qg and the time needed to construct them from Q0

and Q are linearly related to the size of Q0 and Q. It follows that the same upper bounds as
established in Section 2 hold for the case of regular path queries.

In fact, the construction of Qg can be avoided in building RQ,Q0
, since we can verify whether

there exists a D-word w ∈ match(L(rpq(q))) such that sj ∈ ρ
g
d
∗
(si, w) (required in Step 2 of

the algorithm above) as follows. We consider directly the automaton Q = rpq(q) (which is over
the alphabet F) and the automaton A

i,j
d = (D, Sd, si, ρ

g
d, {sj}) obtained from Ad by suitably

changing the initial and final states. Then we construct from Q and A
i,j
d the product automaton

K, with the proviso that K has a transition from (s1, s2) to (s′1, s
′
2) (whose label is irrelevant)

iff (i) there is a transition from s1 to s′1 labeled a in Qi,j , (ii) there is a transition from s2

to s′2 labeled ϕ in Q, and (iii) T |= ϕ(a). Finally we check whether K accepts a non-empty
language. This allows us to instantiate the formulae in Q only to those constants that are
actually necessary to generate the transition function of A′.

On the other hand, the construction of Q
g
0 seems unavoidable, since formulae that satisfy

more that one constant in T and that appear as labels of the transitions of Q0, may hide a
nondeterminism that is instead revealed when we consider Q

g
0.
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4 Properties of rewritings

In the case where the rewriting RQ,Q0
is not exact, the only thing we know is that such rewriting

is the best one we can obtain by using only the views in Q. However, one may want to know
how to get an exact rewriting by adding to Q suitable views. Here we consider the case where
such views are atomic, i.e., have the form λz.P (z), where P is a predicate of T . Notice that
atomic views include views of the form λz.z = a, (abbreviated by a), which we call elementary.

Example 16 Let Q0 = a · (b + c), Q = {a, b}, and ΣQ = {q1, q2}, where rpq(q1) = a, and
rpq(q2) = b. Then RQ,Q0

= q1 · q2, which is not exact. On the other hand, by adding c to Q and
q3 to ΣQ, with rpq(q3) = c, we obtain q1 · (q2 + q3) as an exact rewriting of Q0.

The intuitive idea is to choose a subset P ′ of the set P of predicates of T , and to construct
an exact rewriting of Q0 wrt Q+, where Q+ is obtained by adding to Q an atomic view for each
symbol in P ′. An exact rewriting R of Q0 wrt Q+ is called a partial rewriting of Q0 wrt Q,
provided that Q+ 6= Q.

The method we have presented can be easily adapted to compute partial rewritings. Indeed,
if we compute RQ+,Q0

, we obtain a partial rewriting of Q0 wrt Q, provided that RQ+,Q0
is an

exact rewriting of Q0 wrt Q+. Observe that it is always possible to choose a subset P ′ of P in
such a way that RQ+,Q0

is exact (e.g., by choosing the set of all elementary views).
Typically, one is interested in using as few symbols of P as possible to form Q+, and this

corresponds to choose the minimal subsets P ′ such that RQ+,Q0
is exact. More generally, one

can establish various preference criteria for choosing rewritings. For instance, we may say that
a (partial) rewriting R is preferable to a (partial) rewriting R′ if:

1. match(expandF (L(R′))) ⊆ match(expandF (L(R))),

2. match(L(R)) = match(L(R′)) and R uses less additional elementary views than R′,

3. match(L(R)) = match(L(R′)), R uses the same number of additional elementary views as
R′, and less additional nonelementary views.

4. match(L(R)) = match(L(R′)), R uses the same number of additional atomic views as R′,
and less views than R′.

Under this definition an exact rewriting is preferable to a nonexact one. Moreover, the
definition reflects the fact that the cost of materializing additional atomic views (in particular
the elementary ones) is higher than the cost of using the available ones. Finally, since a certain
cost is associated to the use of each view, when comparing two rewritings defining the same
language and using (if any) the same number of additional atomic views, then the one that uses
less views is preferable.

The rewriting algorithm presented above can be immediately exploited to compute the most
preferable rewritings according to the above criteria. It easy to see that the problem of computing
the most preferable rewritings remains in the same complexity class.
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