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Abstract

Query answering using views amounts to computing the an-
swer to a query having information only on the extension of
a set of views. This problem is relevant in several fields,
such as information integration, data warehousing, query
optimization, mobile computing, and maintaining physi-
cal data independence. We address query answering us-
ing views in a context where queries and views are regular
path queries, i.e., regular expressions that denote the pairs
of objects in the database connected by a matching path.
Regular path queries are the basic query mechanism when
the database is conceived as a graph, such as in semistruc-
tured data and data on the web. We study algorithms for
answering regular path queries using views under different
assumptions, namely, closed and open domain, and sound,
complete, and exact information on view extensions. We
characterize data, expression, and combined complexity of
the problem, showing that the proposed algorithms are es-
sentially optimal. Our results are the first to exhibit decid-
ability in cases where the language for expressing the query
and the views allows for recursion.

1. Introduction

Query answering using views amounts to computing the
answer to a query having information only on the extension
of a set of views. This problem is relevant in several fields,
such as information integration [31], data warehousing [33],
query optimization [11], mobile computing [5], and main-
taining physical data independence [30].

Data integration is the setting that has put the strongest
emphasis on query answering using views: a typical in-
tegration process results in a set of precomputed views,
and the query evaluation mechanism can only rely on such
views in order to derive correct answers to queries. Two ap-
proaches to data integration have been investigated, called
virtual and materialized. In the virtual approach, the pre-

computed views represent the data sources that are inte-
grated, whereas in the materialized approach (generally
adopted in data warehousing), the precomputed views rep-
resent the result of the integration activity carried out over
the sources. In both cases, the problem of answering queries
using views is crucial.

When integrating data from many autonomous sources,
each with differing modeling features and assumptions, e.g.,
data sources on the web, it is convenient to resort to mod-
eling mechanisms that are flexible and adaptable. This
has raised interest in the management of semistructured
data, which are data that do not fit into rigid, predefined
schemas, and are best described by graph-based data mod-
els [7, 1, 17].

Methods for extracting information from semistructured
data necessarily incorporate special querying mechanisms
that are not common in traditional database systems. One
such basic mechanism is the one that retrieves all pairs of
nodes in the graph connected by a path conforming to a
regular expression (regular path queries) [9, 3]. Observe
that regular expressions provide a (limited) form of recur-
sion, which is used in regular path queries to navigate the
graph database.

In this paper we address the problem of query answering
using views when both the query and the views are regular
path queries. Our goal is to devise algorithms and char-
acterize the computational complexity of the problem un-
der different assumptions. This represents a fundamental
step towards solving the problem of query answering using
views for full-fledged query languages over semistructured
data and data on the web [9, 3, 15, 13].

The assumptions that we consider are on the information
available on the domain, and on the information on the view
extensions [2, 20].

The closed domain assumptionstates that the database
contains exactly the objects stored in the views. In other
words, although we do not know the exact form of the
database, we know the set of objects stored in it. On the
contrary, under theopen domain assumptionthe database



may contain other objects besides those stored in the views.
A view is exactif its extension is exactly the set of ob-

jects in the database that satisfy its definition. A view is
soundif its extension is a subset of the objects that satisfy its
definition. In other words, when a view is sound we know
a subset of the pairs of objects that satisfy the view, but we
cannot exclude that other pairs of objects satisfy the view as
well. The case of complete view is the dual one: a view is
complete, if its extension is a superset of the pairs of objects
in the database that satisfy its definition. Observe that an
exact view is one that is both sound and complete. When
answering a query using views, sound views are used to in-
fer pairs of objects that are in the answer set of the query,
while complete views are used to infer pairs of objects that
are not in the answer set of the query.

As pointed out in [20], in data integration, a sound view
corresponds to a data source that is known to produce only
(not necessarily all) the answers to the query associated to
the view. On the other hand, a complete view models a
source that is known to produce all answers to the associated
query, and maybe more. Finally, an exact view models a
source that is known to produce exactly the answers to the
associated query.

The framework we consider in the paper allows the spec-
ification of which assumption to adopt for the domain of the
database, and of which one to adopt for each of the available
views. Within this framework, we present the following re-
sults:

• We provide algorithms for query answering using
views thus showing that all cases are decidable. We
study the data, expression, and combined complexity
of the algorithms.

• We characterize the lower bounds of the problem,
and we show that such lower bounds match the up-
per bounds provided by the algorithms. In particu-
lar, we show that answering regular path queries using
views is coNP-complete with respect to data complex-
ity in all cases. With respect to expression (and hence
combined) complexity, the problem is coNP-complete
under the closed domain assumption, and PSPACE-
complete under the open domain assumption.

Our investigation is similar in spirit to the one presented
in [2], where the decidability and the data complexity of the
problem is studied when the views and the queries are ex-
pressed in terms of various languages (conjunctive queries,
Datalog, first-order queries, etc.). The results in [2] show
that answering recursive (Datalog) queries using recursive
views is undecidable in general. The results presented in
this paper are the first to exhibit decidability in a case where
the language for expressing the query and the views allows
for recursion.
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Figure 1. A database

The paper is organized as follows. Section 2 sets the
framework in which we study the problem of query an-
swering using views. Section 3 provides an overview of
the results, and a comparison with related work. Section 4
investigates the problem in the case of the closed domain
assumption. Section 5 deals with answering queries using
sound views under the open domain assumption. Section 6
presents the results for the case of open domain assumption
and arbitrary views. Section 7 investigates the connection
between answering queries using views and query rewriting
using views. Finally, Section 8 concludes the paper.

2. Framework

We consider a setting in which databases are expressed
in terms of edge-labeled graphs, and queries ask for pairs of
nodes connected by a specified path. This setting is typical
in semistructured data, where all data models share the char-
acteristic that data are organized in a labeled graph, where
the nodes represent objects, and the edges represent links
between objects [26, 8, 7, 1, 17].

2.1. Regular path queries

Formally, we consider adatabaseas an edge labeled
graphDB = (D, E), whereD is a set of nodes (called the
domain) that represent the objects ofDB , andE = {re |
e ∈ Σ} is a set of binary relations corresponding to the
edges of the graph labeled by elements from an alphabetΣ.
Such edges represent links between objects labeled by at-
tribute names. We denote an edge from nodex to nodey

labeled byr, i.e.,(x, y) ∈ r, with x
r
→ y.

Example 1 We show in Figure 1 an example of a database
with information on a set of people, their sons and daugh-
ters, and their date of birth.

As query mechanism we considerregular path queries
(simply queriesin the following), which are the basic con-
stituents of full-fledged query languages over semistruc-
tured data [9, 1, 16, 24, 13]. Such queries denote all the



paths corresponding to words of a specified regular lan-
guage over the alphabetΣ, and hence are expressed by
means of regular expressions or finite automata [10].

Definition 2 Theanswer set to a queryQ over a database
DB is ans(Q,DB) = {(x, y) | there is a pathx

r1→ · · ·
rn→

y in DB s.t.r1 · · · rn ∈ L(Q)}, whereL(Q) is the regular
language defined byQ.

Example 3 Refer to the database in Figure 1, and consider
the query(son+dau)∗·dau·date·m, asking for the pairs
(x, y) such thaty is the month of birth of a female descen-
dent ofx. It is easy to see that the answer set to the query
contains e.g.,(John,Jun) and(John,Dec).

2.2. Query answering using views

We now introduce formally the problem of query an-
swering using views. As pointed out in [2, 20, 22], this
problem comes in different forms, depending on various as-
sumptions about how accurate is the knowledge on both the
objects of the database, and the pairs satisfying the views.

Consider a database that is accessible only through a set
of viewsV1, . . . , Vk, and suppose we want to answer a reg-
ular path query only on the basis of our knowledge on the
views. Specifically, associated to each viewVi we have:

• its definitiondef (Vi) in terms of a regular path query
over the alphabetΣ;

• information about its extension in terms of

– a setext(Vi) of pairs of objects1;

– a specificationas(Vi) of which assumptionto
adopt for the viewVi in interpretingext(Vi) with
respect to the answer set ofdef (Vi).

We consider the following three assumptions on views [2,
20]:

• Sound View Assumption(SVA). We say that a view
Vi is sound(satisfiesSVA) with respect to a database
DB , if ext(Vi) ⊆ ans(def (Vi),DB). This means,
that from the fact that a pair(a, b) is in ext(Vi) we can
conclude that(a, b) is in ans(def (Vi),DB). However,
if (a, b) is not inext(Vi) we cannot conclude that(a, b)
is not inans(def (Vi),DB).

• Complete View Assumption(CVA). We say that a
view Vi is complete, (satisfiesCVA) with respect to
a databaseDB , if ext(Vi) ⊇ ans(def (Vi),DB). This
means, that from the fact that a pair(a, b) is in ext(Vi)

1We assume that objects are represented by constants, and we adopt
theunique name assumption[28], i.e., different constants denote different
objects and therefore different nodes.

we cannot conclude that(a, b) is inans(def (Vi),DB).
On the other hand, if(a, b) is not in ext(Vi) we can
conclude that(a, b) is not inans(def (Vi),DB).

• Exact View Assumption(EVA). We say that a viewVi

is exact(satisfiesEVA) with respect to a databaseDB ,
if ext(Vi) = ans(def (Vi),DB). This means, that we
know that the extension of the view is exactly the set
of pairs of objects that satisfy the view.

We say that a databaseDB is consistent with a viewVi

if Vi satisfies the assumptionas(Vi) with respect toDB .

Example 4 A possible set of views for the database of Fig-
ure 1 is{V1, V2, V3} where:

def (V1) = (son+ dau)∗·dau·date·m
def (V2) = dau
def (V3) = son+ dau

Suppose that the extensionext(V1) is {(John,Jun)},
the extensionext(V2) is {(John,Mary), (Mary,Ann),
(Tim,Bea), (Tim,Uli), (John,Lea), (John,Tim)},
and the extensionext(V3) is the set of nodes connected
by son or dau. ThenV1 is sound,V2 is complete, and
V3 is exact. Hence, ifas(V1) = SVA, as(V2) = CVA,
as(V3) = EVA, then the database of Figure 1 is consistent
with V1, V2, andV3.

In the following, we denote byDV the set of objects ap-
pearing inext(V1)∪· · ·∪ext(Vk). With respect to the infor-
mation available on the objects in the database, we further
distinguish between:

• Closed Domain Assumption(CDA). The exact set of
objects in the database coincides with the set of ob-
jects that appear in the view extensions. We say that
a database(D, E) is consistent withDV under CDAif
DV is equal toD.

• Open Domain Assumption(ODA). Only a subset of the
objects in the database appears in the view extensions.
We say that a database(D, E) is consistent withDV

under ODAif DV is a subset ofD.

We are now ready to define the problem of answering
queries using views.

Definition 5 The problem of answering queries using
views under CDA (resp., ODA)is the following: Given

• def (Vi), ext(Vi), andas(Vi), for 1 ≤ i ≤ k

• a queryQ

• a pair of objectsc, d ∈ D



decide whether(c, d) ∈ ans(Q), i.e., decide whether
(c, d) ∈ ans(Q,DB), for everyDB that is consistent with
DV under CDA (resp., ODA) and that is consistent with
V1, . . . , Vk.

The complexity of the problem can be measured in three
different ways [32]:

• Data complexity: as a function of the size ofext(V1)∪
· · · ∪ ext(Vk).

• Expression complexity: as a function of the size ofQ
and of the expressionsdef (V1), . . . , def (Vk).

• Combined complexity: as a function of the size of
both ext(V1) ∪ · · · ∪ ext(Vk) and the expressions
Q, def (V1), . . . , def (Vk).

In the following, when we say that a DB is consistent
with a set of views, we implicitly mean that the DB is also
consistent withDV under the current domain assumption.

2.3. Relationships between the different assump-
tions

SVA andEVA are inherently different assumptions. To
see this, it is sufficient to note that if we adoptEVA for
some of the views, then there is the possibility that there
exists no database at all which is consistent with the views.
This cannot happen in the case where all views are sound.

Example 6 Consider viewsV1 andV2 such that

def (V1) = R ext(V1) = {(a, c)} as(V1) = SVA
def (V2) = R∗ ext(V2) = {(a, b)} as(V2) = EVA

Obviously, from the extension ofV1 we can conclude that
(a, c) should also appear inV2. SinceV2 is assumed to be
exact, no database exists which is consistent with the views.

On the other hand, complete views can be reformulated
in terms of exact views. Indeed, by exploiting union in our
query language, given an instance of the problem of query
answering using views, we can always transform it to a new
instance with only sound and exact views, and such that
the solutions of the two instances are the same. Suppose
we want to check whether(c, d) ∈ ans(Q) under either
CDA or ODA, given the viewsV1, . . . , Vk, and suppose that
as(Vi) = CVA. Introduce inΣ a new relation symbolRnew

that does not appear inQ,V1, . . . , Vk, and replaceVi by V ′
i

with def (V ′
i ) = def (Vi) + Rnew, ext(V ′

i ) = ext(Vi), and
as(V ′

i ) = EVA. It is easy to see that the new instance of the
problem has the same solution as the original one. For this
reason, in what follows, we concentrate on sound and exact

views only. Note that we cannot apply similar arguments
in order to reduce sound views to exact views, because our
query language lacks intersection2.

With respect to the relationship betweenCDA andODA
we observe thatCDA imposes more restrictions thanODA
on the databases that are consistent with the views. Namely,
underCDA, a database that is consistent with the views,
must contain only the objects that are in the view exten-
sions. Instead, underODA, a database that is consistent
with the views, may contain objects that are not in the view
extensions. Hence in verifying that a given pair of objects is
in the answer set of a query, underCDA, we must take into
account only databases containing exactly the objects in the
views, while, underODA, we must take into account also
databases which contain additional objects. The following
example illustrates such a difference.

Example 7 Supposedef (V ) = R1·R2, ext(V ) =
{(a, b)}, and we want to check whether(a, b) ∈ ans(R1 +
R2). UnderCDA a andb are the only objects to consider,
and the answer is yes. However, if we adoptODA, and al-
low for an additional objectc, we get the databaseDB with

a
R1→ c andc

R2→ b, for which (a, b) 6∈ ans(R1 + R2,DB).
Hence underODA the answer is no.

Notwithstanding the difference between the two assump-
tions,CDA can be reformulated in terms ofODA. It suf-
fices to add an additional viewV with def (V ) = Σ∗,
ext(V ) = D×D, andas(V ) = CVA. In this way, even un-
derODA, no additional objects than those already present
in D can be used to construct databases which are consistent
with the views, thus realizingCDA. However, as shown
in the following sections, the complexity of query answer-
ing using views underCDA is in general lower than under
ODA. This justifies to consider the two cases separately.

2.4. Possible answers

The problem of query answering using views can be in-
terpreted as checking whether(c, d) is acertain answerto
Q [2]. On the other hand, we may be interested in check-
ing whether(c, d) is apossible answerto Q, i.e., checking
whether(c, d) ∈ ans(Q,DB), for someDB that is consis-
tent with the views.

From the point of view of logic, finding certain answers
is a logical implication problem: check whether it logically
follows from the information on the views that(c, d) is in
the answer set ofQ. Similarly, finding possible answers is
a consistency problem: check whether assuming that(c, d)
is in the answer set ofQ does not contradict the informa-
tion on the views. The following argument illustrates the
relationship between the two problems in our framework.

2Here we are referring to intersection of relations, and not to intersec-
tion of regular languages.



Assump. Assump. Complexity
on dom. on views data expression combined

all sound coNP coNP coNP
closed all exact coNP coNP coNP

arbitrary coNP coNP coNP
all sound coNP PSPACE PSPACE

open all exact coNP PSPACE PSPACE
arbitrary coNP PSPACE PSPACE

Table 1. Summary of complexity results (all
bounds are tight)

Suppose we want to check whether(c, d) is a possible
answer to the queryQ under either CDA or ODA, given
the viewsV1, . . . , Vk. We consider three new relations
Ra, Rb, andRq, and two new objectsa and b. We add
to V1, . . . , Vk three viewsVa, Vb, andVQ with definitions
def (Va) = Ra, def (Vb) = Rb, anddef (VQ) = Ra·Q·Rb,
and extensionsext(Va) = {(a, c)}, ext(Vb) = {(d, b)}, and
ext(VQ) = {(a, b)}. Each of the new views may be either
sound or exact. We ask whether(a, b) is a certain answer to
the queryRq. The answer is yes if and only if there is no
database which is consistent withVa, Vb, VQ and everyVi.
Therefore, considering the definitions and the extensions of
Va, Vb, andVQ, if the answer is yes, then(c, d) is not a pos-
sible answer toQ, while if the answer is no, then a database
that is consistent with the views exists, and hence(c, d) is a
possible answer toQ. This shows that the problem of find-
ing possible answers can be reduced to the one of finding
certain answers.

We also remark that checking whether it logically fol-
lows from the information on the views that(c, d) is not in
the answer set ofQ, can be verified by checking whether
(c, d) is not a possible answer ofQ. Similarly, checking
whether the assumption that(c, d) is not in the answer set
of Q does not contradict the information on the views, can
be verified by checking whether(c, d) is not a certain an-
swer ofQ.

In the following, without loss of generality, we consider
only the problem of checking whether a pair of objects is a
certain answer of a query.

3. Summary of results and related work

The summary of our results on the complexity of answer-
ing regular path queries using views is reported in Table 1.
Entries with “all sound” (resp., “all exact”) in the column
named “Assumption on views” refer to the case where all
views are assumed to be sound (resp., exact), whereas “ar-
bitrary” means that for each viewV , as(V ) can be either
SVA, CVA, or EVA. Each entry of the table referring to a
complexity classC means that the corresponding problem

is complete with respect toC.
Our results show that none of the cases can be solved

in polynomial time (unlessP = NP). This can be ex-
plained by observing that, as noted in [6, 2], query answer-
ing using views is strictly related to query answering over
incomplete databases. Indeed, when we answer the query
on the basis of the views, we know only the extensions of
the views, and this provides us with only partial information
on the database. Moreover, since our query language ad-
mits various forms of incomplete information (due to union
and transitive closure), there are in general several possible
databases that are consistent with the views. The need of
considering all such possibilities is a source of complexity
for query answering.

Obviously, underCDA, we know at least the set of ob-
jects stored in the database, and therefore, our knowledge is
more accurate than in the case ofODA. One important fea-
ture ofCDA is that it is not necessary to conjecture the exis-
tence of unknown objects in the database. This provides the
intuition of why underCDA the problem is “only” coNP-
complete in all cases, for data, expression, and combined
complexity.

On the other hand, underODA, we cannot exclude the
possibility that the database contains more objects than
those known to be in the views. For combined complex-
ity, this means that we are forced to reason about the defini-
tion of the query and the views. Indeed, the problem cannot
be less complex than comparing two regular path queries,
and this explains the PSPACE lower bound. Interestingly,
our algorithms show that the problem does not exceed the
PSPACE complexity. Moreover, the data complexity re-
mains in coNP, and therefore, although we are using a query
language that is powerful enough to express a (limited) form
of recursion, the problem is no more complex than in the
case of disjunctions of conjunctive queries [2].

Query answering using views has been extensively in-
vestigated in the last years [2, 20, 14, 23, 4]. As we said
in the introduction, none of these works provides decidabil-
ity results for the case where both the query and the views
contain recursion.

The work in [2] shares the same goal of this paper.
The authors present an analysis of the data complexity of
the problem, for the case where the views and the queries
are expressed in terms of various languages (conjunctive
queries, Datalog, first-order queries, etc.). Note, however,
that they do not consider the case of regular path queries.
The results presented in [2] show that, for the query lan-
guages considered in that paper,EVA complicates the prob-
lem. For example, the data complexity of query answering
for the case of conjunctive queries is PTIME underSVA
and coNP-complete underEVA. This can be explained by
noticing thatEVA introduces a form of negation, and there-
fore it may force to reason by cases on the objects stored



in the views. On the contrary, in the case of regular path
queries,EVA does not increase the complexity of the prob-
lem relative toSVA. In some sense, the expressive power of
the query language forces to reason by cases already under
SVA, andEVA does not introduce new complexity.

The problem of query answering using views has also
been dealt with techniques based on rewriting queries us-
ing views [31]: Given a queryQ and viewsV1, . . . , Vk

with associated definitionsdef (V1), . . . , def (Vk), gener-
ate a new queryQ′ over the alphabetV1, . . . , Vk such
that for every databaseDB , first computing the extension
ans(def (Vi),DB) of eachVi, and then evaluatingQ′ on
the basis of such extensions, provides the answer toQ over
DB . Several papers investigate this problem for the case
of conjunctive queries (with or without arithmetic compar-
isons) [23, 27], queries with aggregates [29, 12, 21], re-
cursive queries [14], queries expressed in Description Log-
ics [6], and queries over semistructured data, both without
regular expressions [25], and with regular expressions [10].
Although methods for query rewriting can be adapted to
query answering using views [23], the two problems dif-
fer in the following sense. Query rewriting has as inputs the
view definitions and the query, and aims at re-expressing
the query in terms of the views, using a given set of opera-
tors. Then, to compute the answer to the original query, the
rewritten query is evaluated on the extensions of the views.
On the other hand, query answering takes as inputs the view
definitions, the view extensions, the view assumptions, and
the query, and computes directly the answer to the query.

Note that computing a rewriting is in general costly [23,
10]. However, since such a computation does not depend on
the extension of the views, the data complexity of evaluat-
ing the rewriting over the view extensions is not influenced
by its cost. Section 7 elaborates more on the relationship
between the two problems in our framework.

4. Closed domain

We study query answering using views underCDA. We
remind the reader that in this case we have complete knowl-
edge on the set of objects stored in the database. This prop-
erty makes the present case the simplest one in our setting.

Theorem 8 Answering queries using views underCDA is
in coNP wrt combined complexity.

Proof. Let D be a finite domain,Q be a query, and
V1, . . . , Vk be views with definitionsdef (V1), . . . , def (Vk),
assumptions as(V1), . . . , as(Vk), and extensions
ext(V1), . . . , ext(Vk) such that D equals the setDV

of objects in such extensions. To check that a pair(c, d)
is not inans(Q), we guess a databaseDB = (D, E) over
D (i.e., we guess the labeled edges ofDB ), check that

DB is consistent withVi, for 1 ≤ i ≤ k, and then check
that (c, d) is not in ans(Q,DB). The claim follows from
the fact that all checks can be done in polynomial time
in the size ofext(V1) ∪ · · · ∪ ext(Vk) and the size of
Q, def (V1), . . . , def (Vk) by computing the answer set of
Q andV1, . . . , Vk exploiting the inductive structure of the
associated regular expressions. 2

We now give a matching lower bound for the problem
both wrt expression complexity and wrt data complexity.

Theorem 9 Answering queries using views underCDA is
coNP-hard wrt expression complexity.

The proof of the theorem above is from validity of 3DNF
propositional formulae, and uses exact views only. How-
ever, the reduction carries through also in the case where
all views are assumed to be sound. Hence the coNP lower
bound holds also for the special case where all views are
sound and the case where all views are exact.

Theorem 10 Answering queries using views underCDA is
coNP-hard wrt data complexity.

The proof of the theorem above is from graph 3-
colorability [18] and makes use of a single view under the
assumption that it is exact. This shows that the lower bound
holds for the special case where all views are exact. How-
ever the same argument holds if the same view is assumed
to be sound. Hence we obtain also a coNP lower bound for
the special case where all views are sound.

Summarizing the results above we can state the follow-
ing theorem.

Theorem 11 Answering queries using views underCDA is
coNP-complete wrt data complexity, expression complexity
and combined complexity.

5. Open domain and sound views

Here we study query answering underODA in the case
where all views are sound. This special case allows for in-
teresting observations concerning the extension of the pro-
posed methods to more general forms of view definitions.

We start by establishing an upper bound for the com-
bined complexity of the problem.

Theorem 12 Answering queries using sound views under
ODA is in PSPACE wrt combined complexity.

Proof. Let Q be a query, V1, . . . , Vk be sound
views with definitionsdef (V1), . . . , def (Vk) and exten-
sionsext(V1), . . . , ext(Vk), andDV be the set of objects
in such extensions.



Let A = (Σ, S, S0, ρ, F ) be a nondeterministic automa-
ton for Q and consider a mappingh : DV → 2S . We
say thath is consistent withA if the following holds: for
every view Vi and every pair(a, b) ∈ ext(Vi) there is
a word w ∈ L(def (Vi)) such thatρ(h(a), w) ⊆ h(b)3.
Note that the existence of a wordw ∈ L(def (Vi)) such
thatρ(h(a), w) ⊆ h(b) can be verified in PSPACE since it
amounts to verify whether it is not the case thatL(def (Vi))
is included in the language accepted by the automatonA =
(Σ, S, h(a), ρ, S \ h(b)).

We show that(c, d) 6∈ ans(Q) if and only if there is a
mappingh that is consistent withA such thatS0 ⊆ h(c)
andh(d) ∩ F = ∅.

For the “if” direction, given a mappingh satisfying the
condition above we construct fromh a databaseDB as fol-
lows: for every viewVi and every pair(a, b) ∈ ext(Vi)
we (i) choose a wordw = r1 · · · rn ∈ L(def (Vi)) such
that ρ(h(a), w) ⊆ h(b) and (ii) introduce inDB a path
a

r1→ x1 · · ·xn−1

rn→ b, wherex1, . . . , xn−1 are new ob-
jects. DB is consistent with the views by construction and
it can be verified that(c, d) 6∈ ans(Q,DB).

For the “only-if” direction, given a databaseDB that
is consistent with the views and such that(c, d) 6∈
ans(Q,DB) we build a mappingh′ : D → 2S by putting
each state inS0 in h′(c) and repeating the following untilh′

does not change any more: if there is an edgex
r
→ y in DB

ands ∈ h′(x), then addρ(s, r) to h′(y). Projectingh′ on
DV we obtain a mappingh which is consistent withA and
such thatS0 ⊆ h(c) andh(d) ∩ F = ∅.

Finally, since the size of mappings fromDV toS is |DV |·
|S|, the existence of one satisfying the required conditions
can be checked in PSPACE. 2

The algorithm used in the proof above is based on con-
structing a mapping between objects and states of the au-
tomaton for the query, which takes into account how the
paths in the database that are used to satisfy the views in-
duce transitions on the automaton. The conditions on the
mapping are necessary and sufficient for the existence of a
counterexample database for(c, d) ∈ ans(Q).

It is interesting to observe that the algorithm exploits the
regularity of the queryQ but not the regularity of the view
definitions. All that we need is the ability of taking the prod-
uct of def (Vi) with a finite automaton and then testing for
emptiness. Notably, this allows for extending the above al-
gorithm for answering regular path queries using context
free views with the same complexity bound.

We now establish a matching lower bound for the expres-
sion complexity of the problem.

Theorem 13 Answering queries using sound views under
ODA is PSPACE-hard wrt expression complexity.

3We have used the extension ofρ to a mapping from2S
× Σ∗ to 2S .

Proof. By reduction from regular expression universal-
ity, known to be PSPACE-complete [18]. We reduce uni-
versality of a regular expressionsE to answering query
Q = E using a sound viewV with def (V ) = Σ∗ and
ext(V ) = {(c, d)}. It is easy to verify thatL(Σ∗) ⊆ L(E)
if and only if (c, d) ∈ ans(Q). 2

We now analyze data complexity in the present setting.
It turns out that the algorithm in the proof of Theorem 12,
which is optimal wrt combined complexity, is also optimal
wrt data complexity.

Theorem 14 Answering queries using sound views under
ODA is in coNP wrt data complexity.

Proof. The algorithm in the proof of Theorem 12 provides
a coNP upper bound, if the size of the query and of the view
definitions is considered to be constant. Indeed, after guess-
ing a mappingh : DV → 2S , one can check in polynomial
time whetherh is consistent withA, and whether it satisfies
the conditions on the initial and final states ofA. 2

Theorem 15 Answering queries using sound views under
ODA is coNP-hard wrt data complexity.

Proof. The proof is as the one for Theorem 10, which does
not actually rely onCDA and works for sound views. 2

6. Open domain and arbitrary views

We now study query answering underODA in the most
general setting where each view may be either sound or ex-
act4.

Theorem 16 Answering queries using (arbitrary) views
underODA is in PSPACE wrt combined complexity.

Proof. Let Q be a query, V1, . . . , Vk be
views with assumptions as(V1), . . . , as(Vk), def-
initions def (V1), . . . , def (Vk) and extensions
ext(V1), . . . , ext(Vk), and DV be the set of objects in
such extensions.

Let A0 = (Σ, S0, s0, ρ0, f0) be a nondeterministic au-
tomaton forQ (we assume a single starting state and a sin-
gle accepting state). LetAi = (Σ, Si, si, ρi, fi) be a non-
deterministic automaton fordef (Vi). Let T =

⋃

0≤i≤k Si,
let T ′ = T ∪ {0}, where0 6∈ T , and letS′

i = Si ∪ {0}, for
0 ≤ i ≤ k.

Consider a wordw ∈ Σ∗. Such a word induces a binary
relationHw ⊆ T ′ ×T ′ as follows. The pair(s, s′) is in Hw

if and only if

4As discussed in Section 2, complete views are reducible to exact
views.



• s, s′ ∈ Si ands′ ∈ ρi(s, w);
• s = 0, s′ ∈ Si ands′ ∈ ρi(si, w

′) for some nonempty
proper suffixw′ of w;

• s′ = 0, s ∈ Si andfi ∈ ρi(s, w
′) for some nonempty

proper prefixw′ of w;
• s = 0, s′ = 0 andfi ∈ ρi(si, w

′) for some nonempty
proper suffixw′ of a nonempty proper prefix ofw.

Intuitively, Hw keeps information about possible runs of
each automatonAi over w, its prefixes and its suffixes.
Given a binary relationH ⊆ T ′ × T ′ one can test in
PSPACE whether there exists a wordw such thatH = Hw.

Consider a mappingh : DV × DV → 2T ′×T ′

, i.e., h
assigns to every pair(a, b) ∈ DV × DV a binary relation
overT ′. We say thath is consistent withA0, A1, . . . , Ak if
the following holds for each(a, b) ∈ DV ×DV : if h(a, b) is
not empty, then there exists a wordwa,b such thath(a, b) =
Hwa,b

.
An accepting path forAi wrt h from a to b is a sequence

a0, . . . , am of elements inDV , wherea0 = a andam =
b, such that there is a sequencet0, . . . , tm of states inS′

i,
where (i)t0 = si or t0 = 0, (ii) tm = fm or tm = 0, (iii)
t1, . . . , tm−1 are inSi, and (iv)(ti, ti+1) ∈ h(ai, ai+1), for
0 ≤ i < m. If such an accepting path exists we say that:

• Ai accepts the pair(a, b) if t0 = si andtm = fi,
• Ai accepts the pair(0, b) if t0 = 0 andtm = fi,
• Ai accepts the pair(a, 0) if t0 = si andtm = 0,
• Ai accepts the pair(0, 0) if t0 = 0 andtm = 0.

We show that(c, d) 6∈ ans(Q) if and only if there exists
a mappingh such that:

1. h is consistent withA0, A1, . . . , Ak;

2. A0 does not accept the pair(c, d);

3. for eachVi, 1 ≤ i ≤ k,

• if as(Vi) = SVA thenAi accepts a pair(a, b) if
(a, b) ∈ ext(Vi);

• if as(Vi) = EVA then (i)Ai accepts a pair(a, b)
if and only if (a, b) ∈ ext(Vi) and (ii) Ai does
not accept any pair of the form(0, b), (a, 0), or
(0, 0).

For the “if” direction, given a mappingh satisfying the
conditions above we can obtain fromh a minimal mapping
h′, still satisfying all conditions, by settingh′(a, b) = ∅ for
as many pairs(a, b) as possible. Fromh′ we construct a
databaseDB as follows: for each(a, b) ∈ DV × Dv such
thath′(a, b) 6= ∅ we (i) choose a wordw = r1 · · · rn such
that h′(a, b) = Hw and (ii) introduce inDB a patha

r1→

x1 · · ·xn−1

rn→ b, wherex1, . . . , xn−1 are new objects. It
can be verified thatDB is consistent with the views and that
(c, d) 6∈ ans(Q,DB).

For the “only-if” direction, given a databaseDB that
is consistent with the views and such that(c, d) 6∈
ans(Q,DB) then there exists a databaseDB ′ that is con-
sistent with the views and such that(c, d) 6∈ ans(Q,DB)
of the following form: DB ′ is composed of a set of paths
a

r1→ x1 · · ·xn−1

rn→ b, wherea, b ∈ DV andx1, . . . , xn−1

are objects not inDV and not occurring on any other path.
We defineh as follows: for each pair of objectsa, b ∈ DV ,

h(a, b) =

{

Hr1···rn
, if a

r1→ x1 · · ·xn−1

rn→ b in DB ′.
∅, otherwise

It can be verified thath satisfies the conditions above.
Finally, since the size of mappings fromDV × DV to

T ′ × T ′ is |DV |2 · T ′2, the existence of one satisfying the
required conditions can be checked in PSPACE. 2

The algorithm used in the proof above is based on the
same idea of the one used in the proof of Theorem 12 for
sound views, namely to construct a mapping between ob-
jects and automata states which takes into account how the
paths in the database that are used to satisfy the views in-
duce transitions on the automata representing queries. How-
ever, while in the case of sound views it was sufficient to
track the transitions for the automaton of the query, in the
case of exact views one has also to track the transitions for
the automata of the views. This is necessary since one has
to guarantee that, if a database can be constructed from the
mapping, then it actually represents a correct counterexam-
ple to (c, d) ∈ ans(Q), and therefore is consistent with all
views. This means that, if a pair(x, y) of objects is not
explicitly asserted to be part of the extension of one of the
views Vi, then (x, y) is not in the answer set todef (Vi)
over the database. The conditions involving pairs of objects
(a, b) that appear in the extensions of the views take into
account the known objects, while the conditions involving
0 take into account the objects that are not in the extensions
of the views but need to be introduced in the database to
actually satisfy them.

Obviously, the PSPACE lower bound of answering
queries using sound views provides also a lower bound for
arbitrary views. Next we show that the same lower bound
holds also for the case where all views are exact.

Theorem 17 Answering queries using exact views under
ODA is PSPACE-hard wrt expression complexity.

Proof. By reduction from regular expression universal-
ity [18], known to be PSPACE-complete. We reduce univer-
sality of a regular expressionsE to answering queryQ =
R1·E·R2 using an exact viewV with def (V ) = R1·Σ

∗·R2

and ext(V ) = {(c, d)}, whereΣ is the set of symbols
in E, andR1 and R2 are new symbols not appearing in
Σ. It is easy to verify thatL(Σ∗) ⊆ L(E) if and only if
(c, d) ∈ ans(Q).



Observe that the proof is a variant of the one for Theo-
rem 13, except that we guarantee that(c, d) is the only pair
of objects that satisfyV . 2

We now turn to analyzing data complexity in the present
setting.

Theorem 18 Answering queries using (arbitrary) views
underODA is in coNP wrt data complexity.

Proof. The algorithm in the proof of Theorem 16 provides
a coNP upper bound, if the size of the query and of the view
definitions is considered to be constant. 2

Theorem 19 Answering queries using exact views under
ODA is coNP-hard wrt data complexity.

Proof. The proof is the same as that of Theorem 10 which
does not actually rely onCDA. 2

7. Relationship with query rewriting

As already mentioned in Section 3, query rewriting tech-
niques have been used to solve the query answering problem
[23]. Note however, that in the general case query rewriting
using views is not sufficient for query answering. In partic-
ular, when the rewriting is not exact (i.e., it is not equivalent
to the query), it may miss some tuples that are in the answer
to a query, as shown by the following example.

Example 20 Let Q = R3·(R4 +R5)+R1·R4 +R2·R5 be
a query and letV1, V2, V3 be views such that

def (V1) = R1 def (V2) = R2 + R3

def (V3) = R4 + R5

One can verify that the maximal rewriting ofQ using
{V1, V2, V3} is the empty language (which is obviously not
exact). However, ifas(V1) = as(V2) = as(V3) = EVA
and

ext(V1) = {(c, b)} ext(V2) = {(c, b)}
ext(V3) = {(b, d)}

then(c, d) ∈ ans(Q).

Obviously, an exact rewriting may still miss some tuples
of the answer to a query in the case where the views are
sound, but not exact.

Example 21 Let Q = R1·R2 be a query and letV1, V2, V3

be views such that

def (V1) = R1 def (V2) = R2

def (V3) = R1·R2

An exact rewriting ofQ wrt {V1, V2, V3} is V3. However, if
as(V1) = as(V2) = as(V3) = SVA, and

ext(V1) = {(c, a)} ext(V2) = {(a, d)}
ext(V3) = {(c, b)}

then(c, d) ∈ ans(Q), but evaluatingV3 on the extensions
of the views we do not get this answer5.

If the rewriting is exact and the views are exact, we can
use such rewriting to solve the query answering problem.
Exploiting the results in [10], where rewriting of regular
path queries is studied and an algorithm to compute the
maximal rewriting and check its exactness is devised, we
get the following theorem.

Theorem 22 Let V1, . . . , Vk be exact views, andQ be a
query. If there exists an exact rewriting ofQ using the views
V1, . . . , Vk, then answeringQ usingV1, . . . , Vk under both
CDA and ODA is NLOGSPACE wrt data complexity and
EXPSPACE wrt expression complexity.

Proof. Let R be an exact rewriting of a queryQ in terms
of the viewsV1, . . . , Vk. We representR as a finite au-
tomaton over the alphabetV1, . . . , Vk, and we have that
(c, d) ∈ ans(Q) iff there is a sequencec0, . . . , cm of ob-
jects and a sequences0, . . . , sm of states such that

1. c0 = c andcm = d;

2. s0 is an initial state andsm is an accepting state;

3. for0 ≤ i ≤ m, there is a transition labeled byVji
from

si to si+1 and the pair(ci, ci+1) ∈ ext(Vji
).

This can be checked nondeterministically in space logarith-
mic in the size of the view extensions and the size of the
rewriting. Since the size of the rewriting is worst case dou-
ble exponential in the size of the query [10], the above con-
dition can be verified nondeterministically in space loga-
rithmic in the size of the view extensions and exponential in
the size of the query (by constructing the rewriting on the
fly [10]). 2

Thus, rewriting enables to decrease the data complexity
at the expense of expression complexity.

8. Conclusions

We have studied the problem of answering queries using
views for the case where both the query and the views are
expressed as regular path queries. We have considered dif-
ferent assumptions both on the extensions of the views, and

5Evaluating other exact rewritings, namelyV1·V2 andV1·V2 + V3, on
the extensions of the views, would give(c, d) as an answer. However, there
is a priory no reason not to chooseV3 as exact rewriting.



on the domain of the database. For each case, we have pre-
sented an algorithm and studied its computational complex-
ity. We have proven the lower bound with respect to data,
expression, and combined complexity, and we have shown
that it matches the complexity of the provided algorithm.

Our results show that the problem is inherently in-
tractable mainly due to the expressive power of the query
language. On the other hand, with respect to data complex-
ity, the problem is no more complex than in cases where
the query language does not contain recursion, such as non-
recursive Datalog.

In the future, we aim at extending the analysis to other
typical features present in full-fledged query languages over
semistructured data. In particular, we aim at adding inverse
relations in regular path queries, and allowing for conjunc-
tions of regular path queries.
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