
An Automata-Theoretic Approach to

Regular XPath�

Diego Calvanese1, Giuseppe De Giacomo2,
Maurizio Lenzerini2, and Moshe Y. Vardi3

1 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
calvanese@inf.unibz.it

2 Dipartimento di Informatica e Sistemistica, Sapienza Università di Roma, Italy
{degiacomo,lenzerini}@dis.uniroma1.it

3 Department of Computer Science
Rice University, P.O. Box 1892, Houston, TX 77251-1892, U.S.A.

vardi@cs.rice.edu

Abstract. In this paper we present Regular XPath (RXPath), which is
a natural extension of XPath with regular expressions over paths that
has the same computational properties as XPath: linear-time query eval-
uation and exponential-time reasoning. To establish these results, we de-
vise a unifying automata-theoretic framework based on two-way weak
alternating tree automata. Specifically, we consider automata that have
infinite runs on finite trees. This enables us to leverage and simplify
existing automata-theoretic machinery and develop algorithms both for
query evaluation and for reasoning over queries. With respect to the lat-
ter problem, we consider RXPath as a constraint language, and study
constraint satisfiability, and query satisfiability and containment under
constraints in the setting of RXPath.

1 Introduction

XML1 has become the standard language for semistructured data, and the last
few years have witnessed a strong interest in reasoning about XML queries and
integrity constraints. From a conceptual point of view, an XML document can
be seen as a finite node-labeled tree, and several formalisms have been proposed
as query languages over XML documents. A common feature of many of these
language is the use of regular path expressions to navigate through XML docu-
ments, and XPath is a popular language for such navigation [1].

This paper introduces a powerful extension of CoreXPath, called RXPath,
for expressing XML queries. Our language is inspired by the work carried out
in the last few years on extensions of CoreXPath [2,3]. In particular, we extend
CoreXPath with nominals, as well as with regular path expressions over XML

� A preliminary version of this paper, dealing with RXPath satisfiability only, has
been presented at the 2008 Workshop on Logic in Databases (LID 2008).

1 http://www.w3.org/TR/REC-xml/

P. Gardner and F. Geerts (Eds.): DBPL 2009, LNCS 5708, pp. 18–35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.w3.org/TR/REC-xml/

An Automata-Theoretic Approach to Regular XPath 19

trees, expressed as two-way regular expressions over XPath axes. Our language is
essentially Regular XPath [2], extended with nominals. A nominal is a formalism
for denoting a single node in a document, similarly to XML global identifiers built
through the construct ID. The power of our language in expressing paths is the
one of Propositional Dynamic Logic (PDL) [4] extended with converse, nominals,
and deterministic programs. This combination of path-forming constructs results
in one of the most expressive languages ever considered for specifying structural
queries over XML documents.

We describe in this paper a comprehensive automata-theoretic framework for
evaluating and reasoning about RXPath. Our framework is based on two-way
weak alternating tree automata, denoted 2WATA. The use of automata-theoretic
techniques in the context of XPath is not new. For example, tree walking au-
tomata are used in [2] to characterize the expressive power of Regular XPath,
while bottom-up tree automata are used there to derive an algorithm for testing
containment of Regular XPath queries. In contrast, here we show that 2WATA
provide a unifying formalism, as they enable us to both derive a linear-time algo-
rithm for the evaluation of RXPath queries and an exponential-time algorithm
for testing containment of RXPath queries.

Our automata-theoretic approach is based on techniques developed in the
context of program logics [5,6]. Here, however, we leverage the fact that we are
dealing with finite trees, rather than the infinite trees used in the program-logics
context. Indeed, the automata-theoretic techniques used in reasoning about in-
finite trees are notoriously difficult [7,8] and have resisted efficient implementa-
tion. The restiction to finite trees here enables us to obtain much more feasi-
ble algorithmic approach. (A similar idea, focusing on query reasoning rather
than query evaluation, has been pursued in [9,10]. For the latter proposal,
also an implementation is provided.) In particular, one can make use of sym-
bolic techniques, at the base of modern model checking tools, for effectively
querying and verifying XML documents. It is worth noting that while our au-
tomata run over finite trees they are allowed to have infinite runs. This sepa-
rates 2WATA from the alternating tree automata used, e.g., in [11]. The key
technical results here are that acceptance of trees by 2WATA can be decided
in linear time, while nonemptiness of 2WATA can be decided in exponential
time.

The first application of the automata-theoretic results is that RXPath queries
can be evaluated in linear time; more precisely, the running time for query eval-
uation is a product of the size of the input tree and the size of the query. This
extends the results in [12] of polynomial-time algorithms for the evaluation of
CoreXPath queries. Note that [12] provide also results for full XPath that han-
dles also data, hence goes beyond the core fragment considered here. Our result
complements the one in [13], which considers an extension of RXPath with tests
for equality between attributes at the end of two paths, and provides a query
evaluation algorithm that is linear time in the size of the input tree but expo-
nential in the size of the query.

20 D. Calvanese et al.

The second application is to RXPath reasoning. There has been a lot of fo-
cus on testing containment of XPath queries, cf. [14]. Instead, we focus here
on the more general problem of satisfying constraints over XML documents.
Specifically, we consider here structural constraints [15]. Structural constraints
are those imposing a certain form on the trees corresponding to the docu-
ments, with no explicit reference to values associated with nodes. Notable ex-
amples of formalisms allowing for expressing such constraints are DTDs (see
footnote 1 and [16]), and XML Schema2 [17]. We show how we can use RX-
Path to express such constraints. and then show that satisfiability of RXPath
constraints can be checked in exponential time using our automata-theoretic
results. The exponential decidability result for RXPath constraint satisfiability
is not surprising as this problem can be reduced to the satisfiability problem
for Repeat-Converse-Deterministic PDL (repeat-CDPDL) a well-known variant
of PDL, which can be solved using the automata-theoretic techniques of [6].
As noted above, however, those techniques are quite heavy and so far resisted
implementation.

We also show that query satisfiability and query containment for RXPath can
be reduced to checking satisfiability of RXPath constraints, thus enabling us to
take advantage of the techniques developed for constraint satisfiability. Note
that most previous results on this topic (see, e.g., [18]) refer to query languages
that are either less expressive than RXPath, or are intended for semi-structured
data modeled as graph-like structures, rather than XML trees.

2 Regular XPath

Following [3,19], we formalize XML documents as finite sibling trees, which
are tree like structures, whose nodes are linked to each other by two relations:
the child relation, connecting each node with its children in the tree; and the
immediate-right-sibling relation, connecting each node with its sibling imme-
diately to the right in the tree, such a relation models the order between the
children of the node in an XML documents. Each node of the sibling tree is
labeled by (possibly many) elements of a set of atomic propositions Σ. We con-
sider the set Σ to be partitioned into Σa and Σid . The set Σa is a set of atomic
propositions that represent either XML tags or XML attribute-value pairs. On
the other hand, Σid is a set of special propositions representing (node) identi-
fiers, i.e., that are true in (i.e., that label) exactly a single node of the XML
document. Such identifiers are essentially an abstraction of the XML identifiers
built through the construct ID (see footnote 1), though a node can have mul-
tiple identifiers in our case. Observe that sibling trees are more general than
XML documents since they would allow the same node to be labeled by several
tags. It is easy to impose RXPath constraints (see later) that force propositions
representing tags to be disjoint if needed.

2 http://www.w3.org/TR/xmlschema-0/ and http://.../xmlschema-1/

http://www.w3.org/TR/xmlschema-0/
http://.../xmlschema-1/

An Automata-Theoretic Approach to Regular XPath 21

(〈P 〉ϕ)Ts = {z | ∃z′.(z, z′) ∈ PTs ∧ z′ ∈ ϕTs}
([P]ϕ)Ts = {z | ∀z′.(z, z′) ∈ PTs → z′ ∈ ϕTs}
(¬ϕ)Ts = ΔT \ ϕTs

(ϕ1 ∧ ϕ2)
Ts = ϕTs

1 ∩ ϕTs
2

(ϕ1 ∨ ϕ2)
Ts = ϕTs

1 ∪ ϕTs
2

(ϕ?)Ts = {(z, z) | z ∈ ϕTs}
(P1;P2)

Ts = PTs
1 ◦ PTs

2

(P1 ∪ P2)
Ts = PTs

1 ∪ PTs
2

(P ∗)Ts = (PTs)∗

(P−)Ts = {(z′, z) | (z, z′) ∈ PTs}

Fig. 1. Semantics of node and path expressions

A sibling tree is a pair Ts = (ΔTs , ·Ts), where ΔTs is a tree3 and ·Ts is an
interpretation function that assigns to each atomic symbol A ∈ Σa a set ATs of
nodes of ΔTs , to each identifier Id a singleton IdTs containing one node of ΔTs ,
and that interprets the axis relations in the obvious way, namely:

childTs = {(z, z·i) | z, z·i ∈ ΔTs}
rightTs = {(z·i, z·(i+1)) | z·i, z·(i+1) ∈ ΔTs}

As in [3,19], we focus on a variant of XPath that allows for full regular ex-
pressions over the XPath axes. In fact, we make it explicit that such a variant
of XPath is tightly related to Propositional Dynamic Logic (PDL) [20,4], and
adopt the PDL syntax to express node and path expressions.

RXPath expressions are of two sorts: node expressions, denoted by ϕ, and path
expressions, denoted by P , defined by the following syntax (we omit parentheses):

ϕ −→ A | Id | 〈P 〉ϕ | [P]ϕ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

P −→ child | right | ϕ? | P1;P2 | P1 ∪ P2 | P ∗ | P−

where A ∈ Σa, Id ∈ Σid , and child and right denote the two main XPath
axis relations. We consider the other XPath axis relations parent and left
as abbreviations for child− and right−, respectively. Also, we use the usual
abbreviations, including true, false, and ϕ1 → ϕ2.

Given a sibling tree Ts = (ΔTs , ·Ts), we extend the interpretation function
·Ts to arbitrary node and path expressions as shown in Figure 1, where we have
used the standard notions of chaining (· ◦ ·) and reflexive-transitive closure (·∗)
over binary relations. Note that, [P]ϕ is equivalent to ¬〈P 〉¬ϕ.

To develop our techniques for inference on RXPath, it is convenient to con-
sider an additional axis fchild, connecting each node to its first child only,
interpreted as

fchildTs = {(z, z·1) | z, z·1 ∈ ΔTs}
Using fchild, we can thus re-express the child axis as fchild; right∗. In
this way, we can view sibling trees, which are unranked, as binary trees (see
Section 4).

3 A (finite) tree is a non-empty (finite) set Δ of words over N, such that if x·i ∈ Δ,
where x ∈ N

∗ and i ∈ N, then also x ∈ Δ, and if i > 1, then also x·(i−1) ∈ Δ. By
convention we take x·0 = x, and x·i·−1 = x. A (finite) labeled tree over an alphabet
L of labels is a pair T = (ΔT , �T), where ΔT is a (finite) tree and the labeling
�T : ΔT → L is a mapping assigning to each node x ∈ ΔT a label �T (x) in L.

22 D. Calvanese et al.

We say that a path expression is normalized if it is expressed by making use
of fchild and right only, if ·− is pushed inside as much as possible, in such
a way that it appears only in front of fchild and right only, and if all node
expressions occurring in it are normalized. A node expression is normalized if all
path expressions occurring in it are normalized, and if it is in negation normal
form, i.e., negation is pushed inside as much as possible, in such a way that it
appears only in front of atomic symbols.

RXPath expressions can be used to express queries on XML documents. An
RXPath (unary) query is an RXPath node expression ϕ that, when evaluated
over a sibling tree Ts, returns the set of nodes ϕTs . We also consider RXPath
binary queries, where such a query is an RXPath path expression P that, when
evaluated over a sibling tree Ts, returns the set of pairs of nodes PTs . We will
address the problems of query evaluation and of query satisfiability by means
of automata-theoretic techniques, presented in the next section. A further use
of RXPath expressions is to specify constraints, which will be dealt with in
Section 5, resorting again to automata.

3 Two-Way Weak Alternating Tree Automata

We consider a variant of two-way alternating automata [21] that run, possibly
infinitely, on finite labeled trees Specifically, alternating tree automata gener-
alize nondeterministic tree automata, while two-way tree automata generalize
ordinary tree automata by being allowed to traverse the tree both upwards and
downwards. Formally, let B+(I) be the set of positive Boolean formulae over a
set I, built inductively by applying ∧ and ∨ starting from true, false, and ele-
ments of I. For a set J ⊆ I and a formula ϕ ∈ B+(I), we say that J satisfies ϕ if
assigning true to the elements in J and false to those in I \J , makes ϕ true. For
a positive integer k, let [1..k] = {1, . . . , k} and [−1..k] = {−1, 0, 1, . . . , k}. For
integers i, j, with i ≤ j, let [i..j] = {i, . . . , j}. A two-way weak alternating tree
automaton (2WATA) running over labeled trees all of whose nodes have at most
k successors, is a tuple A = (L, S, s0, δ, α), where L is the alphabet of tree labels,
S is a finite set of states, s0 ∈ S is the initial state, δ : S ×L → B+([−1..k]× S)
is the transition function, and α is the accepting condition discussed below.

The transition function maps a state s ∈ S and an input label a ∈ L to a
positive Boolean formula over [−1..k] × S. Intuitively, if δ(s, a) = ϕ, then each
pair (c′, s′) appearing in ϕ corresponds to a new copy of the automaton going to
the direction suggested by c′ and starting in state s′. For example, if k = 2 and
δ(s1, a) = ((1, s2) ∧ (1, s3)) ∨ ((−1, s1) ∧ (0, s3)), when the automaton is in the
state s1 and reads the node x labeled by a, it proceeds either by sending off two
copies, in the states s2 and s3 respectively, to the first successor of x (i.e., x·1),
or by sending off one copy in the state s1 to the predecessor of x (i.e., x·−1) and
one copy in the state s3 to x itself (i.e., x·0).

A run of a 2WATA is obtained by resolving all existential choices. The uni-
versal choices are left, which gives us a tree. Because we are considering two-way
automata, runs can start at arbitrary tree nodes, and need not start at the root.

An Automata-Theoretic Approach to Regular XPath 23

Formally, a run of a 2WATA A over a labeled tree T = (ΔT , �T) from a node
x0 ∈ ΔT is a finite ΔT × S-labeled tree R = (ΔR, �R) satisfying:

1. ε ∈ ΔR and �R(ε) = (x0, s0).
2. Let �R(r) = (x, s) and δ(s, �T (x)) = ϕ. Then there is a (possibly empty) set
S = {(c1, s1), . . . , (cn, sn)} ⊆ [−1..k]×S such that S satisfies ϕ, and for each
i ∈ [1..n], we have that r·i ∈ ΔR, x·ci ∈ ΔT , and �R(r·i) = (x·ci, si).

Intuitively, a run R keeps track of all transitions that the 2WATA A performs
on a labeled input tree T : a node r of R labeled by (x, s) describes a copy of
A that is in the state s and is reading the node x of T . The successors of r
in the run represent the transitions made by the multiple copies of A that are
being sent off either upwards to the predecessor of x, downwards to one of the
successors of x, or to x itself.

A 2WATA is called “weak” due to the specific form of the acceptance condition
α. Specifically, α ⊆ S, and there exists a partition of S into disjoint sets, Si,
such that for each set Si, either Si ⊆ α, in which case Si is an accepting set, or
Si ∩ α = ∅, in which case Si is a rejecting set. In addition, there exists a partial
order ≤ on the collection of the Si’s such that, for each s ∈ Si and s′ ∈ Sj for
which s′ occurs in δ(s, a), for some a ∈ L, we have Sj ≤ Si. Thus, transitions
from a state in Si lead to states in either the same Si or a lower one. It follows
that every infinite path of a run of a 2WATA ultimately gets “trapped” within
some Si. The path is accepting if and only if Si is an accepting set. A run (Tr, r)
is accepting if all its infinite paths are accepting. A 2WATA A accepts a labeled
tree T from a node x0 ∈ ΔT if there exists an accepting run of A over T from x0.
The language L (A) accepted by A is the set of trees that A accepts from the
root ε.

3.1 The Acceptance Problem

Given a 2WATA A = (L, S, s0, δ, α), a labeled tree T = (ΔT , �T), and a node
x0 ∈ ΔT , we’d like to know whether A accepts T from x0. This is called the
acceptance problem. We follow here the approach of [5], and solve the acceptance
problem by first taking a product A × Tx0 of A and T from x0. This product
is an alternating automaton over a one letter alphabet L0, consisting of a single
letter, say a. This product automaton simulates a run of A on T from x0. The
product automaton is A × Tx0 = (L0, S ×ΔT , (s0, x0), δ′, α ×ΔT), where δ′ is
defined as follows:

– δ′((s, x), a) = Θx(δ(s, �T (x))), where Θx is the substitution that replaces a
pair (c, t), by the pair (t, x·c) if x·c ∈ ΔT , and by false otherwise.

Note that the size of A × Tx0 is simply the product of the size of A and the
size of T . Note also that A × Tx0 can be viewed an a weak alternating word
automaton running over the infinite word aω, as by taking the product with T
we have eliminated all directions.

We can now state the relationship between A×Tx0 and A, which is essentially
a restatement of Proposition 3.2 in [5].

24 D. Calvanese et al.

Proposition 1. A accepts T from x0 iff A × Tx0 accepts aω.

The advantage of Proposition 1 is that it reduces the acceptance problem to
the question of whether A × T accepts aω. This problem is referred to in [5]
as the “one-letter nonemptiness problem”. It is shown there that this problem
can be solved in time that is linear in the size of A × Tx0 by an algorithm that
imposes an evaluation of and-or trees over a decomposition of the automaton
state space into maximal strongly connected components. The result in [5] is
actually stronger; the algorithm there computes in linear time the set of initial
states from which the automaton accepts aω. We therefore obtain the following
result about the acceptance problem.

Proposition 2. Given a 2WATA A and a labeled tree T , we can compute in
time that is linear in the product of the sizes of A and T the set of nodes x0

such that A accepts T from x0.

3.2 The Nonemptiness Problem

The nonemptiness problem for 2WATAs consists in determining, for a given
2WATA A whether it accepts some tree T from ε. This problem is solved in [6] for
2WATAs (actually, for a more powerful automata model) over infinite trees, using
rather sophisticated automata-theoretic techniques. Here we solve this problem
over finite trees, which requires less sophisticated techniques, which are much
easier to implement.

In order to decide non-emptiness of 2WATAs, we resort to a conversion to
standard one-way nondeterministic tree automata [22]. A one-way nondetermin-
istic tree automaton (NTA) is a tuple A = (L, S, s0, δ), analogous to a 2WATA,
except that (i) the acceptance condition α is empty and has been dropped from
the tuple, (ii) the directions −1 and 0 are not used in δ and, (iii) for each state
s ∈ S and letter a ∈ L, the positive Boolean formula δ(s, a), when written in
DNF, does not contain a disjunct with two distinct atoms (c, s1) and (c, s2) with
the same direction c. In other words, each disjunct corresponds to sending at
most one “subprocess” in each direction. While for 2WATAs we have separate
input tree and run tree, for NTAs we can assume that the run of the automaton
over an input tree T = (ΔT , �T) is an S-labeled tree R = (ΔT , �R), which has
the same underlying tree as T , and thus is finite, but is labeled by states in S.
Nonemptiness of NTAs is known to be decidable in linear time [23].

It remains to describe the translation of 2WATAs to NTAs. Given a 2WATA
A and an input tree T as above, a strategy for A on T is a mapping τ : ΔT →
2S×[−1..k]×S. Thus, each label in a strategy is an edge-[−1..k]-labeled directed
graph on S. Intuitively, each label is a set of transitions. For each label ζ ⊆
S × [−1..k] × S, we define state(ζ) = {u : (u, i, v) ∈ ζ}, i.e., state(ζ) is the
set of sources in the graph ζ. In addition, we require the following: (1) s0 ∈
state(τ(ε)), (2) for each node x ∈ ΔT and each state s ∈ state(τ(x)), the set
{(c, s′) : (s, c, s′) ∈ τ(x)} satisfies δ(s, �T (x)) (thus, each label can be viewed as
a strategy of satisfying the transition function), and (3) for each node x ∈ ΔT ,
and each edge (s, i, s′) ∈ τ(x), we have that s′ ∈ state(τ(x·i)).

An Automata-Theoretic Approach to Regular XPath 25

A path β in the strategy τ is a maximal sequence (u0, s0), (u1, s1), . . . of pairs
from ΔT × S such that u0 = ε and, for all i ≥ 0, there is some ci ∈ [−1..k]
such that (si, ci, si+1) ∈ τ(ui) and ui+1 = ui·ci. Thus, β is obtained by following
transitions in the strategy. The path β is accepting if the path s0, s1, . . . is
accepting. The strategy τ is accepting if all its paths are accepting.

Proposition 3 ([6]). A 2WATA A accepts an input tree T from ε iff A has an
accepting strategy tree for T .

We have thus succeeded in defining a notion of run for alternating automata
that will have the same tree structure as the input tree. We are still facing the
problem that paths in a strategy tree can go both up and down. We need to
find a way to restrict attention to uni-directional paths. For this we need an
additional concept.

An annotation for A on T with respect to a strategy τ is a mapping η : ΔT →
2S×{0,1}×S. Thus, each label in an annotation is an edge-{0, 1}-labeled directed
graph on S. We assume that edge labels are unique; that is, a graph cannot
contain both triples (s, 0, s′) and (s, 1, s′). We require η to satisfy some closure
conditions for each node x ∈ ΔT . Intuitively, these conditions say that η contains
all relevant information about finite paths in τ . Thus, an edge (s, c, s′) describes
a path from s to s′, where c = 1 if this path goes through α. The conditions
are: (a) if (s, c, s′) ∈ η(x) and (s′, c′, s′′) ∈ η(x), then (s, c′′, s′′) ∈ η(x) where
c′′ = max{c, c′}, (b) if (s, 0, s′) ∈ τ(x) then (s, c, s′) ∈ η(x), where c = 1 if
s′ ∈ α and c = 0 otherwise, (c) if x = y·i, (s,−1, s′) ∈ τ(x), (s′, c, s′′) ∈ η(y),
and (s′′, i, s′′′) ∈ τ(x), then (s, c′, s′′′) ∈ η(x), where c′ = 1 if either s′ ∈ α,
c = 1, or s′′′ ∈ α, and c′ = 0 otherwise, and (d) if y = x·i, (s, i, s′) ∈ τ(x),
(s′, c, s′′) ∈ η(y), and (s′′,−1, s′′′) ∈ τ(y), then (s, c′, s′′′) ∈ η(x), where c′ = 1 if
s ∈ α, c = 1, or s′′′ ∈ α, and c′ = 0 otherwise. The annotation η is accepting if
for every node x ∈ ΔT and state s ∈ S, if (s, c, s) ∈ η(x), then c = 1. In other
words, η is accepting if all cycles visit accepting states.

Proposition 4 ([6]). A 2WATA A accepts an input tree T from ε iff A has a
strategy tree τ on T and an accepting annotation η of τ .

Consider now annotated trees (ΔT , �T , τ, η), where τ is a strategy tree for A on
(ΔT , �T) and η is an annotation of τ . We say that (ΔT , �T , τ, η) is accepting if η
is accepting.

Theorem 1. Let A be a 2WATA. Then there is an NTA An such that L (A) =
L (An). The number of states of An is exponential in the number of states of A.

The key feature of the state space of An is the fact that states are pairs con-
sisting of subsets of S and S × {0, 1} × S. Thus, a set of states of An can be
described by a Boolean function on the domain S3. Similarly, the transition func-
tion of An can also be described as a Boolean function. Such functions can be
represented by BDDs [24], enabling a symbolic approach to nonemptiness testing

26 D. Calvanese et al.

of 2WATAs, as shown below. We note that the framework of [6] also converts a
two-way alternating tree automaton (on infinite trees) to a nondeterministic tree
automaton (on infinite trees). The state space of the latter, however, is consid-
erably more complex than the one obtained here due to Safra’s determinization
construction. This makes it practically infeasible to apply the symbolic approach
in the infinite-tree setting.

Theorem 2. Given a 2WATA A with n states and an input alphabet with m el-
ements, deciding nonemptiness of A can be done in time exponential in n and
linear in m.

As shown in [3] (see also Section 5 for dealing with identifiers), reasoning over
RXPath formulas can be reduced to checking satisfiability in Propositional Dy-
namic Logics (PDLs). Specifically, one can resort to Repeat-Converse-
Deterministic PDL (repeat-CDPDL), a variant of PDL that allows for expressing
the finiteness of trees and for which satisfiability is ExpTime-complete [6]. This
upper bound, however, is established using sophisticated infinite-tree automata-
theoretic techniques (cf., e.g., [25]), which so far have resisted attempts at prac-
tically efficient implementation [7,8], due to the use of Safra’s determinization
construction [26] and parity games [27]. The main advantage of our approach
here is that we use only automata on finite trees, which require a much “lighter”
automata-theoretic machinery. As noted in Theorem 2, nonemptiness for 2WATA
can be tested in time that is exponential in the number of states and linear in the
size of the alphabet. One can show that our 2WATA-based decision procedure
can be implemented using a symbolic approach, which has the potential to be
capable of handling automata with large states spaces [28].

4 2WATAs for RXPath Query Evaluation

We address now the problem of evaluating RXPath queries by means of 2WATAs.
To do so, we first represent sibling trees as binary trees, and then encode the
problem of evaluating an RXPath query ϕ into the acceptance problem for a
2WATA Awf

ϕ whose number of states is linear in ϕ. This allows us to establish
a tight complexity bound for RXPath query evaluation.

We work on binary trees. In order for such trees to represent sibling trees,
we make use of special labels ifc, irs , hfc, hrs , where ifc (resp., irs) are used
to keep track of whether a node is the first child (resp., is the right sibling) of
its predecessor, and hfc (resp., hrs) are used to keep track of whether a node
has a first child (resp., has a right sibling). Formally, we consider binary trees
whose nodes are labeled with subsets of Σ ∪ {ifc, irs , hfc, hrs}. We call such a
tree T = (ΔT , �T) well-formed if it satisfies the following conditions:

– For each node x of T , if �T (x) contains hfc, then x·1 is meant to represent the
fchild successor of x and hence �T (x·1) contains ifc but not irs . Similarly,
if �T (x) contains hrs , then x·2 is meant to represent the right successor of
x and hence �T (x·2) contains irs but not ifc.

An Automata-Theoretic Approach to Regular XPath 27

– The label �T (ε) of the root of T contains neither ifc, nor irs , nor hrs . In this
way, we restrict the root of T so as to represent the root of a sibling tree.

– For each Id ∈ Σid , there is at most one node x of T with Id ∈ �T (x).

A sibling tree Ts = (ΔTs , ·Ts), induces a well-formed binary tree πb(Ts). To define
πb(Ts) = (ΔT , �T), we define, by induction on ΔTs , both a mapping πb from ΔTs

to nodes of a binary tree, and the labeling of such nodes with ifc, irs , hfc, and
hrs as follows:

– πb(ε) = ε;
– πb(x·1) = πb(x)·1, for each node x·1 ∈ ΔTs ; moreover, hfc ∈ �T (πb(x)) and

ifc ∈ �T (πb(x)·1);
– πb(x·(n+1)) = πb(x·n)·2, for each node x·(n+1) ∈ ΔTs , with n ≥ 1; more-

over, hrs ∈ �T (πb(x·n)) and irs ∈ �T (πb(x·n)·2).

Then, we take ΔT to be the range of πb, and we complete the definition of the
labeling �T (πb(x)), for each node x ∈ ΔTs , as follows: A ∈ �T (πb(x)) iff x ∈ ATs ,
for each A ∈ Σa, and Id ∈ �T (πb(x)) iff x ∈ IdTs , for each Id ∈ Σid . Notice that,
since in Ts Id is interpreted as a singleton, T is well-formed.

To simplify the use of automata-theoretic techniques, we assume in the fol-
lowing that (normalized) path expressions are represented by means of finite
automata rather than regular expressions. More precisely, a normalized path
expression is represented as a finite automaton on finite words (NFA) P =
(Θ,Q, q0, �, F), in which the alphabet Θ is constituted by fchild, fchild−,
right, right− and by node expressions followed by ?. The semantics of a path
expression represented in such a way is the adaptation of the semantics for path
expressions as given in Section 2, when we view them as regular expressions,
with ;, ∪, and ∗ representing respectively the concatenation, union, and Kleene
star operators: a path expression PN represented as an NFA denotes the same
set of pairs of nodes as a path expression PR represented as a regular expres-
sion and defining the same language as PN , where the correspondence is applied
inductively to the path expressions appearing in the node expressions of PN

(respectively PR).
We need to make use of a notion of syntactic closure, similar to that of Fisher-

Ladner closure of a formula of PDL [4]. We need first to define the closure of
path expressions: given a path expression P = (Θ,Q, q0, �, F), we denote with
Pq the path expression Pq = (Θ,Q, q, �, F) obtained from P by making q ∈ Q
the initial state. The closure CL(P) of P is the set CL(P) = {Pq | q ∈ Q}.
The syntactic closure CL(ϕ) of a node expression ϕ is defined inductively by
asserting that {ϕ, ifc, irs , hfc, hrs} ⊆ CL(ϕ), and by the rules in Figure 2, where
nnf (¬ψ) denotes the negation normal form of ¬ψ.

Proposition 5. Given a node expression ϕ, the cardinality of CL(ϕ) is linear
in the length of ϕ.

Let ϕ be a normalized node expression. We first show how to construct a 2WATA
Aϕ that, when run over the binary tree corresponding to a sibling tree Ts,
accepts exactly from the nodes corresponding to those in ϕTs . The 2WATA
Aϕ = (L, Sϕ, sϕ, δϕ, αϕ) is defined as follows.

28 D. Calvanese et al.

if ψ ∈ CL(ϕ) then nnf (¬ψ) ∈ CL(ϕ) (if ψ is not of the form ¬ψ′)
if ¬ψ ∈ CL(ϕ) then ψ ∈ CL(ϕ)
if ψ1 ∧ ψ2 ∈ CL(ϕ) then ψ1, ψ2 ∈ CL(ϕ)
if ψ1 ∨ ψ2 ∈ CL(ϕ) then ψ1, ψ2 ∈ CL(ϕ)
if 〈P 〉ψ ∈ CL(ϕ) then ψ ∈ CL(ϕ), and 〈Pq〉ψ ∈ CL(ϕ) for each Pq ∈ CL(P)
if 〈P 〉ψ ∈ CL(ϕ), where P = (Θ,Q, q0, �, F), then ψ′ ∈ CL(ϕ), for each ψ′? ∈ Θ
if [P]ψ ∈ CL(ϕ) then ψ ∈ CL(ϕ), and [Pq]ψ ∈ CL(ϕ) for each Pq ∈ CL(P)
if [P]ψ ∈ CL(ϕ), where P = (Θ,Q, q0, �, F), then ψ′ ∈ CL(ϕ), for each ψ′? ∈ Θ

Fig. 2. Closure of RXPath expressions

– The alphabet is L = 2Σ′
, i.e., all sets consisting of atomic symbols and the

special symbols ifc, irs , hfc, hrs . This corresponds to labeling each node of
the tree with a truth assignment to the atomic symbols, with information
about the predecessor node, and with information about whether the children
are significant.

– The set of states is Sϕ = CL(ϕ). Intuitively, when the automaton is in a state
ψ ∈ CL(ϕ) and visits a node x of the tree, this means that the automaton
has to check that node expression ψ holds in x. When ψ is an atomic symbol
α, i.e., an atomic proposition, an identifier, or one of the special symbols ifc,
irs , hfc, hrs , this amounts to checking that the node label contains α.

– The initial state is sϕ = ϕ.
– The transition function δϕ is defined as follows:

1. For each λ ∈ L, and each symbol α ∈ Σ ∪ {ifc, irs , hfc, hrs}, there are
transitions

δϕ(α, λ) =
{

true, if α ∈ λ

false, if α ∈ λ
δϕ(¬α, λ) =

{
true, if α ∈ λ

false, if α ∈ λ

Such transitions check the truth value of atomic and special symbols and
their negations in the current node of the tree.

2. For each λ ∈ L and each ψ1, ψ2 ∈ CL(ϕ), there are transitions

δϕ(ψ1 ∧ ψ2, λ) = (0, ψ1) ∧ (0, ψ2)
δϕ(ψ1 ∨ ψ2, λ) = (0, ψ1) ∨ (0, ψ2)

Such transitions inductively decompose node expressions and move to
appropriate states of the automaton to check the subexpressions.

3. For each λ ∈ L and each 〈P 〉ψ ∈ CL(ϕ), where P = (Θ,Q, q0, �, F),
there is a transition δϕ(〈P 〉ψ, λ) constituted by the disjunction of the
following parts:

if q0 ∈ F then (0, ψ)
if q ∈ �(q0, fchild) then (0, hfc) ∧ (1, 〈Pq〉ψ)
if q ∈ �(q0, right) then (0, hrs) ∧ (2, 〈Pq〉ψ)
if q ∈ �(q0, fchild

−) then (0, ifc) ∧ (−1, 〈Pq〉ψ)
if q ∈ �(q0, right

−) then (0, irs) ∧ (−1, 〈Pq〉ψ)
if q ∈ �(q0, ψ

′?) then (0, ψ′) ∧ (0, 〈Pq〉ψ)

An Automata-Theoretic Approach to Regular XPath 29

Such transitions check step-by-step the existence of a path on the tree
that conforms to the path expressions P and such that ψ holds at the
ending node.

4. For each λ ∈ L and each [P]ψ ∈ CL(ϕ), where P = (Θ,Q, q0, �, F),
there is a transition δϕ([P]ψ, λ) constituted by the conjunction of the
following parts:

if q0 ∈ F then (0, ψ)
if q ∈ �(q0, fchild) then (0,¬hfc) ∨ (1, [Pq]ψ)
if q ∈ �(q0, right) then (0,¬hrs) ∨ (2, [Pq]ψ)
if q ∈ �(q0, fchild

−) then (0,¬ifc) ∨ (−1, [Pq]ψ)
if q ∈ �(q0, right

−) then (0,¬irs) ∨ (−1, [Pq]ψ)
if q ∈ �(q0, ψ

′?) then (0,nnf (¬ψ′)) ∨ (0, [Pq]ψ)

Such transitions check step-by-step that for all paths on the tree that
conform to the path expressions P we get that ψ holds at the ending
node.

– The acceptance conditions αϕ is the set of all node expressions [P]ψ ∈ CL(ϕ).
Observe that a simple partition Sϕ = ∪iSi of the set of states resulting from
the above transition function is the one that reflects the syntactic structure
of ϕ, and that puts all literals, including the ones corresponding to the
special labels, in a single element of the partition ordered below all other
elements. Specifically, for each pair P , ψ for which [P]ψ or 〈P 〉ψ appears
explicitly in nnf (ϕ), the set of node expressions {[Pq]ψ | Pq ∈ CL(P)}
form an element Si of the partition; similarly, the set of node expressions
{〈Pq〉ψ | Pq ∈ CL(P)} form another element Sj of the partition. All other
states in Sϕ form a singleton element of the partition, and sub-expressions
are ordered below their containing expression. Note that all node expressions
〈P 〉ψ are in a rejecting set, which ensures that their satisfaction cannot be
postponed indefinitely in an accepting run.

As for the size of Aϕ, by Proposition 5, from the above construction we get:

Proposition 6. The number of states of Aϕ is linear in the size of ϕ.

Theorem 3. Let ϕ be a normalized node expression, Aϕ the 2WATA con-
structed above, Ts a sibling tree, and πb(Ts) the corresponding (well-formed)
binary tree. Then a node x of Ts is in ϕTs iff Aϕ accepts πb(Ts) from πb(x).

From Proposition 2 and Theorem 3, we immediately get our first main result.

Theorem 4. Given a sibling tree Ts and an RXPath query ϕ, we can compute
ϕTs in time that is linear in the number of nodes of Ts (data complexity) and in
the size of ϕ (query complexity).

This technique can be used also to evaluate binary queries. Indeed, we can adorn
(in linear time in the size of Ts) each node y of Ts with a unique identifier
Idy, obtaining a tree T ′

s. Then, to evaluate the RXPath binary query P , we
consider the unary queries ϕP,y = 〈P 〉Idy. The answer to P over Ts is simply
PTs =

⋃
y∈Ts

{(x, y) | x ∈ ϕ
T ′

s

P,y}, which, by Theorem 4, can be computed in
quadratic time in the number of nodes of Ts and in linear time in the size of P .

30 D. Calvanese et al.

5 Reasoning on RXPath

We start by introducing RXPath root constraints, which are node expressions
intended to be true on the root of the document, and study the problem of sat-
isfiability and implication of such constraints. Formally, the root constraint ϕ is
satisfied in a sibling tree Ts if ε ∈ ϕTs . A (finite) set Γ of RXPath root constraints
is satisfiable if there exists a sibling tree Ts that satisfies all constraints in Γ . A
set Γ of RXPath root constraints implies an RXPath root constraint ϕ, written
Γ |= ϕ, if ϕ is satisfied in every sibling tree that satisfies all constraints in Γ .
Note that unsatisfiability and implication of RXPath root constraints are mutu-
ally reducible to each other. Indeed Γ is unsatisfiable if and only if Γ |= false.
Also, Γ |= ϕ if and only if Γ ∪ {¬ϕ} is unsatisfiable. Hence, in the following, we
deal with satisfiability only.

In [3] it was shown that for RXPath root constraints without identifiers sat-
isfiability is ExpTime-complete4. Here, as mentioned, we include special propo-
sitions Σid representing identifiers. However, the condition that a proposition
is an identifier, i.e., denotes a singleton, can be expressed in RXPath. Indeed
we can force a proposition A to be a singleton by using the root constraint
NA defined as follows, where the abbreviation u denotes the path expression
(fchild∪ right)∗:

NA = 〈u〉A ∧ (1)
[u]((〈fchild;u〉A→ [right;u]¬A) ∧

(〈right;u〉A→ [fchild;u]¬A) ∧
(A→ [(fchild∪ right);u]¬A))

(2)
(3)
(4)

Hence, using one such constraint for each identifier in A ∈ Σid , the ExpTime-
completeness result in [3] gives us also a complexity characterization for our
variant of RXPath root constraints that involve identifiers.

Theorem 5 ([3]). Satisfiability of RXPath root constraints is ExpTime-
complete.

As mentioned, the technique for checking satisfiability of RXPath root con-
straints in [3] is based on a reduction to satisfiability in repeat-CDPDL, which
so far has resisted implementation. Instead, by resorting to 2WATAs on finite
trees as presented in Section 3, we offer a more promising path towards a viable
implementation.

To make use of such a technique for checking satisfiability of RXPath root
constraints, we need to modify the 2WATA Aϕ in such a way that it accepts only
binary trees that are well-formed (cf. Section 4). Indeed, a well-formed binary
tree T = (ΔT , �T) induces a sibling tree πs(T). To define πs(T) = (ΔTs , ·Ts), we
define, by induction on ΔT , a mapping πs from ΔT to words over N as follows:

4 The hardness result holds also if all propositions are disjoint, and in the case where
they represent standard XML document tags.

An Automata-Theoretic Approach to Regular XPath 31

– πs(ε) = ε; if hfc ∈ �T (ε), then πs(1) = 1;
– if hfc ∈ �T (x) and πs(x) = z·n, with z ∈ N

∗ and n ∈ N, then πs(x·1) = z·n·1;
– if hrs ∈ �T (x) and πs(x) = z·n, with z ∈ N

∗ and n ∈ N, then πs(x·2) =
z·(n+1).

Then, we takeΔTs to be the range of πs, and we define the interpretation function
·Ts as follows: for each A ∈ Σa, we define ATs = {πs(x) ∈ ΔTs | A ∈ �T (x)};
similarly, for each Id ∈ Σid , we define IdTs = {πs(x) ∈ ΔTs | Id ∈ �T (x)}. Notice
that, since T is well-formed, IdTs contains at most one element. Note that the
mapping πs ignores irrelevant parts of the binary tree, e.g., if the label of a node
x does not contain hfc, even if x has a 1-successor, such a node is not included in
the sibling tree. Also, πs can be considered the inverse of the mapping πb defined
in Section 4.

The 2WATA Awf
ϕ = (L, S, sini , δ, α), obtained by modifying Aϕ so that it

accepts (from ε) only trees that are well-formed, is defined as follows:

– The set of states is S = Sϕ ∪ {sini , sstruc} ∪ {sId , nId | Id ∈ Σid}, where
sini is the initial state, and the other additional states are used to check
structural properties of well-formed trees.

– The transition function is constituted by all transitions in δϕ, plus the fol-
lowing transitions ensuring that Awf

ϕ accepts only well-formed trees.
1. For each λ ∈ L, there is a transition

δ(sini , λ)=(0, ϕ) ∧ (0,¬ifc) ∧ (0,¬irs) ∧ (0,¬hrs) ∧ (0, sstruc) ∧ ∧
Id∈Σid

(0, sId)

Such transitions (i) move to the initial state of Aϕ to verify that ϕ holds
at the root of the tree, (ii) check that the root of the tree is not labeled
with ifc, irs or hrs , (iii) move to state sstruc, from which structural
properties of the tree are verified, and (iv) move to states sId (for each
Id ∈ Σid), from which the automaton verifies that a single occurrence of
Id is present on the tree.

2. For each λ ∈ L, there is a transition

δ(sstruc , λ) = ((0,¬hfc) ∨ ((1, ifc) ∧ (1,¬irs) ∧ (1, sstruc))) ∧
((0,¬hrs) ∨ ((2, irs) ∧ (2,¬ifc) ∧ (2, sstruc)))

Such transitions check that, (i) for each node labeled with hfc, its left
child is labeled with ifc but not with irs , and (ii) for each node labeled
with hrs , its right child is labeled with irs but not with ifc.

3. For each λ ∈ L and each Id ∈ Σid there are transitions

δ(sId , λ) = ((0, Id) ∧ ((0,¬hfc) ∨ (1, nId)) ∧ ((0,¬hrs) ∨ (2, nId))) ∨
((0,¬Id) ∧ (0, hfc) ∧ (1, sId) ∧ ((0,¬hrs) ∨ (2, nId))) ∨
((0,¬Id) ∧ (0, hrs) ∧ (2, sId) ∧ ((0,¬hfc) ∨ (1, nId))

δ(nId , λ) = (0,¬Id) ∧ ((0,¬hfc) ∨ (1, nId)) ∧ ((0,¬hrs) ∨ (2, nId))

Such transitions ensure that exactly one node of the tree is labeled
with Id .

32 D. Calvanese et al.

– The set of accepting states is α = αϕ. The states sini and sstruc form each
a single element of the partition of states, where {sini} precedes all other
elements, and {sstruc} follows them. The states sId and nId are added to the
element of the partition containing all literals.

As for the size of Awf
ϕ , by Proposition 6, and considering that the additional

states and transitions in Awf
ϕ are constant in the size of ϕ, we get:

Proposition 7. The number of states of Awf
ϕ is linear in the size of ϕ.

Theorem 6. Let Γ be a (finite) set of RXPath root constraints, ϕ the conjunc-
tion of the constraints in Γ , and Awf

ϕ the 2WATA constructed above. Then Awf
ϕ

is nonempty if and only if Γ is satisfiable.

Theorem 7. Checking the satisfiability of a (finite) set Γ of RXPath root con-
straints by checking nonemptiness of the 2WATA constructed above can be done
in ExpTime.

6 Query Satisfiability and Query Containment

We deal now with query satisfiability and query containment under constraints,
and we show that these problems can be reduced in linear time to satisfiabil-
ity of RXPath root constraints. As a consequence, we get that these problems
are ExpTime-complete and that we can exploit for them the automata-based
techniques developed in this paper.

In the following, we deal only with RXPath binary queries (i.e., path expres-
sions), since RXPath unary queries (i.e., node expressions) can be rephrased as
binary queries: indeed ϕTs = {z | (z, z) ∈ (ϕ?)Ts}.

We start our investigation with the query satisfiability problem. An RXPath
query Q is satisfiable under a (finite) set of root constraints Γ if there exists a
sibling tree Ts satisfying Γ such that QTs is non-empty. Considering the seman-
tics of RXPath queries and root constraints, it is immediate to verify that Q is
satisfiable under Γ if and only if

Γ ∪ {〈u;Q〉true}
is satisfiable. Hence, query satisfiability under root constraints in RXPath can
be linearly reduced to satisfiability of RXPath root constraints, and we get the
following result.

Theorem 8. Query satisfiability under root constraints in RXPath is
ExpTime-complete.

We now turn our attention to query containment under constraints, i.e., veri-
fying whether for all databases satisfying a certain set of integrity constraints,
the answer to a query is a subset of the answer to a second query. Checking
containment of queries is crucial in several contexts, such as query optimiza-
tion, query reformulation, knowledge-base verification, information integration,

An Automata-Theoretic Approach to Regular XPath 33

integrity checking, and cooperative answering. Obviously, query containment
is also useful for checking equivalence of queries, i.e., verifying whether for all
databases the answer to a query is the same as the answer to another query. For
a summary of results on query containment in semistructured, see, e.g., [29].

Query containment under constraints in our setting is defined as follows: An
RXPath query Q1 is contained in an RXPath query Q2 under a set of RXPath
constraints Γ , written Γ |= Q1 ⊆ Q2, if for every sibling tree Ts that satisfies
all constraints in Γ , we have that QTs

1 ⊆ QTs
2 . Again we can resort to root

constraints satisfiability to verify containment. Namely: Γ |= Q1 ⊆ Q2 if and
only if

Γ ∪ {〈u; Id st?;Q1; Idend?〉true, [u; Id st?;Q2; Idend?]false}
is unsatisfiable, where Id st and Id end are newly introduced identifiers.

We get that also query containment under root constraints in RXPath can be
linearly reduced to unsatisfiability of RXPath root constraints.

Theorem 9. Query containment under root constraints in RXPath is
ExpTime-complete.

It follows that for the above problems of reasoning about queries under RXPath
root constraints, we can exploit the automata-based techniques developed in this
paper.

We conclude the section by observing that also view-based query answering
has attracted the interest of the XPath community, e.g., [30]. It can be shown
that we can adapt the above techniques based on a reduction to satisfiability of
RXPath root constraints also to solve view-based query answering.

7 Conclusions

In this paper we have studied RXPath, a powerful mechanism for express-
ing structural queries and constraints in XML. We have presented symbolic
automata-based techniques for evaluation of RXPath queries over XML trees,
and for checking satisfiability of RXPath constraints, and we have illustrated how
to apply the latter technique for both query containment and view-based query
answering. Notably, the automata-theoretic techniques that we have introduced
check for infinite computations on finite trees.

Acknowledgments. This research has been partially supported by NSF grants
CCR-0124077, CCR-0311326, CCF-0613889, ANI-0216467, and CCF-0728882.

References

1. Clark, J., DeRose, S.: XML Path Language (XPath) version 1.0. W3C Recommen-
dation (November 1999), http://www.w3.org/TR/1999/REC-xpath-19991116

2. ten Cate, B., Segoufin, L.: XPath, transitive closure logic, and nested tree walking
automata. In: Proc. of PODS 2008, pp. 251–260 (2008)

http://www.w3.org/TR/1999/REC-xpath-19991116

34 D. Calvanese et al.

3. Marx, M.: XPath with conditional axis relations. In: Bertino, E., Christodoulakis,
S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.)
EDBT 2004. LNCS, vol. 2992, pp. 477–494. Springer, Heidelberg (2004)

4. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
of Computer and System Sciences 18, 194–211 (1979)

5. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. of the ACM 47(2), 312–360 (2000)

6. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

7. Schulte Althoff, C., Thomas, W., Wallmeier, N.: Observations on determinization
of Büchi automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 262–272. Springer, Heidelberg (2006)

8. Tasiran, S., Hojati, R., Brayton, R.K.: Language containment using non-
deterministic Omega-automata. In: Camurati, P.E., Eveking, H. (eds.) CHARME
1995. LNCS, vol. 987, pp. 261–277. Springer, Heidelberg (1995)

9. Libkin, L., Sirangelo, C.: Reasoning about XML with temporal logics and au-
tomata. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS,
vol. 5330, pp. 97–112. Springer, Heidelberg (2008)

10. Genevès, P., Layäıda, N., Schmitt, A.: Efficient static analysis of XML paths and
types. In: Proc. of the ACM SIGPLAN 2007 Conf. on Programming Language
Design and Implementation (PLDI 2007), pp. 342–351 (2007)

11. Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable optimiza-
tion problems for database logic programs. In: Proc. of STOC 1988, pp. 477–490
(1988)

12. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. ACM Trans. on Database Systems 30(2), 444–491 (2005)

13. Bojanczyk, M., Parys, P.: XPath evaluation in linear time. In: Proc. of PODS 2008,
pp. 241–250 (2008)

14. Schwentick, T.: XPath query containment. SIGMOD Record 33(1), 101–109 (2004)
15. Fan, W.: XML constraints: Specification, analysis, and applications. In: Proc. of

DEXA 2005 (2005)
16. Calvanese, D., De Giacomo, G., Lenzerini, M.: Representing and reasoning on XML

documents: A description logic approach. J. of Log. and Comp. 9(3), 295–318 (1999)
17. Bex, G.J., Neven, F., Van den Bussche, J.: DTDs versus XML Schema: A practical

study. In: Proc. of WebDB 2004, pp. 79–84 (2004)
18. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Reasoning on regular

path queries. SIGMOD Record 32(4), 83–92 (2003)
19. Marx, M.: First order paths in ordered trees. In: Eiter, T., Libkin, L. (eds.) ICDT

2005. LNCS, vol. 3363, pp. 114–128. Springer, Heidelberg (2004)
20. Afanasiev, L., Blackburn, P., Dimitriou, I., Gaiffe, B., Goris, E., Marx, M.,

de Rijke, M.: PDL for ordered trees. J. of Applied Non-Classical Logics 15(2),
115–135 (2005)

21. Slutzki, G.: Alternating tree automata. Theor. Comp. Sci. 41, 305–318 (1985)
22. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,

Tommasi, M.: Tree automata techniques and applications (2002),
http://www.grappa.univ-lille3.fr/tata/

23. Doner, J.E.: Decidability of the weak second-order theory of two successors. Notices
Amer. Math. Soc. 12, 819 (1965)

http://www.grappa.univ-lille3.fr/tata/

An Automata-Theoretic Approach to Regular XPath 35

24. Bryant, R.E.: Graph-based algorithms for Boolean-function manipulation. IEEE
Trans. on Computers C-35(8) (1986)

25. Sattler, U., Vardi, M.Y.: The hybrid μ-calculus. In: Goré, R.P., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 76–91. Springer, Heidelberg (2001)

26. Safra, S.: On the complexity of ω-automata. In: Proc. of FOCS 1988, pp. 319–327
(1988)

27. Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

28. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Information and Computation 98(2), 142–170
(1992)

29. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: View-based query
answering and query containment over semistructured data. In: Ghelli, G., Grahne,
G. (eds.) DBPL 2001. LNCS, vol. 2397, pp. 40–61. Springer, Heidelberg (2002)

30. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Rewriting regular XPath queries
on XML views. In: Proc. of ICDE 2007, pp. 666–675 (2007)

	An Automata-Theoretic Approach toRegular XPath
	Introduction
	Regular XPath
	Two-Way Weak Alternating Tree Automata
	The Acceptance Problem
	The Nonemptiness Problem

	2WATAs for RXPath Query Evaluation
	Reasoning on RXPath
	Query Satisfiability and Query Containment
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

