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Via Salaria 113, I-00198 Roma, Italy

lastname@dis.uniroma1.it
2 Department of Computer Science, Rice University, P.O. Box 1892

Houston, TX 77251-1892, USA
vardi@cs.rice.edu

Abstract. The basic querying mechanism over semistructured data,
namely regular path queries, asks for all pairs of objects that are con-
nected by a path conforming to a regular expression. We consider con-
junctive two-way regular path queries (C2RPQc’s), which extend regu-
lar path queries with two features. First, they add the inverse operator,
which allows for expressing navigations in the database that traverse the
edges both backward and forward. Second, they allow for using conjunc-
tions of atoms, where each atom specifies that a regular path query with
inverse holds between two terms, where each term is either a variable or
a constant. For such queries we address the problem of view-based query
answering, which amounts to computing the result of a query only on
the basis of a set of views. More specifically, we present the following re-
sults: (1) We exhibit a mutual reduction between query containment and
the recognition problem for view-based query answering for C2RPQc’s,
i.e., checking whether a given tuple is in the certain answer to a query.
Based on such a result, we can show that the problem of view-based
query answering for C2RPQc’s is EXPSPACE-complete. (2) By exploit-
ing techniques based on alternating two-way automata we show that
for the restricted class of tree two-way regular path queries (in which
the links between variables form a tree), query containment and view-
based query answering are, rather surprisingly, in PSPACE (and hence,
PSPACE-complete). (3) We present a technique to obtain view-based
query answering algorithms that compute the whole set of tuples in the
certain answer, instead of requiring to check each tuple separately. The
technique is parametric wrt the query language, and can be applied both
to C2RPQc’s and to tree-queries.

1 Introduction

Semistructured data are usually modeled as labeled graphs, and methods for
extracting information from semistructured data incorporate special querying
mechanisms that are not common in traditional database systems [1]. One such
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basic mechanism is the one of regular path queries (RPQs), which retrieve all
pairs of nodes in the graph connected by a path conforming to a regular expres-
sion [11,3]. Regular expressions provide a (limited) form of recursion, which is
used in regular path queries to flexibly navigate the database graph.

In order to increase the expressiveness of RPQs, in this paper we consider
two basic additions. First, we add to RPQs the inverse operator, which allows
for expressing navigations in the database that traverse the edges both backward
and forward. Second, we extend RPQs with the possibility of using conjunctions
of atoms, where each atom specifies that one regular path query with inverse
holds between two terms, where each term is either a variable or a constant.
Notably, several authors argue that these kinds of extensions are essential for
making RPQs useful in real settings (see for example [10,11,44]). The resulting
queries will be called conjunctive two-way regular path queries (C2RPQc’s), and
capture the core of virtually all query languages for semistructured data [11,3,32],
including the ones for XML [29,19]. In this paper, we consider also a restricted
form of C2RPQc’s, called tree two-way regular path queries (T2RPQc’s), in which
the body of the query has the structure of a tree, if we view each variable as
a node and each atom in the query as an edge. T2RPQc’s are a generalization
of several subclasses of queries, including generalized path expressions [11,3]
and branching path queries [43,45], which have been studied extensively both in
semistructured and XML data. Notably, XPath expressions [26] can be captured
by T2RPQc’s in which the transitive closure operator is used in a limited way.

Semistructured data pose challenging problems to the research on databases
[57]. Among them, reasoning on queries and views is expected to be particularly
difficult, due to the presence of recursion in RPQs. For example, containment
of Datalog queries with no limitations on recursion, is undecidable [49]. Here,
we concentrate on two reasoning services involving queries that are relevant
in database management. The first one is checking containment, i.e., verifying
whether, for every database, one query yields a subset of the result of another
one. The second one is view-based query answering, which amounts to comput-
ing the answer to a query having information only on the extension of a set of
views. Both problems are crucial in several contexts, such as information integra-
tion [52], data warehousing [56], query optimization [23], mobile computing [6],
and maintaining physical data independence [51]. Indeed, they have been in-
vestigated and largely solved for relational databases. Instead, for the case of
semistructured data and XML, the above problems are largely unexplored and
fundamental results are still missing [55].

Most of the results on query containment concern relational conjunctive
queries and their extensions [22,37,53,47,24,53]. In particular, [22] shows that
containment of conjunctive queries is NP-complete. One interesting special case
for which containment is tractable is when the right-hand side query has bounded
treewidth [25], and, in particular, when it is acyclic. Other papers consider the
case of conjunctive query containment in the presence of various types of con-
straints [5,28,20,41,42,12]. Conjunctive RPQs without inverse have been studied
in [33], where an EXPSPACE algorithm for query containment in this class is
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presented. In [16], it is shown that containment for conjunctive two-way regu-
lar path queries without constants is EXPSPACE-complete. The complexity of
query containment for conjunctive RPQs has been studied in [30] under various
restrictions on the allowed classes of regular expressions.

View-based query answering has been investigated in [40,46] for the case of
conjunctive queries (with or without arithmetic comparisons), in [4] for disjunc-
tive views, in [50,27,35] for queries with aggregates, in [31] for recursive queries
and nonrecursive views, and in [13,7] for queries expressed in Description Logics.
Comprehensive frameworks for view-based query answering, as well as several
interesting results for various query languages, are presented in [34,2].

Recently view-based query processing has been studied for the case of RPQs.
It has been shown that computing the RPQ which is the maximal rewriting of
an RPQ wrt a set of RPQ views can be done in 2EXPTIME, and verifying
the existence of a nonempty rewriting is EXPSPACE-complete [14]. View-based
query answering for RPQs is PSPACE-complete in combined complexity and
coNP-complete in data complexity [15]. In [17] the above results on view-based
query rewriting and query answering have been extended to 2RPQs, i.e., RPQs
extended with the inverse operator. The relationship between view-based query
answering and query rewriting has been studied in [18].

None of the above results apply to C2RPQc’s or T2RPQc’s. Thus, decidabil-
ity and complexity of query containment and view-based query answering is still
an open problem for such queries.

Our goal is to devise techniques and characterize the computational complex-
ity of the two problems for the two classes of queries. In particular, we present
the following main contributions:
1. We exhibit a mutual reduction between query containment and view-based

query answering for the case of C2RPQc’s (see Section 3). The reduction
applies also to the case where the query in the right-hand side of the con-
tainment, and, respectively, the query to be answered using the views, is a
T2RPQc.

2. Based on the technique presented in [16], we devise in Section 4 an EX-
PSPACE algorithm for view-based query answering for C2RPQc’s, thus
showing that the problem is EXPSPACE-complete. By virtue of the reduc-
tion illustrated in Section 3, the same complexity result holds for query
containment. This is the first result showing that view-based query answer-
ing is decidable in the case where both the query and the views are expressed
in a query language for semistructured data with at least the power of con-
junctive queries with constants.

3. By exploiting techniques based on alternating two-way automata we show
in Section 5 that, in the case where the views are C2RPQc’s and the query
to be answered is a T2RPQc, view-based query answering is PSPACE-
complete. This represents a provable exponential improvement wrt the case
of C2RPQc’s. The same bound holds for query containment when the right-
hand side query is a T2RPQc. These results are rather surprising in view
of the fact that, while tree automata seem the natural formal tool for tree-
queries, containment of such automata is EXPTIME-complete [48].
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4. View-based query answering has been generally tackled in the form of the
so-called recognition problem: the input includes a tuple and the goal is to
check whether such a tuple is a certain answer to the query, i.e., whether the
tuple satisfies the query in every database coherent with the views. How-
ever, traditional query answering consists of retrieving all tuples satisfying
the query. A further question addressed in this paper is whether we can de-
vise a method to characterize the whole set of certain answers to a query,
rather than just solving the recognition problem tuple by tuple. We present
a solution to this problem, both for the case of C2RPQc’s (Section 4.4) and
for T2RPQc’s (Section 5.4), by illustrating how to compute a representation
of the whole set of certain answers. The method computes such a representa-
tion with the same computational complexity as the corresponding methods
for checking whether a tuple is a certain answer. To the best of our knowl-
edge, this is the first technique that deals with view-based query answering
rather than checking if a tuple is a certain answer.

The result on T2RPQc’s shows that C2RPQc’s exhibit a behavior analogous
to the case of ordinary conjunctive queries: cycles in the right-hand side query
constitute a source of complexity for containment checking [58]. Observe that
it is the query structure and not the database structure that determines the
complexity, since, containment (and hence query answering) of conjunctions of
RPQs is already EXPSPACE-hard over linear databases [16].

In the next section we introduce all concepts and definitions used in the sub-
sequent sections. Section 6 concludes the paper, by pointing out several possible
extensions of our work.

2 Databases and Queries

We consider a semistructured database (DB) B as an edge-labeled graph (D, E),
where D is the set of nodes (representing objects) and E is the set of edges
(representing binary relations) labeled with elements of an alphabet ∆ 1. We
denote an edge from x to y labeled by p with x

p→ y. We use constants as
names for nodes, and we impose the unique name assumption, i.e., we disallow
two constants to denote the same node. In the following, we do not distinguish
between a node and the constant naming it.

The basic querying mechanism on a DB is that of regular path queries
(RPQs). An RPQ R is expressed as a regular expression or a finite automa-
ton, and computes the set of pairs of nodes of the DB connected by a path that
conforms to the regular language L(R) defined by R. We consider queries that
extend regular path queries with both the inverse operator, and the possibility
of using conjunctions, variables, and constants.

Formally, let Σ = ∆∪ {p− | p ∈ ∆} be the alphabet including a new symbol
p− for each p in ∆. Intuitively, p− denotes the inverse of the binary relation
1 All the techniques presented in this paper can be adapted to the case of rooted DBs,

i.e., to the case where the DB is an edge-labeled rooted graph (see Section 6), and
to the case where nodes are labeled.
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p. If r ∈ Σ, then we use r− to denote the inverse of r, i.e., if r is p, then r−

is p−, and if r is p−, then r− is p. Two-way regular path queries (2RPQs) are
expressed by means of regular expressions or finite automata over Σ [16,17].
Thus, in contrast with RPQs, 2RPQs may use also the inverse p− of p, for each
p ∈ ∆. When evaluated over a DB B, a 2RPQ R computes the set ans(R,B) of
pairs of nodes connected by a semipath that conforms to the regular language
L(R) defined by R. A semipath in B from x to y is a sequence of the form
(y1, r1, y2, r2, y3, . . . , yq, rq, yq+1), where q ≥ 0, y1 = x, yq+1 = y, and for each

i ∈ {1, . . . , q}, either yi
ri→ yi+1 or yi+1

r−
i→ yi is in B. The semipath conforms to

R if r1 · · · rq ∈ L(R). The semipath is simple if each yi, for i ∈ {2, . . . , q}, is a
node that does not occur elsewhere in the semipath.

Finally, we add to 2RPQs the possibility of using conjunctions of atoms,
where each atom specifies that a regular path query with inverse holds between
two terms, where a term is either a variable or a constant. More precisely, a
conjunctive two-way regular path query with constants (C2RPQc) Q is a formula
of the form

Q(x1, . . . , xn)← y1 E1 y2 ∧ · · · ∧ y2m−1 Em y2m

where x1, . . . , xn are variables, called distinguished variables, y1, . . . , y2m are ei-
ther variables or constants, and E1, . . . , Em are 2RPQs.

We consider also a restricted form of C2RPQc’s, called tree two-way regular
path queries (T2RPQc’s). In a T2RPQc, the body of the query has the structure
of a tree, if we view each variable and each constant as a node and each atom
y E y′ as an edge from y to y′, and consider different occurrences of constants as
different nodes of the tree.

In the following we assume that the variables in the head of a query are
pairwise distinct. This assumption can be made without loss of generality, since,
if a variable x occurs twice in the head, we can replace one of the occurrences
by a fresh variable y and introduce the (equality) atom x ε y in the body. Also,
we assume that each distinguished variable occurs among y1, . . . , y2m, since we
can always add to the body an atom xi ε xi. For the same reason we can avoid
constants in the head of a query. Notice that adding such atoms to the body
does not destroy the tree structure of a T2RPQc.

The answer set ans(Q,B) to a C2RPQc Q over a DB B = (D, E) is the set
of tuples (d1, . . . , dn) of nodes of B such that there is a mapping σ from the
variables and the constants of Q to D with

– σ(xi) = di for every distinguished variable xi,
– σ(c) = c for every constant c, and
– (σ(y), σ(y′)) ∈ ans(E,B) for every conjunct y E y′ in Q.

Given two C2RPQc’s Q1 and Q2, we say that Q1 is contained in Q2, written
Q1 ⊆ Q2, if for every DB B, ans(Q1,B) ⊆ ans(Q2,B). The problem of query
containment (QC) is checking whether one query is contained in another one.
Obviously, Q1 �⊆ Q2 iff there is a counterexample DB to Q1 ⊆ Q2, i.e., a DB B
with a tuple in ans(Q1,B) and not in ans(Q2,B).
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In view-based query answering, we consider a DB that is accessible only
through a set of C2RPQc views V = {V1, . . . , Vk}. Each view Vi is characterized
by its definition def (Vi) in terms of a C2RPQc, and by its extension ext(Vi) in
terms of a set of constant tuples. We denote the set of constants appearing either
in ext(V1)∪ · · · ∪ ext(Vk) or in def (V1)∪ · · · ∪ def (Vk) by DV . We say that a DB
B is consistent with a view Vi if all tuples in its extension satisfy the definition
of the view in B, i.e., if ext(Vi) ⊆ ans(def (Vi),B) 2. We say that B is consistent
with V if it is consistent with each view Vi ∈ V.

Given a set V = {V1, . . . , Vk} of C2RPQc views, a C2RPQc Q of arity n
whose constants are in DV , and an n-tuple �t of constants3 in DV , the problem
of view-based query answering (QA) consists in deciding whether �t is a certain
answer to Q wrt V, written �t ∈ cert(Q,V), i.e., whether �t ∈ ans(Q,B), for every
DB B that is consistent with V. Given a set V = {V1, . . . , Vk} of C2RPQc views,
and a C2RPQc Q of arity n, the problem of computing the set of certain answers
consists in characterizing all n-tuples of constants in DV that are certain answers
to Q wrt V. As for the computational complexity of view-based query answering,
we concentrate on combined complexity, i.e., we measure the complexity with
respect to the size of the query, the view expressions, and the data in the view
extensions.

3 Relationship between QA and QC

There is a strong connection between QA and QC. In particular, [2] discusses
mutual reductions between the two problems (Theorem 4.1 in [2]). Next we show
that such reductions can be adapted to our case.

For the reduction from QA to QC, consider an instance of QA with C2RPQc

views V = {V1, . . . , Vk}, definitions def (Vi) and extensions ext(Vi), for i ∈ [1..k],
where we ask whether the tuple (c1, . . . , cn) is in the certain answer to the
C2RPQc Q of arity n. From such an instance, we construct a C2RPQc QV such
that QV ⊆ Q iff (c1, . . . , cn) ∈ cert(Q,V). We define QV as follows:

QV(x1, . . . , xn) ← x1εc1 ∧ · · · ∧ xnεcn ∧
∧

h

αh

where xiεci denotes an equality between the distinguished variable xi and the
constant ci, and we have one αh for each view Vi (of arity ni) and each tuple
(d1, . . . , dni

) in ext(Vi). Such an αh is obtained from the body of def (Vi) by
replacing the distinguished variables x1, . . . , xni respectively by (d1, . . . , dni) and
by replacing the non-distinguished variables with fresh ones. Note that, if the
query Q in QA is a T2RPQc, then we obtain an instance of QC in which the
right-hand side query is a T2RPQc.

By using the same line of reasoning as in the proof of Theorem 4.1 in [2] we
get:
2 As often done, we assume views to be sound, but not necessarily complete [2,15].
3 We use �t to denote tuples of constants of the appropriate arity, and �t[i] to denote

the i-th component of tuple �t.
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Theorem 1. Let QV be defined as above. Then (c1, . . . , cn) ∈ cert(Q,V) iff
QV ⊆ Q.

The size of the QC instance obtained as specified above is polynomial with
respect to the size of the QA instance. Therefore, we can conclude that QA is
polynomially reducible to QC.

For the reduction from QC to QA, consider an instance of QC asking whether
Q1 ⊆ Q2, where Q1(�z)← β1(�z, �y1) and Q2(�z)← β2(�z, �y2). From such an instance
of QC, we construct an instance of QA as follows. We have only one view VQ1 ,
whose extension is constituted by a single tuple (c1, . . . , cn) with the constants
c1, . . . , cn not occurring in Q1 and Q2, and whose definition is:

VQ1(x1, . . . , xn) ← x1εc1 ∧ · · · ∧ xnεcn ∧ β1(�z, �y) ∧
∧

zi∈�z

zi pnew
i c1

where x1, . . . , xn are fresh variables, β1(�z, �y) is the body of Q1, and pnew
i are

new symbols that do not appear in the alphabet of Q1 and Q2. The query we
want to answer with the view is:

QQ2(x1, . . . , xn) ← x1εc1 ∧ · · · ∧ xnεcn ∧ β2(�z, �y) ∧
∧

zi∈�z

zi pnew
i c1

where x1, . . . , xn are fresh variables, and β2(�z, �y) is the body of Q2. Finally, we
ask whether (c1, . . . , cn) ∈ cert(QQ2 , {VQ1}). Note that, if Q2 is a T2RPQc, then
we obtain an instance of QA in which the query to answer using the views is a
T2RPQc.

Again, by using the same line of reasoning as in the proof of Theorem 4.1
in [2] we get:

Theorem 2. Let VQ1 and QQ2 be defined as above. Then Q1 ⊆ Q2 iff (c1, . . . , cn)
∈ cert(QQ2 , {VQ1}).

It is easy to see that the above construction provides a polynomial reduction
from QC to QA.

4 QA and QC for C2RPQc’s

The technique for QA for C2RPQc’s we present is based on searching for a
“counterexample DB” to the QA problem, i.e., a DB consistent with the views
in which the given tuple does not satisfy the query. For our purposes, it is crucial
to show that we can limit our search to counterexample DBs of a special form,
called canonical DBs. Such DBs can be represented as finite words and we exploit
finite word automata. In particular, we make use of standard one-way automata
(1NFA) and two-way automata (2NFA) [36].
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4.1 Canonical Databases

Let DV be the set of constants appearing in the extensions of the views. We
introduce a set DE of new constants, called skolem constants, one constant yV,�t

for each view V ∈ V, each non-distinguished variable y appearing in def (V ), and
each tuple �t in ext(V ). On such constants we do not enforce the unique name
assumption, i.e., we may have two skolem constants denoting the same node. Let
DN = DV ∪ DE . In the following, to distinguish actual constants from skolem
constants, we refer to the former as proper constants. We use the term constants
for both proper and skolem constants.

Definition 1. Given a set V of C2RPQc views, a DB is called V-canonical if it
is composed of a set of simple semipaths (α, r1, x1, . . . , xn−1, rn, β), one for each
view V ∈ V, each tuple �t ∈ ext(V ), and each atom of the form y E y′ in def (V ),
where

– α is �t[i] if y is the i-th distinguished variable in def (V ), α is y if y is a
proper constant, and α is y�t,V if y is a non-distinguished variable (similarly
for β),

– r1 · · · rn ∈ L(E), and
– x1, . . . , xn−1 are not in DN and do not occur in any other semipath in the

set.

The following theorem, which can be shown similarly to an analogous theorem
in [16], provides an important characterization of QA in terms of V-canonical
DBs.

Theorem 3. Let Q be a C2RPQc of arity n, V a set of views, and �t a tuple
of proper constants. If there exists a DB B that is consistent with V such that
�t �∈ ans(Q,B), then there exists a V-canonical DB B′ that is consistent with V
and such that �t �∈ ans(Q,B′).

By Theorem 3, we can restrict the search for a counterexample DB to V-
canonical DBs only. The basic idea that allows us to exploit automata is that
we can represent such DBs in a linearized form as special words, and use two-
way automata to check that candidate counterexample DBs satisfy all required
conditions [16,17].

More precisely, each V-canonical DB B can be represented as a word wB over
the alphabet Σ ∪ DN ∪ {$} of the form

$d1w1d2$d3w2d4$ · · · $d2m−1wmd2m$

where m is some positive integer, d1, . . . , d2m are in DN , wi ∈ Σ∗, and the $
acts as a separator. In particular, each symbol di represents a node of B, and
wB consists of one subword d2i−1wid2i, for each simple semipath conforming to
wi in B, from the constant d2i−1 to the constant d2i. Observe that we may have
that wi = ε, and in such a case d2i−1 and d2i represent the same node, which
is denoted by two different constants. Obviously, this can be the case only if
at least one of d2i−1 and d2i is a skolem constant, otherwise the unique name
assumption is violated.
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4.2 Automaton Accepting Canonical DBs

To verify whether wB represents a DB B that is consistent with the views V, we
construct for each view V ∈ V, each tuple �t ∈ ext(V ), and each atom R of the
form y E y′ in def (V ), an 1NFA AV,�t,R that accepts the language $·α·E·β, where
α is �t[i] if y is the i-th distinguished variable in def (V ), α is y if y is a proper
constant, and α is yV,�t if y is a non-distinguished variable (similarly for β).

We now construct a 1NFA A−V that accepts the concatenation of the languages
accepted by all 1NFAs AV,�t,R, in some fixed order (chosen arbitrarily), and of the
language ($·∑y∈DE ,y′∈DN

(y·y′))∗·$, representing additional equalities between
skolem constants in DE and (skolem or proper) constants in DN = DV ∪DE . The
1NFA A−V accepts words representing candidate counterexample DBs, in which
however the unique name assumption for proper constants is not enforced.

We then construct a 2NFA A¬UNA that accepts words of the form above in
which the unique name assumption is violated by equating two distinct proper
constants (taking into account also transitivity and symmetry of equality). To
do so we exploit the ability of 2NFAs to: (i) move on the word both forward and
backward; (ii) “jump” from one position in the word with a certain symbol to
any other position (either preceding or succeeding) with the same symbol [17].

A¬UNA is the disjoint union of one 2NFA Ac,c′ = (Σ, S, s0, δ, {c′}) for each
pair of distinct proper constants c and c′ in DV , where S = DN ∪ {s0, s

↪→, s←↩},
and δ is defined as follows:

1. Starting from the initial state, the automaton searches for the symbol c, and
when it finds it, it switches to the corresponding state. When it is in the
final state c′, it moves to the end of the word and accepts.

(c, 0) ∈ δ(s0, c)
(s0, 1) ∈ δ(s0, 	) for each 	 ∈ Σ
(c′, 1) ∈ δ(c′, 	) for each 	 ∈ Σ

2. When in a state corresponding to a constant, the automaton moves either
forward or backward. For each d ∈ DN , and for each 	 ∈ Σ

(d, 1) ∈ δ(d, 	)
(d,−1) ∈ δ(d, 	)

3. When the automaton reaches a constant d1 while it is in the state correspond-
ing to d1, and d2 appears immediately to the right of d1, the automaton may
switch to the state corresponding to d2. Similarly, if d2 appears immediately
to the left of d1. For each d1, d2 ∈ DN

(s↪→, 1) ∈ δ(d1, d1)
(d2, 0) ∈ δ(s↪→, d2)

(s←↩,−1) ∈ δ(d1, d1)
(d2, 0) ∈ δ(s←↩, d2)
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Let AV be the 1NFA obtained as the intersection of A−V and of the comple-
ment of A¬UNA. AV accepts words representing V-canonical DBs consistent with
the views in which the unique name assumption is satisfied. We call a word w
accepted by AV a V-word.

4.3 Automaton for a Single Tuple

Let Q(�x) be a C2RPQc of arity n with distinguished variables �x. Adapting the
construction in [16], we construct a 1NFA AQ(�t) that, given a tuple �t of proper
constants, accepts the words representing DBs B such that �t ∈ ans(Q(�x),B). To
define AQ(�t), we have to check for each 2RPQ in Q(�t), i.e., the query obtained
by substituting the distinguished variables �x with �t, whether the corresponding
atom is satisfied. To check whether a pair of constants (d1, d2) explicitly appear-
ing in a word representing a DB B, is in the answer to a 2RPQ E, one can again
exploit the ability of 2NFAs to move back and forth on a word and to jump from
one position in the word representing a constant to any other position in the
word representing the same constant.

Now, observe that, to check whether a certain tuple �t of proper constants
is in ans(Q(�x),B), the distinguished variables �x of Q(�x) are mapped to the
constants of �t, which explicitly appear in the word representing the linearized
DB, while the non-distinguished variables may be mapped to any node of the
DB, i.e., to any symbol in the corresponding word. Hence, for each atom d E d′

of Q(�t) involving only proper constants assigned to the distinguished variables,
we can directly construct a 2NFA that checks whether the atom is satisfied. On
the other hand, for an atom involving a non-distinguished variable y, we need to
explicitly represent where y is mapped to in the word, since we have to guarantee
that all occurrences of y in distinct atoms are mapped to the same node. We
represent such mappings of non-distinguished variables of Q(�t) as annotations
of V-words. More precisely, the V-word $	1 · · · 	r$, with each symbol 	i �= $
annotated with a set γi of non-distinguished variables, is represented by the
word $(	1, γ1) · · · (	r, γr)$ over the alphabet ((Σ ∪ DN )× 2Y) ∪ {$}, where Y is
the set of non-distinguished variables of Q(�x). The intended meaning is that the
variables in γi are mapped in Bw to the node 	i, if 	i ∈ DN , and are mapped to
the target node of the edge corresponding to the occurrence of 	i, if 	i ∈ Σ.

Given a word w′ representing an annotated V-word w, a 1NFA Aan
Q(�t)

can

check if each atom in Q(�t) is satisfied in the DB represented by w, given the
annotation in w′. We first define the following automata:

– A 1NFA As that checks that for every non-distinguished variable y,
• either y appears in the annotation of a single occurrence of a symbol in

Σ, and it does not appear in the annotation of any other position in the
word;
• or y appears in the annotation of every occurrence of a symbol d ∈ DN ,

and it does not appear in the annotation of any other symbol different
from d.
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– A 1NFA A$ that checks that every occurrence in w of a symbol preceding
a $ is annotated in w′ with the same set of variables as the symbol preceding
it. This takes into account equalities introduced by subwords of the form
$d1d2$, as well as that the symbol a in a subword of the form · · · ad$ actually
represents the target node of the a-edge, i.e., d itself.

– A 2NFA Aq that checks that each atom in Q(�t) is satisfied in Bw, given the
assignment to the non-distinguished variables represented by the annotation
in w′. Such an automaton can be constructed by exploiting the ability of
2NFAs to move in both directions and jump on the word, as discussed above.

The 1NFA Aan
Q(�t)

is constructed as the product of As, A$, and of the 1NFA
equivalent to Aq. Next we define a 1NFA AQ(�t) that simulates the guess of an
annotation of a V-word, and emulates the behaviour of Aan

Q(�t)
on the resulting

annotated word. The simulation of the guess and the emulation of Aan
Q(�t)

can be
obtained simply by constructing Aan

Q(�t)
and then projecting out the annotation

from the transitions. Observe that AQ(�t) has the same number of states as Aan
Q(�t)

.
Complementing AQ(�t) and intersecting it with AV , we obtain a 1NFA A¬Q(�t),V
having the following property.

Theorem 4. Let V be a set of C2RPQc views, Q a C2RPQc of arity n, �t an
n-tuple of proper constants, and A¬Q(�t),V the 1NFA constructed above. Then,
�t ∈ cert(Q,V) if and only if A¬Q(�t),V is empty.

Theorem 5. QA and QC for C2RPQc’s are EXPSPACE-complete.

Proof. The lower bound for QC follows from EXPSPACE-hardness of QC for
C2RPQc’s without constants and inverse, shown in [16]. By Theorem 2 we obtain
the same lower bound for QA.

For the upper bound for QA, we appeal to the construction above.
The 1NFA AV is the intersection of a 1NFA A−V , which is polynomial in the

size of V (i.e., the view definitions and view extensions), and of a 1NFA that
complements the 2NFA A¬UNA, which is exponential in the number of proper
constants in the view extension and view definitions.

As for AQ(�t), we observe that the number of states of the 2NFA Aq, is poly-
nomial in the size of Q and the number of constants in the view extensions, while
the number of states of the 1NFAs As and A$ is exponential in the number of
variables of Q and the number of constants in the view extensions. AQ(�t) is ob-
tained by projecting out the annotation from the intersection of As, A$, and of
the 1NFA equivalent to Aq. Hence AQ(�t) is a 1NFA exponential in the size of Q
and the number of proper constants in the view extensions.

A¬Q(�t),V is obtained from the intersection of AV and of the 1NFA that com-
plements AQ(�t). Hence, A¬Q(�t),V is a 1NFA of size double exponential in the
size of Q and the number of proper constants. Considering that nonemptiness
is NLOGSPACE and that we can build A¬Q(�t),V “on the fly” while checking for
emptiness [16], we get an EXPSPACE upper bound for QA. By Theorem 2 we
get also an EXPSPACE upper bound for QC.
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4.4 Automaton for Whole Answer Set

We show now how to modify the construction in the previous subsection to
obtain all tuples that are not in cert(Q(�x),V).

We represent each answer to Q(�x), with arity n, as a word in the language
Lt = 1·DV ·2·DV · · ·n·DV , and we first construct an automaton accepting the
set of words in Lt representing tuples that are not certain answers to Q(�x).

To do so, we construct a 1NFA AQ(�x) that accepts all words of the form
w�t 	 wB, where

– wB represents a V-canonical DB B,
– w�t is a word in Lt representing a tuple �t that is not in ans(Q(�x),B), and
– “	” acts as a separator.

The 1NFA AQ(�x) is obtained from AQ(�t) by changing the construction of Aq

as explained below. Let �x = (x1, . . . , xn). The automaton uses the prefix w�t,
representing a tuple �t = (c1, . . . , cn), to obtain the mapping from xi to ci, for
i ∈ {1, . . . , n}, and once it has performed such a mapping, it proceeds essentially
as Aq.

Let us first consider an atom in Q(�x) of the form xi E xj , where xi and xj

are respectively the i-th and j-th distinguished variable, and assume that E is
represented as a 1NFA E = (Σ, S, {s0}, δ, {sf}) over the alphabet Σ. As shown
in [16,17], one can construct from E a 2NFA that checks whether a specified
pair of constants (d, d′) is in ans(E,B). Such an automaton has the form A′ =
(Σ′, S′, {s′0}, δ′, {s′f}), where Σ′ = ((Σ ∪ DN ) × 2Y) ∪ {$}, S′ = S ∪ {s′0, s′f} ∪
{s← | s ∈ S} ∪ S × DN , and δA is defined as in [16]. The states s← are used
to evaluate E moving backward on the word, while states (s, d) are used to
search for occurrences of d while in state s of E. We define the 2NFA A′′ =
(Σ′′, S′′, {s′′0}, δ′′, {s′′f}), where Σ′′ = Σ′ ∪ {	, 1, . . . , n}, S′′ = S′ ∪ {s′′0 , si

0, s
′′
f} ∪

{sd
0, s

d
f , sd�

f , sdd
f | d ∈ DN} and δ′′ is obtained by adding to δ′ the following

transitions:

(s′′0 , 1) ∈ δ′′(s′′0 , 	) for each 	 �= i
(si

0, 1) ∈ δ′′(s′′0 , i)
(sd

0, 1) ∈ δ′′(si
0, d) for each d ∈ DN

(sd
0, 1) ∈ δ′′(si

0, 	) for each 	 �= 	
((s0, d), 1) ∈ δ′′(sd

0, 	)
(sd

f , 1) ∈ δ′′(sf , d) for each d ∈ DN

(sd
f ,−1) ∈ δ′′(sd

f , 	) for each d ∈ DN and 	 �= 	
(sd�

f ,−1) ∈ δ′′(sd
f , 	) for each d ∈ DN

(sd�
f ,−1) ∈ δ′′(sd�

f , 	) for each d ∈ DN and 	 �= d

(sdd
f ,−1) ∈ δ′′(sd�

f , d) for each d ∈ DN

(s′′f ,−1) ∈ δ′′(sdd
f , j) for each d ∈ DN

Intuitively, A′′ finds the constant d associated to xi in the prefix, then runs E
starting from an occurrence of d in the postfix, and finally, when E finishes,
checks that it has finished on the constant d′ associated to xj in the prefix.
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We can proceed in a similar way for the atoms in Q(�x) where only one of
the involved variables is a distinguished one. In this case we have to add only
the transitions at the beginning, when the distinguished variable is the first one,
and those at the end, when the distinguished variable is the second one. If both
variables are non-distinguished, we use exactly the same 2NFA as in Aq.

Finally, we complement AQ(�x) and intersect it with the 1NFA accepting the
concatenation of Lt·	 and of the language accepted by AV . Then we project
away from the resulting automaton the part following “	” (including the sym-
bol “	”), and obtain the 1NFA A¬Q(�x),V that accepts the set of tuples not in
cert(Q(�x),V). Observe that the latter projection can be obtained by simply re-
moving all transitions labeled by “	”.

Theorem 6. Let V be a set of C2RPQc views, DV the set of constants ap-
pearing in the view extensions and view definitions, Q a C2RPQc of arity n,
and A¬Q(�x),V the 1NFA constructed above. Then, L(A¬Q(�x),V) = {1c1 · · ·ncn |
(c1, . . . , cn) �∈ cert(Q,V)}.

Observe that all changes in the construction of A¬Q(�x),V wrt the construction
of A¬Q(�t),V are polynomial. We get that, given a tuple �t, A¬Q(�x),V can be used
to decide QA for �t in a computationally optimal way.

Theorem 7. Checking whether a word 1c1 · · ·ncn, representing a tuple
(c1, . . . , cn), is not accepted by A¬Q(�x),V is EXPSPACE-complete.

Observe that one could compute the whole answer set for QA by constructing
for each single tuple �t of constants in DV the automaton A¬Q(�t),V , and then
checking it for emptiness. The advantage of constructing A¬Q(�x),V instead, lies
in the fact that such a construction factors out the common parts of the various
A¬Q(�t),V leaving only a small part of the automaton specialized for each tuple.

5 QA and QC for T2RPQc’s

We study now QA and QC in the case where the query to answer using the views
(resp., the right-hand side query for QC) is a T2RPQc. To do so we exploit two-
way alternating word automata (2AFAs).

5.1 Two-Way Alternating Automata

Given a set X, we define the set B+(X) as the set of all positive Boolean formulas
over X, including ‘true’ and ‘false’ (i.e., for all x ∈ X, x is a formula, and if ϕ1
and ϕ2 are formulas, so are ϕ1 ∧ϕ2 and ϕ1 ∨ϕ2). We say that a subset X ′ ⊆ X
satisfies a formula ϕ ∈ B+(X) (denoted X ′ |= ϕ) if, by assigning ‘true’ to all
members of X ′ and ‘false’ to all members of X \X ′, the formula ϕ evaluates to
‘true’. Clearly ‘true’ is satisfied by every subset of X (including the empty set)
and ‘false’ cannot be satisfied.
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In the following we denote the concatenation of I and J , where I, J ∈ IN∗,
with IJ . A tree is a finite set T ⊆ IN∗ such that, if Ii ∈ T , where I ∈ IN∗ and
i ∈ IN, then also I ∈ T . T is complete if, whenever Ii ∈ T , then also Ij ∈ T for
every j ∈ [1..i]. The elements of T are called nodes. When referring to trees, we
make also use of the standard notions of root, successor, descendant, predecessor,
and leaf. Given an alphabet Σ, a Σ-labeled tree is a pair (T, V ), where T is a
tree and V : T → Σ maps each node of T to an element of Σ. A k-ary tree,
where k is a positive integer, is a tree T ⊆ [1..k]∗.

Two-way alternating automata generalize 1NFAs with the ability to move on
the input string in both directions, and with the possibility to perform univer-
sal or existential moves (actually a combination of both). Formally, a two-way
alternating automaton (2AFA) [21,39,9] A = (Γ, S, S0, δ, Sf ) consists of an al-
phabet Γ , a finite set of states S, a set S0 ⊆ S of initial states, a transition
function δ : S × Σ → B+(S × {−1, 0, 1}), and a set Sf ⊆ S of accepting
states. Intuitively, a transition δ(s, a) spawns several copies of A, each one start-
ing in a certain state and with the head on the symbol to the left of a (−1),
to the right of a (1), or on a itself (0), and specifies by means of a positive
Boolean formula how to combine acceptance or non-acceptance of the spawned
copies. A run of A on a finite word w = a0 · · · a� is a labeled tree (T, r), where
r : T → S × [0..	 + 1]. A node in T labeled by (s, i) describes a copy of A that
is in state s and reads the letter ai of w. The labels of adjacent nodes of T have
to satisfy the transition function δ. Formally, r(ε) = (s0, 0) where s0 ∈ S0, and
for all nodes I with r(I) = (s, i) and δ(s, ai) = ϕ, there is a (possibly empty)
set Z = {(s1, c1), . . . , (sh, ch)} ⊆ S × {−1, 0, 1} such that Z |= ϕ and for all
j ∈ [1..h], there is a successor of I in T labeled (sj , i + cj). The run is accepting
if all leaves of the run are labeled by (s, 	 + 1) for some s ∈ Sf . A accepts w if
it has an accepting run on w. The set of words accepted by A is denoted L(A).

It is known that 2AFAs define regular languages [39], and that, given a 2AFA
with n states accepting a regular language L, one can construct a 1NFA with
2O(n2) states, accepting L (see [8,38]). In addition, by exploiting the same idea
used in the reduction in [54] from 2NFAs to 1NFAs, we can show the following
result.

Theorem 8. Given a 2AFA with n states accepting a language L, one can con-
struct a 1NFA with 2O(n) states, accepting the complement of L.

5.2 T2RPQc’s

Obviously, QA for the case where the query to be answered is a T2RPQc is
a special case of QA for C2RPQc’s. However, the special tree-structure of the
query Q to be answered allows us to avoid the construction of the doubly expo-
nential automaton for Q. Instead, to build AQ(�t) we make use of 2AFAs, which
can directly simulate the evaluation of a T2RPQc on words representing canon-
ical DBs, without the need to introduce annotations for the non-distinguished
variables of Q. In particular, we exploit the ability of 2AFAs to: (i) move on the
word both forward and backward, which corresponds to traversing edges of the
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DB in both directions; (ii) “jump” between positions in the word representing
the same node; (iii) check a “conjunction” of conditions.

To denote a T2RPQc we use variables indexed with nodes of a tree, each
of which is represented as usual by a (possibly empty) sequence of integers,
denoting the path leading from the root to the node. Let the set I of indices of
the variables in the query be a finite k-ary tree (for some k) and let Q be the
T2RPQc of arity n

Q(x1, . . . , xn)←
∧

yI ,yIj∈I
yI EIj yIj

where I is the sequence of integers denoting a node in the tree, Ij is the sequence
denoting the j-th successor of node I, and EIj denotes the regular expression in
the (unique) atom involving variables or proper constants yI and yIj . Notice that
the body of the query has the structure of a tree, i.e., each variable appears at
most once as right variable in an atom, and, except for yε, if a variable appears
as left variable in an atom, then it must also appear as right variable in some
other atom.

5.3 Automaton for a Single Tuple

We first address the problem of checking whether a tuple �t is in the certain
answer to a T2RPQc Q wrt a set of C2RPQc views V.

We can build the automaton AV accepting V-words representing V-canonical
DBs exactly as in Section 4.2. Let w be a V-word over the alphabet Σ∪DN∪{$},
representing a V-canonical DB Bw. We construct a 2AFA AQ(�t), that accepts w

if and only if �t ∈ ans(Q,Bw).
To construct AQ(�t), we assume that each EI is represented as a 1NFA EI =

(Σ, SI , s
0
I , δI , s

f
I ) over the alphabet Σ, and that the automata for different EI ’s

have disjoint sets of states. Then AQ(�t) = (ΣQ, SQ, {sf
ε}, δQ, FQ), where ΣQ =

Σ ∪ DN ∪ {$}, and SQ, FQ, and δQ are defined below.
For simplicity, we use the following notation for transitions of 2AFAs: we

write (s′, 	′) ∈ δQ(s, 	) meaning that δQ(s, 	) is a disjunction of transitions, and
that (s′, 	′) is one of the disjuncts.

We first construct for each atom yI EJ yJ (with J = Ij for some j) in the
query a part of AQ(�t) that checks that such atom is satisfied in the V-canonical
DB represented by the current word. To do so, we introduce in SQ a set of states
SQ

J = SJ ∪ {s← | s ∈ SJ} ∪ {s↪→ | s ∈ SJ} ∪ SJ × DN and add the following
transitions to δQ (this construction is a variation of the one in [16]):

1. (s←,−1) ∈ δQ(s, 	), for each s ∈ SJ and 	 ∈ Σ ∪ DN . At any point such
transitions make the automaton ready to scan one step backward by placing
it in “backward-mode”.

2. (s2, 1) ∈ δQ(s1, r) and (s2, 0) ∈ δQ(s←1 , r−), for each transition s2 ∈ δJ(s1, r)
of EJ . These transitions correspond to the transitions of EJ that are per-
formed forward or backward according to the current “scanning mode”.
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3. For each s ∈ SJ and each d ∈ DN

((s, d), 0) ∈ δQ(s, d)
((s, d), 0) ∈ δQ(s←, d)
((s, d), 1) ∈ δQ((s, d), 	), for each 	 ∈ ΣQ

((s, d),−1) ∈ δQ((s, d), 	), for each 	 ∈ ΣQ

(s, 0) ∈ δQ((s, d), d)
(s, 1) ∈ δQ(s, d)

On a symbol representing a node d while in a state s, the automaton may
enter into “search-for-d-mode”, reflected in a state (s, d) (first and second
clause) and move to any other occurrence of d in the word. When it finds
such an occurrence, the automaton exits search-mode (second last clause)
and continues its computation either forward (last clause) or backward (see
item 2).

4. For each s ∈ SJ and each d1, d2 ∈ DN

(s↪→, 1) ∈ δQ((s, d1), d1) ((s, d2), 0) ∈ δQ(s↪→, d2)

Whenever the automaton reaches a symbol representing a node d1 while
it is in search-for-d1-mode, and d2 appears immediately to the right of d1,
the automaton may switch to search-for-d2-mode. This takes into account
that two adjacent symbols d1d2 actually represent the same node of the
DB. Notice that switching from search-for-d2-mode to search-for-d1-mode is
already taken into account by exiting search-for-d1-mode (transition 5 in 3),
switching to backward-mode (point 1), and switching to search-for-d2-mode
while exiting from backward-mode (second transition in item 3).

Observe that the separator symbol $ does not allow transitions except in search-
mode. Its role is to force the automaton to move in the correct direction when
exiting search-mode.

We then “connect” the different parts of AQ(�t) corresponding to the different
atoms in the query by taking into account the tree structure of the query.

1. (sf
ε , 1) ∈ δQ(sf

ε , 	) for each 	 ∈ ΣQ. These transitions place the head of the
automaton in some randomly chosen position of the input string.

2. Consider now a variable or proper constant yI , and all atoms in which yI

appears on the left of the regular expression. Let such atoms be yI EIj yIj ,
for j ∈ [1..mI ]:
– if yI is a distinguished variable xi, then we add the transition (s0

I1, 0) ∧
· · · ∧ (s0

ImI
, 0) ∈ δQ(sf

I ,�t[i]), where �t[i] is the i-th component of �t, and
s0

Ij is the starting state of the part of the automaton for yI EIj yIj ;
– If yI is a proper constant c, then we add the transition (s0

I1, 0) ∧ · · · ∧
(s0

ImI
, 0) ∈ δQ(sf

I , c);
– if yI is a non-distinguished variable of Q, then we add the transitions

(s0
I1, 0) ∧ · · · ∧ (s0

ImI
, 0) ∈ δQ(sf

I , 	), for each 	 ∈ Σ ∪ DN .
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These transitions connect in the appropriate way sf
I (which is either the

final state of AI or the initial state sf
ε of AQ2) with the starting states s0

Ij of
the parts of the automaton corresponding to the atoms yI EIj yIj , without
moving on the input string. They also check that distinguished variables or
constants are mapped to the appropriate nodes in the word. Note that the
one above are the only “and”-transitions used in the automaton.

3. (s, 1) ∈ δQ(s, 	), for each s ∈ FQ and each 	 ∈ ΣQ. These transitions
move the head of the automaton to the end of the input string, when the
automaton enters a final state.

We still have to specify the set FQ of final states of AQ(�t). For each variable
or constant yJ which is a leaf of the tree representing Q (and which appears only
in an atom yI EJ yJ):

– If yJ is a distinguished variable xi, then we introduce in SQ a new state sF
J ,

add the transition sF
J ∈ δQ(sf

J ,�t[i]), and add sF
J to the set FQ of final states

of AQ(�t). This corresponds to checking that the distinguished variable xi is
actually mapped to �t[i].

– If yJ is a proper constant c, then we introduce in SQ a new state sF
J , add

the transition sF
J ∈ δQ(sf

J , c), and add sF
J to the set FQ of final states of

AQ(�t). This corresponds to checking that the constant c is actually mapped
to itself.

– If yJ is a non-distinguished variable of Q, then we simply add sf
J to the set

FQ of final states of AQ(�t).

Observe that the mapping of non-distinguished variables of Q to nodes of a
V-canonical DB represented by a V-word w accepted by AQ(�t) is not explicited
as an annotation of w. However, the existence of an accepting run of AQ(�t) over
w guarantees the existence of such a mapping, since each branching in the query
is handled by an “and”-transition in the automaton. In this way the different
occurrences of a non-distinguished variable in the body of Q are all mapped to
the same node, which is represented by the symbol in w at which the “and”-
transition in the run occurs.

Finally, we define A¬Q(�t),V as the intersection of the 1NFA AV and of the
1NFA corresponding to the complement of AQ(�t) (see Theorem 8).

Theorem 9. Let V be a set of C2RPQc views, Q a T2RPQc of arity n, �t an
n-tuple of proper constants, and A¬Q(�t),V the 1NFA constructed above. Then,
�t ∈ cert(Q,V) if and only if A¬Q(�t),V is empty.

Considering the construction above we get the following complexity charac-
terization.

Theorem 10. QA for C2RPQc views and a T2RPQc query, and QC between
a C2RPQc and a T2RPQc are PSPACE-complete.
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Proof. QC is clearly PSPACE-hard, since already containment of regular ex-
pressions (and hence RPQs) is PSPACE-hard [36]. By Theorem 2 we obtain the
same lower bound for QA.

For the upper bound for QA, by Theorem 9, it suffices to check the empti-
ness of A¬Q(�t),V , which is the intersection of the 1NFA AV and of the 1NFA
corresponding to the complement of AQ(�t). The 1NFA AV is the intersection of a
1NFA A−V which is polynomial in the size of V (i.e., the view definitions and view
extensions) and of a 1NFA, called AUNA in the following, that complements the
2NFA A¬UNA, which is exponential in the number of proper constants in the
view extension and view definitions.

The 2AFA AQ(�t) is polynomial in Q. By Theorem 8, the 1NFA corresponding
to the complement of AQ(�t), called A¬Q(�t) in the following, is exponential in Q.
However, we can check “on-the-fly” whether A−V∩AUNA∩A¬Q(�t) is empty, and we
do not need to construct AUNA and A¬Q(�t) explicitly: Whenever the emptiness
algorithm wants to move from a state s1 of the intersection of A−V , AUNA, and
A¬Q(�t) to a state s2, it guesses s2 and checks that it is directly connected to
s1. Such a check can be done in time polynomial in the sizes of A−V , AUNA, and
A¬Q(�t) [54]. Once this has been verified, the algorithm can discard s1. Thus, at
each step the algorithm needs to keep in memory at most two states and there is
no need to generate all of AUNA and A¬Q(�t) at any single step of the algorithm.

Considering Theorem 2, we also get that QC for the case where the query on
the left-hand side is a C2RPQc and the one on the right-hand side is a T2RPQc

can be decided in PSPACE.

5.4 Automaton for Whole Answer Set

The technique developed in Section 4.4 to compute the whole set of certain
answers can be adapted also to the case where the query to be answered is a
T2RPQc. Observe that we cannot deal with each RPQ separately, as done in
Section 4.4. Instead, at those points where the automaton for a single tuple
checks the presence of a proper constant assigned to a distinguished variable,
the automaton for the whole answer set has to check that the proper constant
encountered in the word is mapped in the prefix to the index of the distinguished
variable that the automaton expects. This can be done by adding a suitable
conjunct in the transition of the automaton that switches to a state from which
the check is done.

As for the case of C2RPQc’s, this construction maintains the same computa-
tional complexity as the one for a single tuple. Hence, using the automaton for
the whole answer set, one can decide in PSPACE whether a certain tuple is in
the certain answer to a T2RPQc wrt a set of C2RPQc views.

6 Conclusions

We have studied query containment and view-based query answering for the class
of C2RPQc’s. We have presented a mutual reduction between the two problems,
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and we have shown that both are EXPSPACE-complete in the general case, and
PSPACE-complete in the special case of T2RPQc’s. Observe that PSPACE and
EXPSPACE algorithms currently can be implemented in time that is respectively
exponential and doubly exponential in the size of the input. Hence, the results
for T2RPQc’s imply that query containment for not too large queries is indeed
feasible, since it can be done in time that is exponential in a small number.
This has to be contrasted with the general case where even containment for
moderately sized queries appears to be infeasible, since it requires time that is
doubly exponential, which is a large amount of time even for small queries.

For the sake of simplicity, we did not consider union in this paper. However,
all the results presented here can be directly extended to unions of C2RPQc’s
(respectively, unions of T2RPQc’s). Also, as already mentioned, they can be
easily extended to the case of rooted DBs, i.e., to the case where the DB is an
edge-labeled rooted graph. In particular, the notion of root can be simulated
both in query containment and in query answering. For query containment, it
is sufficient to add one variable to the left-hand side query and suitable atoms
to enforce that it is connected to all other variables (and hence to all nodes of
the counterexample database). For view-based query answering, the root can be
modeled by means of a distinguished constant that is forced to be connected to
all other constants appearing in the view extensions by means of an additional
view with definition V (x, y)← x Σ∗ y.

In the future, we aim at extending our work in order to take into account the
following aspects. (i) While we have assumed in this paper that views are sound
(they return a subset of the answers to the associated query), in data integration
views can also be used to model data sources that are either complete (they
return a superset of the answers to the associated query) or exact (they are both
sound and complete). We conjecture that our techniques for view-based query
answering can be adapted in order to take into account both complete and exact
views. (ii) It would be interesting to study the complexity of view-based query
answering with respect to the size of the view extensions only (data complexity),
as done in [15,17] for RPQs and 2RPQs.
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