
Description Logics for Information Integration

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

lastname @dis.uniroma1.it,
http://www.dis.uniroma1.it/∼lastname

Abstract. Information integration is the problem of combining the data
residing at different, heterogeneous sources, and providing the user with a
unified view of these data, called mediated schema. The mediated schema
is therefore a reconciled view of the information, which can be queried by
the user. It is the task of the system to free the user from the knowledge
on where data are, and how data are structured at the sources.
In this chapter, we discuss data integration in general, and describe a
logic-based approach to data integration. A logic of the Description Log-
ics family is used to model the information managed by the integration
system, to formulate queries posed to the system, and to perform several
types of automated reasoning supporting both the modeling, and the
query answering process. We focus, in particular, on a specific Descrip-
tion Logic, called DLR, specifically designed for database applications.
In the chapter, we illustrate how DLR is used to model a mediated
schema of an integration system, to specify the semantics of the data
sources, and finally to support the query answering process by means of
the associated reasoning methods.

1 Introduction

Information integration is the problem of combining the data residing at different
sources, and providing the user with a unified view of these data, called mediated
schema. The mediated schema is therefore a reconciled view of the information,
which can be queried by the user. It is the task of the data integration system to
free the user from the knowledge on where data are, and how data are structured
at the sources.

The interest in this kind of systems has been continuously growing in the
last years. Many organizations face the problem of integrating data residing
in several sources. Companies that build a Data Warehouse, a Data Mining,
or an Enterprise Resource Planning system must address this problem. Also,
integrating data in the World Wide Web is the subject of several investigations
and projects nowadays. Finally, applications requiring accessing or re-engineering
legacy systems must deal with the problem of integrating data stored in different
sources.

The design of a data integration system is a very complex task, which com-
prises several different issues, including the following:

A.C. Kakas, F. Sadri (Eds.): Computat. Logic (Kowalski Festschrift), LNAI 2408, pp. 41–60, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

42 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

1. heterogeneity of the sources,
2. relation between the mediated schema and the sources,
3. limitations on the mechanisms for accessing the sources,
4. materialized vs. virtual integration,
5. data cleaning and reconciliation,
6. how to process queries expressed on the mediated schema.

Problem (1) arises because sources are typically heterogeneous, meaning that
they adopt different models and systems for storing data. This poses challenging
problems in specifying the mediated schema. The goal is to design such a schema
so as to provide an appropriate abstraction of all the data residing at the sources.
One aspect deserving special attention is the choice of the language used to ex-
press the mediated schema. Since such a schema should mediate among different
representations of overlapping worlds, the language should provide flexible and
powerful representation mechanisms. We refer to [34] for a more detailed dis-
cussion on this subject. Following the work in [32,16,40], in this paper we use a
formalism of the family of Description Logics to specify mediated schemas.

With regard to Problem (2), two basic approaches have been used to specify
the relation between the sources and the mediated schema. The first approach,
called global-as-view (or query-based), requires that the mediated schema is ex-
pressed in terms of the data sources. More precisely, to every concept of the
mediated schema, a view over the data sources is associated, so that its meaning
is specified in terms of the data residing at the sources. The second approach,
called local-as-view (or source-based), requires the mediated schema to be spec-
ified independently from the sources. The relationships between the mediated
schema and the sources are established by defining every source as a view over
the mediated schema. Thus, in the local-as-view approach, we specify the mean-
ing of the sources in terms of the concepts in the mediated schema. It is clear
that the latter approach favors the extensibility of the integration system, and
provides a more appropriate setting for its maintenance. For example, adding a
new source to the system requires only to provide the definition of the source, and
does not necessarily involve changes in the mediated schema. On the contrary,
in the global-as-view approach, adding a new source typically requires changing
the definition of the concepts in the mediated schema. For this reason, in the
rest of the paper, we adopt the local-as-view approach. A comparison between
the two approaches is reported in [51].

Problem (3) refers to the fact, that, both in the local-as-view and in the
global-as-view approach, it may happen that a source presents some limitations
on the types of accesses it supports. A typical example is a web source accessi-
ble through a form where one of the fields must necessarily be filled in by the
user. Such a situation can be modeled by specifying the source as a relation
supporting only queries with a selection on a column. Suitable notations have
been proposed for such situations [44], and the consequences of these access lim-
itations on query processing in integration systems have been investigated in
several papers [44,43,27,56,55,41,42].

Problem (4) deals with a further criterion that we should take into account
in the design of a data integration system. In particular, with respect to the

Description Logics for Information Integration 43

data explicitely managed by the system, we can follow two different approaches,
called materialized and virtual. In the materialized approach, the system com-
putes the extensions of the concepts in the mediated schema by replicating the
data at the sources. In the virtual approach, data residing at the sources are
accessed during query processing, but they are not replicated in the integration
system. Obviously, in the materialized approach, the problem of refreshing the
materialized views in order to keep them up-to-date is a major issue [34]. In the
following, we only deal with the virtual approach.

Whereas the construction of the mediated schema concerns the intentional
level of the data integration system, problem (5) refers to a number of issues
arising when considering the integration at the extensional/instance level. A
first issue in this context is the interpretation and merging of the data provided
by the sources. Interpreting data can be regarded as the task of casting them
into a common representation. Moreover, the data returned by various sources
need to be converted/reconciled/combined to provide the data integration sys-
tem with the requested information. The complexity of this reconciliation step
is due to several problems, such as possible mismatches between data referring
to the same real world object, possible errors in the data stored in the sources,
or possible inconsistencies between values representing the properties of the real
world objects in different sources [28]. The above task is known in the litera-
ture as Data Cleaning and Reconciliation, and the interested reader is referred
to [28,10,4] for more details on this subject.

Finally, problem (6) is concerned with one of the most important issues in a
data integration system, i.e., the choice of the method for computing the answer
to queries posed in terms of the mediated schema. While query answering in the
global-as-view approach typically reduces to unfolding, an integration system
based on the local-as-view approach must resort to more sophisticated query
processing techniques. The main issue is that the system should be able to re-
express the query in terms of a suitable set of queries posed to the sources. In
this reformulation process, the crucial step is deciding how to decompose the
query on the mediated schema into a set of subqueries on the sources, based on
the meaning of the sources in terms of the concepts in the mediated schema.
The computed subqueries are then shipped to the sources, and the results are
assembled into the final answer.

In the rest of this paper, we concentrate on Problem (6), namely, query
processing in a data integration system specified by means of the local-as-view
approach, and we present the following contributions:

– We first provide a logical formalization of the problem. In particular, we
illustrate a general architecture for a data integration system, comprising a
mediated schema, a set of views, and a query. Query processing in this setting
is formally defined as the problem of answering queries using views: compute
the answer to a query only on the basis of the extension of a set of views [1,29].
We observe that, besides data integration, this problem is relevant in several
fields, including data warehousing [54], query optimization [17], supporting
physical data independence [50], etc.

44 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

– Then we instantiate the general framework to the case where schemas, views
and queries are expressed by making use of a particular logical language. In
particular:
• The mediated schema is expressed in terms of a knowledge base consti-
tuted by general inclusion assertions and membership assertions, formu-
lated in an expressive Description Logic [6].

• Queries and views are expressed as non-recursive datalog programs,
whose predicates in the body are concepts or relations that appear in
the knowledge base.

• For each view, it can be specified whether the provided extension is
sound, complete, or exact with respect to the view definition [1,11]. Such
assumptions are used in data integration with the following meaning.
A sound view corresponds to an information source which is known to
produce only, but not necessarily all, the answers to the associated query.
A complete view models a source which is known to produce all answers
to the associated query, and maybe more. Finally, an exact view is known
to produce exactly the answers to the associated query.

– We then illustrate a technique for the problem of answering queries using
views in our setting. We first describe how to formulate the problem in
terms of logical implication, and then we present a technique to check logical
implication in 2EXPTIME worst case complexity.

The paper is organized as follows. Section 2 presents the general framework.
Section 3 illustrates the use of Description Logics for setting up a particular
architecture for data integration, according to the general framework. Section 4
presents the method we use for query answering using views in our architecture.
Section 5 describes other works on the problem of answering query using views.
Finally, Section 6 concludes the paper.

2 Framework

In this section we set up a logical framework for data integration. Since we
assume to work with relational databases, in the following we refer to a relational
alphabet A, i.e., an alphabet constituted by a set of predicate and constant
symbols. Predicate symbols are used to denote the relations in the database,
whereas constant symbols denote the objects stored in relations. We adopt the
so-called unique name assumption, i.e., we assume that different constants denote
different objects.

A database (DB) DB is simply a set of relations, one for each predicate
symbol in the alphabet A. The relation corresponding to the predicate symbol
Ri is constituted by a set of tuples of constants, which specify the objects that
satisfy the relation associated to Ri.

The main components of a data integration system are the mediated schema,
the sources, and the queries. Each component is expressed in a specific language
over the alphabet A:

Description Logics for Information Integration 45

– the mediated schema is expressed in the schema language LS ,
– the sources are modeled as views over the mediated schema, expressed in
the view language LV ,

– queries are issued over the mediated schema, and are expressed in the query
language LQ.

In what follows, we provide a specification of the three components of a data
integration system.

– The mediated schema S is a set of constraints, each one expressed in the
language LS over the alphabet A. The language LS determines the ex-
pressiveness allowed for specifying the schema of our database, i.e., the
constraints that the database must satisfy. If S is constituted by the con-
straints {C1, . . . , Cn}, we say that a database DB satisfies S if all constraints
C1, . . . , Cn are satisfied by DB.

– The sources are modeled in terms of a set of views V = {V1, . . . , Vm} over
the mediated schema. Associated to each view Vi we have:
• A definition def (Vi) in terms of a query Vi(x)← vi(x,y) over DB, where
vi(x,y) is expressed in the language LV over the alphabet A. The arity
of x determines the arity of the view Vi.

• A set ext(Vi) of tuples of constants, which provides the information about
the extension of Vi, i.e., the content of the sources. The arity of each tuple
is the same as that of Vi.

• A specification as(Vi) of which assumption to adopt for the view Vi, i.e.,
how to interpret the content of the source ext(Vi) with respect to the
actual set of tuples in DB that satisfy Vi. We describe below the various
possibilities that we consider for as(Vi).

– A query is expressed in the language LQ over the alphabet A, and is intended
to provide the specification of which data to extract from the virtual database
represented in the integration system. In general, if Q is a query and DB is
a database satsfying S, we denote with ans(Q,DB) the set of tuples in DB
that satisfy Q.

The specification as(Vi) determines how accurate is the knowledge on the
pairs satisfying the views, i.e., how accurate is the source with respect to the
specification def (Vi)1. As pointed out in several papers [1,29,37,11], the following
three assumptions are relevant in a data integration system:

– Sound Views. When a view Vi is sound (denoted with as(Vi) = sound), its ex-
tension provides any subset of the tuples satisfying the corresponding defini-
tion. In other words, from the fact that a tuple is in ext(Vi) one can conclude
that it satisfies the view, while from the fact that a tuple is not in ext(Vi)
one cannot conclude that it does not satisfy the view. Formally, a database
DB is coherent with the sound view Vi, if ext(Vi) ⊆ ans(def (Vi),DB).

1 In some papers, for example [11], different assumptions on the domain of the database
are also taken into account.

46 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

– Complete Views. When a view Vi is complete (denoted with as(Vi) =
complete), its extension provides any superset of the tuples satisfying the
corresponding definition. In other words, from the fact that a tuple is in
ext(Vi) one cannot conclude that such a tuple satisfies the view. On the
other hand, from the fact that a tuple is not in ext(Vi) one can conclude
that such a tuple does not satisfy the view. Formally, a database DB is
coherent with the complete view Vi, if ext(Vi) ⊇ ans(def (Vi),DB).

– Exact Views. When a view Vi is exact (denoted with as(Vi) = exact), its
extension is exactly the set of tuples of objects satisfying the corresponding
definition. Formally, a database DB is coherent with the exact view Vi, if
ext(Vi) = ans(def (Vi),DB).
The ultimate goal of a data integration system is to allow a client to extract

information from the database, taking into account that the only knowledge
s/he has on the database is the extension of the set of views, i.e., the content
of the sources. More precisely, the problem of extracting information from the
data integration system reduces to the problem of answering queries using views.
Given

– a schema S,
– a set of views V = {V1, . . . , Vm}, with, for each Vi,

• its definition def (Vi),
• its extension ext(Vi), and
• the specification as(Vi) of whether it is sound, complete, or exact,

– a query Q of arity n, and
– a tuple d = (d1, . . . , dn) of constants,

the problem consists in deciding whether d ∈ ans(Q,S,V), i.e., deciding whether
(d1, . . . , dn) ∈ ans(Q,DB), for each DB such that:
– DB satisfies the schema S,
– DB is coherent with V1, . . . , Vm.

¿From the above definition, it is easy to see that answering queries using
views is essentially an extended form of reasoning in the presence of incomplete
information [53]. Indeed, when we answer the query on the basis of the views,
we know only the extensions of the views, and this provides us with only partial
information on the database. Moreover, since the query language may admit
various forms of incomplete information (due to union, for instance), there are
in general several possible databases that are coherent with the views.

The following example rephrases an example given in [1].

Example 1. Consider a relational alphabet containing (among other symbols) a
binary predicate couple, and two constants Ann and Bill. Consider also two views
female and male, respectively with definitions

female(f)← couple(f,m)
male(m)← couple(f,m)

Description Logics for Information Integration 47

and extensions ext(female) = {Ann} and ext(male) = {Bill}, and assume that
there are no constraints imposed by a schema.

If both views are sound, we only know that some couple has Ann as
its female component and Bill as its male component. Therefore, the query
Qc(x, y) ← couple(x, y) asking for all couples would return an empty answer,
i.e., ans(Qc,S,V) = ∅. However, if both views are exact, we can conclude that
all couples have Ann as their female component and Bill as their male component,
and hence that (Ann,Bill) is the only couple, i.e., ans(Qc,S,V) = (Ann,Bill).

3 Specifying the Content of the Data Integration System

We propose here an architecture for data integration that is coherent with the
framework described in Section 2, and is based on Description Logics [9,8]. In
such an architecture, to specify mediated schemas, views, and queries we use the
Description Logic DLR [6]. We first introduce DLR, and then we illustrate how
we use the logic to specify the three components of a data integration system.

3.1 The Description Logic DLR
Description Logics2 (DLs) have been introduced in the early 80’s in the attempt
to provide a formal ground to Semantic Networks and Frames. Since then they
have evolved into knowledge representation languages that are able to capture
virtually all class-based representation formalisms used in Artificial Intelligence,
Software Engineering, and Databases. One of the distinguishing features of the
work on these logics is the detailed computational complexity analysis both of
the associated reasoning algorithms, and of the logical implication problem that
the algorithms are supposed to solve. By virtue of this analysis, most of these
logics have optimal reasoning algorithms, and practical systems implementing
such algorithms are now used in several projects. In DLs, the domain of interest
is modeled by means of concepts and relations, which denote classes of objects
and relationships, respectively.

Here, we focus our attention on the DL DLR [5,6]. The basic elements of
DLR are concepts (unary relations), and n-ary relations. We assume to deal with
an alphabet A constituted by a finite set of atomic relations, atomic concepts,
and constants, denoted by P , A, and a, respectively. We use R to denote arbi-
trary relations (of given arity between 2 and nmax), and C to denote arbitrary
concepts, respectively built according to the following syntax:

R ::= �n | P | $i/n :C | ¬R | R1 �R2

C ::= �1 | A | ¬C | C1 � C2 | ∃[$i]R | (≤ k [$i]R)

where i denotes a component of a relation, i.e., an integer between 1 and nmax,
n denotes the arity of a relation, i.e., an integer between 2 and nmax, and k
denotes a nonnegative integer. We also use the following abbreviations:
2 See http://dl.kr.org for the home page of Description Logics.

48 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

�I
n ⊆ (∆I)n

P I ⊆ �I
n

$i/n :CI = {(d1, . . . , dn) ∈ �I
n | di ∈ CI}

(¬R)I = �I
n \ RI

(R1 R2)
I = RI

1 ∩ RI
2

�I
1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 C2)
I = CI

1 ∩ CI
2

(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI. di = d}
(≤ k [$i]R)I = {d ∈ ∆I | {(d1, . . . , dn) ∈ RI

1 | di = d} ≤ k}

Fig. 1. Semantic rules for DLR (P , R, R1, and R2 have arity n)

– ⊥ for ¬�,
– C1 � C2 for ¬(¬C1 � ¬C2),
– C1 ⇒C2 for ¬C1 � C2, and
– C1 ≡ C2 for (C1 ⇒C2) � (C2 ⇒C1).

We consider only concepts and relations that are well-typed, which means
that

– only relations of the same arity n are combined to form expressions of type
R1 �R2 (which inherit the arity n), and

– i ≤ n whenever i denotes a component of a relation of arity n.

The semantics of DLR is specified as follows. An interpretation I is consti-
tuted by an interpretation domain ∆I , and an interpretation function ·I that
assigns to each constant an element of ∆I under the unique name assumption,
to each concept C a subset CI of ∆I , and to each relation R of arity n a subset
RI of (∆I)n, such that the conditions in Figure 1 are satisfied. Observe that,
the “¬” constructor on relations is used to express difference of relations, and
not the complement [6].

3.2 Mediated Schema, Views, and Queries

We remind the reader that a mediated schema is constituted by a finite set of
constraints expressed in a schema language LS . In our setting, the schema lan-
guage LS is based on the DL DLR. In particular, each constraint is formulated
as an assertion of one of the following forms:

R1 � R2 C1 � C2

where R1 and R2 are DLR relations of the same arity, and C1 and C2 are DLR
concepts.

As we said before, a database DB is a set of relations, one for each predicate
symbol in the alphabetA. We denote with RDB the relation in DB corresponding

Description Logics for Information Integration 49

to the predicate symbol R (either an atomic concept, or an atomic relation).
Note that a database can be seen as an interpretation for DLR, whose domain
coincides with the set of constants in the alphabet A.

We say that a database DB satisfies an assertion R1 � R2 (resp., C1 � C2)
if RDB

1 ⊆ RDB
2 (resp., CDB

1 ⊆ CDB
2). Moreover, DB satisfies a schema S if DB

satisfies all assertions in S.
In order to define views and queries, we now introduce the notion of query

expression in our setting. We assume that the alphabet A is enriched with a
finite set of variable symbols, simply called variables.

A query expression Q is a non-recursive datalog query of the form

Q(x) ← conj 1(x,y1) ∨ · · · ∨ conjm(x,ym)

where each conj i(x,yi) is a conjunction of atoms, and x, yi are all the variables
appearing in the conjunct. Each atom has one of the forms R(t) or C(t), where
t and t are variables in x and yi or constants in A, R is a relation, and C is a
concept. The number of variables of x is called the arity of Q, and is the arity
of the relation denoted by the query Q.

We observe that the atoms in the query expressions are arbitrary DLR re-
lations and concepts, freely used in the assertions of the KB. This distinguishes
our approach with respect to [22,39], where no constraints on the relations that
appear in the queries can be expressed in the KB.

Given a database DB, a query expression Q of arity n is interpreted as the
set QDB of n-tuples of constants (c1, . . . , cn), such that, when substituting each
ci for xi, the formula

∃y1.conj 1(x,y1) ∨ · · · ∨ ∃ym.conjm(x,ym)

evaluates to true in DB.
With the introduction of query expressions, we can now define views and

queries. Indeed, in our setting, query expressions constitute both the view lan-
guage LV , and the query language LQ:

– Associated to each view Vi in the set V = {V1, . . . , Vm} we have:
• A definition def (Vi) in terms of a query expression
• A set ext(Vi) of tuples of constants,
• A specification as(Vi) of which assumption to adopt for the view Vi,
where each as(Vi) is either sound, complete, or exact.

– A query is simply a query expression, as defined above.

Example 2. Consider for example the following DLR schema Sd, expressing that
Americans who have a doctor as relative are wealthy, and that each surgeon is
also a doctor

American � ∃[$1](RELATIVE � $2 :Doctor) � Wealthy

Surgeon � Doctor

50 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

and two sound views V1 and V2, respectively with definitions

V1(x)← RELATIVE(x, y) ∧ Surgeon(y)
V2(x)← American(x)

and extensions

ext(V1) = {Ann,Bill}
ext(V2) = {Ann,Dan}

Given the query Qw(x) ← Wealthy(x), asking for those who are wealthy, we
have that the only constant in ans(Qw,Sd,V) is Ann. Moreover, if we add an
exact view V3 with definition V3(x)← Wealthy(x), and an extension ext(V3) not
containing Bill, then, from the constraints in Sd and the information we have on
the views, we can conclude that Bill is not American.

3.3 Discussion

We observe that DLR is able to capture a great variety of data models with many
forms of constraints [15,6]. For example, DLR is capable to capture formally
Conceptual Data Models typically used in databases [33,24], such as the Entity-
Relationship Model [18]. Hence, in our setting, query answering using views is
done under the constraints imposed by a conceptual data model.

The interest in DLR is not confined to the expressiveness it provides for spec-
ifying data schemas. It is also equipped with effective reasoning techniques that
are sound and complete with respect to the semantics. In particular, checking
whether a given assertion logically follows from a set of assertions is EXPTIME-
complete in DLR (assuming that numbers are encoded in unary), and query
containment, i.e., checking whether one query is contained in another one in
every model of a set of assertions, is EXPTIME-hard and solvable in 2EXP-
TIME [6].

4 Query Answering

In this section we study the problem of query answering using views in the setting
just defined: the schema is expressed as a DLR knowledge base, and queries and
view definitions are espressed as DLR query expressions. We call the resulting
problem answering query using views in DLR. The technical results regarding
answering query using views in DLR illustrated in this section are taken from [7].

The first thing to observe is that, given a schema S expressed in DLR,
a set of views V = {V1, . . . , Vm}, a query Q, and a tuple d = (d1, . . . , dn)
of constants, verifying whether, d is in ans(Q,S,V) is essentially a form of
logical implication. This observation can be made even sharper if we introduce
special assertions, expressed in first-order logic with equality, that encode as
logical formulas the extension of the views. In particular, for each view V ∈ V ,
with def (V) = (V (x) ← v(x,y)) and ext(V) = {a1, . . . ,ak}, we introduce the
following assertions.

Description Logics for Information Integration 51

– If V is sound, then for each tuple ai, 1 ≤ i ≤ k, we introduce the existentially
quantified assertion

∃y.v(ai,y)

– If V is complete, then we introduce the universally quantified assertion

∀x.∀y.((x != a1 ∧ · · · ∧ x != ak)→ ¬v(x,y))

– If V is exact, then, according to the definition, we treat it as a view that is
both sound and complete, and introduce both types of assertions above.

Let us call Ext(V) the set of assertions corresponding to the extension of the
views V .

Now, the problem of query answering using views in DLR, i.e., checking
whether d ∈ ans(Q,S,V), can be reformulated as checking whether the following
logical implication holds:

S ∪ Ext(V) |= ∃y.q(d,y)

where q(x,y) is the right hand part of Q. Checking such a logical implication
can in turn be rephrased as checking the unsatisfiability of

S ∪ Ext(V) ∪ {∀y.¬q(d,y)}

Observe that the assertion ∀y.¬q(d,y) has the same form as the universal asser-
tion used for expressing extensions of complete views, except that the antecedent
in the implication is empty.

The problem with the newly introduced assertions is that they are not yet
expressed in a DL. The next step is to translate them in a DL. Instead of working
directly with DLR, we are going to translate the problem of query answering
using views in DLR to reasoning in a DL, called CIQ, that directly corresponds
to a variant of Propositional Dynamic Logic [20,6].

4.1 The Description Logic CIQ
The DL CIQ is obtained from DLR by restricting relations to be binary (such
relations are called roles and inverse roles) and allowing for complex roles cor-
responding to regular expressions [20].

Concepts of CIQ are formed according to the following abstract syntax:

C ::= � | A | C1 � C2 | ¬C | ∃R.C | (≤ k Q.C)
Q ::= P | P−

R ::= Q | R1 �R2 | R1 ◦R2 | R∗ | R− | id(C)

where A denotes an atomic concept, C a generic concept, P an atomic role, Q a
simple role, i.e., either an atomic role or the inverse of an atomic role, and R a
generic role. We also use the following abbreviations:

52 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

AI ⊆ ∆I

�I = ∆I

(¬C)I = ∆I \ CI

(C1 C2)
I = CI

1 ∩ CI
2

(∃R.C)I = {d ∈ ∆I | ∃(d, d′) ∈ RI. d′ ∈ CI}
(≤ k Q.C)I = {d ∈ ∆I | {(d, d′) ∈ QI | d′ ∈ CI} ≤ k}

P I ⊆ ∆I × ∆I

(R1 � R2)
I = RI

1 ∪ RI
2

(R1 ◦ R2)
I = RI

1 ◦ RI
2

(R∗)I = (RI)∗ =
⋃

i≥0
(RI)i

(R−)I = {(d1, d2) ∈ ∆I × ∆I | (d2, d1) ∈ RI}
id(C)I = {(d, d) ∈ ∆I × ∆I | d ∈ CI}

Fig. 2. Semantic rules for CIQ

– ∀R.C for ¬∃R.¬C,
– (≥ k Q.C) for ¬(≤ k−1Q.C)

The semantic conditions for CIQ are specified in Figure 2 3.
The use of CIQ allows us to exploit various results established recently for

reasoning in such a logic. The basis of these results lies in the correspondence
between CIQ and a variant of Propositional Dynamic Logic [26,35] that in-
cludes converse programs and “graded modalities” [25,52] on atomic programs
and their converse [47]. CIQ inherits from Propositional Dynamic Logics the
ability of internalizing assertions. Indeed, one can define a role U that essen-
tially corresponds to a universal modality, as the reflexive-transitive closure of
all roles and inverse roles in the language. Using such a universal modality we
can re-express each assertion C1 � C2 as the concept ∀U .(C1 ⇒C2). This al-
lows us to re-express logical implication as concept satisfiability [47]. Concept
satisfiability (and hence logical implication) in CIQ is EXPTIME-complete [20].

Although CIQ does not have constructs for n-ary relations as DLR, it is
possible to represent n-ary relations in a sound and complete way wrt concept
satisfiability (and hence logical implication) by means of reification [20]. An
atomic relation P is reified by introducing a new atomic concept AP and n
functional roles f1, . . . , fn, one for each component of P . In this way, a tuple of
the relation is represented by an instance of the corresponding concept, which
is linked through each of the associated roles to an object representing the com-
ponent of the tuple. Performing the reification requires however some attention,
since in a relation there may not be two equal tuples (i.e., constituted by the
same components in the same positions) in its extension. In the reified counter-
part, on the other hand, one cannot explicitly rule out (e.g., by using specific
assertions) that there are two objects o1 and o2 “representing” the same tuple,
i.e., that are connected to exactly the same objects denoting the components of
3 The notation (RI)i stands for i repetitions of RI – i.e., (RI)1 = RI , and (RI)i =

RI ◦ (RI)i−1.

Description Logics for Information Integration 53

the tuple. However, due to the fundamental inability of CIQ to express that two
role sequences meet in the same object, no CIQ concept can force such a situa-
tion. Therefore one does not need to take this constraint explicitly into account
when reasoning.

Finally, we are going to make use of CIQ extended with object-names. An
object-name is an atomic concept that, in each model, has as extension a sin-
gle object. Object-names are not required to be disjoint, i.e, we do not make
the unique name assumption on them. Disjointness can be explicitly enforced
when needed through explicit assertions. In general, adding object-names to
CIQ makes reasoning NEXPTIME-hard [49]. However our use of object-names
in CIQ is restricted so as to keep reasoning in EXPTIME.

4.2 Reduction of Answering Queries Using Views in DLR to CIQ
Unsatisfiability

We tackle answering queries using views in DLR, by reducing the problem of
checking whether d ∈ ans(Q,S,V) to the problem of checking the unsatisfia-
bility of a CIQ concept in which object-names appear. Object-names are then
eliminated, thus obtaining a CIQ concept.

We translate S ∪ Ext(V) into a CIQ concept as follows. First, we eliminate
n-ary relations by means of reification. Then, we reformulate each assertion in
S as a concept by internalizing assertions. Instead, representing assertions in
Ext(V) requires the following ad-hoc techniques.

We translate each existentially quantified assertion

∃y.v(a,y)

as follows. We represent every constant ai by an object-name Nai , enforcing
disjointness between the object-names corresponding to different constants. We
represent each existentially quantified variable y, treated as a Skolem constant,
by a new object-name without disjointness constraints. We also use additional
concept-names representing tuples of objects. Specifically:

– An atom C(t), where C is a concept and t is a term (either a constant or a
variable), is translated to

∀U .(Nt ⇒σ(C))

where σ(C) is the reified counterpart of C, Nt is the object-name correspond-
ing to t, and U is the reflexive-transitive closure of all roles and inverse roles
introduced in the reification.

– An atom R(t), where R is a relation of arity n and t = (t1, . . . , tn) is a tuple
of terms, is translated to the conjunction of the following concepts:

∀U .(Nt⇒σ(R))

where σ(R) is the reified counterpart of R and Nt is an object-name corre-
sponding to t,

∀U .(Nt ≡ (∃f1.Nt1 � · · · � ∃fn.Ntn))

54 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

and for each i, 1 ≤ i ≤ n, a concept

∀U .(Nti ⇒((∃f−
i .Nt) � (≤ 1 f−

i .Nt)))

Then, the translations of the atoms are combined as in v(a,y).
To translate universally quantified assertions corresponding to the complete

views and also to the query, it is sufficient to deal with assertions of the form:

∀x.∀y.((x != a1 ∧ · · · ∧ x != ak)→ ¬conj (x,y))

Following [6], we construct for conj (x,y) a special graph, called tuple-graph,
which reflects the dependencies between variables. Specifically, the tuple-graph
is used to detect cyclic dependencies. In general, the tuple-graph is composed of
! ≥ 1 connected components. For the i-th connected component we build a CIQ
concept δi(x,y) as in [6]. Such a concept contains newly introduced concepts Ax

and Ay , one for each x in x and y in y. We have to treat variables in x and y
that occur in a cycle in the tuple-graph differently from those outside of cycles.
Let xc (resp., yc) denote the variables in x (resp., y) that occur in a cycle, and
xl (resp., yl) those that do not occur in cycles. We first define the concept

C[xc/s,yc/t]

as the concept obtained from

(∀U .¬δ1(x,y)) � · · · � (∀U .¬δ�(x,y))

as follows:

– for each variable xi in xc (resp., yi in yc), the concept Axi (resp., Ayi) is
replaced by Nsi (resp., Nti);

– for each variable yi in yl, the concept Ayi is replaced by �.
Then the concept corresponding to the universally quantified assertion is con-
structed as the conjunction of:

– ∀U .Cxl
, where Cxl

is obtained from x != a1 ∧· · · ∧x != ak by replacing each
(x != a) with (Ax ≡ ¬Na). Observe that (x1, . . . , xn) != (a1, . . . , an) is an
abbreviation for (x1 != a1 ∨ · · · ∨ xn != an).

– One concept C[xc/s,yc/t] for each possible instantiation of s and t with
the constants in Ext(V) ∪ {d}, with the proviso that s cannot coincide with
any of the ai, for 1 ≤ i ≤ k (notice that the proviso applies only in the case
where all variables in x occur in a cycle in the tuple-graph).

The critical point in the above construction is how to express a universally
quantified assertion

∀x.∀y.((x != a1 ∧ · · · ∧ x != ak)→ ¬conj (x,y))

If there are no cycles in the corresponding tuple-graph, then we can directly
translate the assertion into a CIQ concept. As shown in the construction above,

Description Logics for Information Integration 55

dealing with a nonempty antecedent requires some special care to correctly en-
code the exceptions to the universal rule. Instead, if there is a cycle, due to the
fundamental inability of CIQ to express that two role sequences meet in the
same object, no CIQ concept can directly express the universal assertion. The
same inability, however, is shared by DLR. Hence we can assume that the only
cycles present in a model are those formed by the constants in the extension of
the views or those in the tuple for which we are checking whether it is a certain
answer of the query. And these are taken care of by the explicit instantiation.

As the last step to obtain a CIQ concept, we need to encode object-names
in CIQ. To do so we can exploit the construction used in [21] to encode CIQ-
ABoxes as concepts. Such a construction applies to the current case without any
need of major adaptation. It is crucial to observe that the translation above uses
object-names in order to form a sort of disjunction of ABoxes (cfr. [31]).

In [7], the following basic fact is proved for the construction presented above.
Let Cqa be the CIQ concept obtained by the construction above. Then d ∈
ans(Q,S,V) if and only if Cqa is unsatisfiable.

The size of Cqa is polynomial in the size of the query, of the view defi-
nitions, and of the inclusion assertions in S, and is at most exponential in
the number of constants in ext(V) ∪ {d}. The exponential blow-up is due to
the number of instantiations of C[xc/s,yc/t] with constants in ext(V) ∪ {d}
that are needed to capture universally quantified assertions. Hence, consider-
ing EXPTIME-completeness of satisfiability in DLR and in CIQ, we get that
query answering using views in DLR is EXPTIME-hard and can be done in
2EXPTIME.

5 Related Work

We already observed that query answering using views can be seen as a form of
reasoning with incomplete information. The interested reader is referred to [53]
for a survey on this subject.

We also observe that, to compute the whole set ans(Q,S,V), we need to run
the algorithm presented above once for each possible tuple (of the arity of Q) of
objects in the view extensions. Since we are dealing with incomplete information
in a rich language, we should not expect to do much better than considering
each tuple of objects separately. Indeed, in such a setting reasoning on objects,
such as query answering, requires sophisticated forms of logical inference. In
particular, verifying whether a certain tuple belongs to a query gives rise to a
line of reasoning which may depend on the tuple under consideration, and which
may vary substantially from one tuple to another. For simple languages we may
indeed avoid considering tuples individually, as shown in [45] for query answering
in the DL ALN without cyclic TBox assertions. Observe, however, that for
such a DL, reasoning on objects is polynomial in both data and expression
complexity [36,46], and does not require sophisticated forms of inference.

Query answering using views has been investigated in the last years in the
context of simplified frameworks. In [38,44], the problem has been studied for the

56 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

case of conjunctive queries (with or without arithmetic comparisons), in [2] for
disjunctive views, in [48,19,30] for queries with aggregates, in [23] for recursive
queries and nonrecursive views, and in [11,12] for several variants of regular path
queries. Comprehensive frameworks for view-based query answering, as well as
several interesting results for various query languages, are presented in [29,1].

Query answering using views is tightly related to query rewriting [38,23,51].
In particular, [3] studies rewriting of conjunctive queries using conjunctive views
whose atoms are DL concepts or roles (the DL used is less expressive thatn
DLR). In general, a rewriting of a query with respect to a set of views is a
function that, given the extensions of the views, returns a set of tuples that
is contained in the answer set of the query with respect to the views. Usually,
one fixes a priori the language in which to express rewritings (e.g., unions of
conjunctive queries), and then looks for the best possible rewriting expressible in
such a language. On the other hand, we may call perfect a rewriting that returns
exactly the answer set of the query with respect to the views, independently of
the language in which it is expressed. Hence, if an algorithm for answering queries
using views exists, it can be viewed as a perfect rewriting [13,14]. The results
presented here show the existence of perfect, and hence maximal, rewritings in
a setting where the mediated schema, the views, and the query are expressed in
DLR.

6 Conclusions

We have illustrated a logic-based framework for data integration, and in par-
ticular for the problem of query answering using views in a data integration
system. We have addressed the problem for the case of non-recursive datalog
queries posed to a mediated schema expressed in DLR. We have considered dif-
ferent assumptions on the view extensions (sound, complete, and exact), and we
have presented a technique that solves the problem in 2EXPTIME worst case
computational complexity.

We have seen in the previous section that an algorithm for answering queries
using views is in fact a perfect rewriting. For the setting presented here, it re-
mains open to find perfect rewritings expressed in a more declarative query
language. Moreover it is of interest to find maximal rewritings belonging to well
behaved query languages, in particular, languages with polynomial data com-
plexity, even though we already know that such rewritings cannot be perfect [13].

Acknowledgments

The work presented here was partly supported by the ESPRIT LTR Project
No. 22469 DWQ – Foundations of Data Warehouse Quality, and by MURST
Cofin 2000 D2I – From Data to Integration. We wish to thank all members of the
projects. Also, we thank Daniele Nardi, Riccardo Rosati, and Moshe Y. Vardi,
who contributed to several ideas illustrated in the chapter.

Description Logics for Information Integration 57

References

1. Serge Abiteboul and Oliver Duschka. Complexity of answering queries using ma-
terialized views. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’98), pages 254–265, 1998.

2. Foto N. Afrati, Manolis Gergatsoulis, and Theodoros Kavalieros. Answering queries
using materialized views with disjunction. In Proc. of the 7th Int. Conf. on
Database Theory (ICDT’99), volume 1540 of Lecture Notes in Computer Science,
pages 435–452. Springer-Verlag, 1999.

3. Catriel Beeri, Alon Y. Levy, and Marie-Christine Rousset. Rewriting queries using
views in description logics. In Proc. of the 16th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’97), pages 99–108, 1997.

4. Mokrane Bouzeghoub and Maurizio Lenzerini. Special issue on data extraction,
cleaning, and reconciliation. Information Systems, 26(8), pages 535–536, 2001.

5. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Conjunctive
query containment in Description Logics with n-ary relations. In Proc. of the 1997
Description Logic Workshop (DL’97), pages 5–9, 1997.

6. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decid-
ability of query containment under constraints. In Proc. of the 17th ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems (PODS’98), pages
149–158, 1998.

7. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Answering
queries using views over description logics knowledge bases. In Proc. of the 17th
Nat. Conf. on Artificial Intelligence (AAAI 2000), pages 386–391, 2000.

8. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Description logic framework for information integration. In Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98), pages 2–13, 1998.

9. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Information integration: Conceptual modeling and reasoning
support. In Proc. of the 6th Int. Conf. on Cooperative Information Systems
(CoopIS’98), pages 280–291, 1998.

10. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Data integration in data warehousing. Int. J. of Cooperative
Information Systems, 10(3), pages 237–271, 2001.

11. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Answering regular path queries using views. In Proc. of the 16th IEEE Int. Conf.
on Data Engineering (ICDE 2000), pages 389–398, 2000.

12. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Query processing using views for regular path queries with inverse. In Proc. of the
19th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2000), pages 58–66, 2000.

13. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
View-based query processing and constraint satisfaction. In Proc. of the 15th IEEE
Symp. on Logic in Computer Science (LICS 2000), pages 361–371, 2000.

14. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
What is query rewriting? In Proc. of the 7th Int. Workshop on Knowledge Rep-
resentation meets Databases (KRDB 2000), pages 17–27. CEUR Electronic Work-
shop Proceedings, http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-29/, 2000.

58 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

15. Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for
conceptual data modeling. In Jan Chomicki and Günter Saake, editors, Logics for
Databases and Information Systems, pages 229–264. Kluwer Academic Publisher,
1998.

16. Tiziana Catarci and Maurizio Lenzerini. Representing and using interschema
knowledge in cooperative information systems. J. of Intelligent and Cooperative
Information Systems, 2(4):375–398, 1993.

17. S. Chaudhuri, S. Krishnamurthy, S. Potarnianos, and K. Shim. Optimizing queries
with materialized views. In Proc. of the 11th IEEE Int. Conf. on Data Engineering
(ICDE’95), Taipei (Taiwan), 1995.

18. P. P. Chen. The Entity-Relationship model: Toward a unified view of data. ACM
Trans. on Database Systems, 1(1):9–36, March 1976.

19. Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate queries
using views. In Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’99), pages 155–166, 1999.

20. Giuseppe De Giacomo and Maurizio Lenzerini. What’s in an aggregate: Founda-
tions for description logics with tuples and sets. In Proc. of the 14th Int. Joint
Conf. on Artificial Intelligence (IJCAI’95), pages 801–807, 1995.

21. Giuseppe De Giacomo and Maurizio Lenzerini. TBox and ABox reasoning in ex-
pressive description logics. In Luigia C. Aiello, John Doyle, and Stuart C. Shapiro,
editors, Proc. of the 5th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR’96), pages 316–327. Morgan Kaufmann, Los Altos, 1996.

22. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-
log: Integrating Datalog and description logics. J. of Intelligent Information Sys-
tems, 10(3):227–252, 1998.

23. Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using
views. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS’97), pages 109–116, 1997.

24. Ramez A. ElMasri and Shamkant B. Navathe. Fundamentals of Database Systems.
Benjamin and Cummings Publ. Co., Menlo Park, California, 1988.

25. M. Fattorosi-Barnaba and F. De Caro. Graded modalities I. Studia Logica, 44:197–
221, 1985.

26. Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. J. of Computer and System Sciences, 18:194–211, 1979.

27. Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query opti-
mization in the presence of limited access patterns. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages 311–322, 1999.

28. Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. An extensible
framework for data cleaning. Technical Report 3742, INRIA, Rocquencourt, 1999.

29. Gösta Grahne and Alberto O. Mendelzon. Tableau techniques for querying infor-
mation sources through global schemas. In Proc. of the 7th Int. Conf. on Database
Theory (ICDT’99), volume 1540 of Lecture Notes in Computer Science, pages 332–
347. Springer-Verlag, 1999.

30. Stéphane Grumbach, Maurizio Rafanelli, and Leonardo Tininini. Querying ag-
gregate data. In Proc. of the 18th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’99), pages 174–184, 1999.

31. Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and Stephan Tobies. Query contain-
ment using a DLR ABox. Technical Report LTCS-Report 99-15, RWTH Aachen,
1999.

Description Logics for Information Integration 59

32. Michael N. Huhns, Nigel Jacobs, Tomasz Ksiezyk, Wei-Min Shen an Munin-
dar P. Singh, and Philip E. Cannata. Integrating enterprise information mod-
els in Carnot. In Proc. of the Int. Conf. on Cooperative Information Systems
(CoopIS’93), pages 32–42, 1993.

33. R. B. Hull and R. King. Semantic database modelling: Survey, applications and
research issues. ACM Computing Surveys, 19(3):201–260, September 1987.

34. Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis, edi-
tors. Fundamentals of Data Warehouses. Springer-Verlag, 1999.

35. Dexter Kozen and Jerzy Tiuryn. Logics of programs. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science — Formal Models and Semantics, pages
789–840. Elsevier Science Publishers (North-Holland), Amsterdam, 1990.

36. Maurizio Lenzerini and Andrea Schaerf. Concept languages as query languages. In
Proc. of the 9th Nat. Conf. on Artificial Intelligence (AAAI’91), pages 471–476,
1991.

37. Alon Y. Levy. Obtaining complete answers from incomplete databases. In Proc. of
the 22nd Int. Conf. on Very Large Data Bases (VLDB’96), pages 402–412, 1996.

38. Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. An-
swering queries using views. In Proc. of the 14th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’95), pages 95–104, 1995.

39. Alon Y. Levy and Marie-Christine Rousset. CARIN: A representation language
combining Horn rules and description logics. In Proc. of the 12th Eur. Conf. on
Artificial Intelligence (ECAI’96), pages 323–327, 1996.

40. Alon Y. Levy, Divesh Srivastava, and Thomas Kirk. Data model and query evalu-
ation in global information systems. J. of Intelligent Information Systems, 5:121–
143, 1995.

41. Chen Li and Edward Chang. Query planning with limited source capabilities.
In Proc. of the 16th IEEE Int. Conf. on Data Engineering (ICDE 2000), pages
401–412, 2000.

42. Chen Li and Edward Chang. On answering queries in the presence of limited access
patterns. In Proc. of the 8th Int. Conf. on Database Theory (ICDT 2001), 2001.

43. Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yannis Pa-
pakonstantinou, Jeffrey D. Ullman, and Murty Valiveti. Capability based media-
tion in TSIMMIS. In Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, pages 564–566, 1998.

44. Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries us-
ing templates with binding patterns. In Proc. of the 14th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’95), 1995.

45. Marie-Christine Rousset. Backward reasoning in ABoxes for query answering.
In Proc. of the 1999 Description Logic Workshop (DL’99), pages 18–22. CEUR
Electronic Workshop Proceedings, http://sunsite.informatik.rwth-aachen.

de/Publications/CEUR-WS/Vol-22/, 1999.
46. Andrea Schaerf. Query Answering in Concept-Based Knowledge Representation

Systems: Algorithms, Complexity, and Semantic Issues. PhD thesis, Dipartimento
di Informatica e Sistemistica, Università di Roma “La Sapienza”, 1994.

47. Klaus Schild. A correspondence theory for terminological logics: Preliminary re-
port. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91),
pages 466–471, Sydney (Australia), 1991.

48. D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy. Answering queries with ag-
gregation using views. In Proc. of the 22nd Int. Conf. on Very Large Data Bases
(VLDB’96), pages 318–329, 1996.

60 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

49. Stephan Tobies. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. J. of Artificial Intelligence Research,
12:199–217, 2000.

50. O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The GMAP: A versatile tool
for phyisical data independence. Very Large Database J., 5(2):101–118, 1996.

51. Jeffrey D. Ullman. Information integration using logical views. In Proc. of the
6th Int. Conf. on Database Theory (ICDT’97), volume 1186 of Lecture Notes in
Computer Science, pages 19–40. Springer-Verlag, 1997.

52. Wiebe Van der Hoek and Maarten de Rijke. Counting objects. J. of Logic and
Computation, 5(3):325–345, 1995.

53. Ron van der Meyden. Logical approaches to incomplete information. In Jan
Chomicki and Günter Saake, editors, Logics for Databases and Information Sys-
tems, pages 307–356. Kluwer Academic Publisher, 1998.

54. Jennifer Widom. Special issue on materialized views and data warehousing. IEEE
Bulletin on Data Engineering, 18(2), 1995.

55. Ramana Yerneni, Chen Li, Hector Garcia-Molina, and Jeffrey D. Ullman. Com-
puting capabilities of mediators. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 443–454, 1999.

56. Ramana Yerneni, Chen Li, Jeffrey D. Ullman, and Hector Garcia-Molina. Opti-
mizing large join queries in mediation systems. In Proc. of the 7th Int. Conf. on
Database Theory (ICDT’99), pages 348–364, 1999.

	Introduction
	Framework
	Specifying the Content of the Data Integration System
	The Description Logic $cal DLR$
	Mediated Schema, Views, and Queries
	Discussion

	Query Answering
	The Description Logic ${cal CIQ}$
	Reduction of Answering Queries Using Views in $cal DLR$ to ${cal CIQ}$ Unsatisfiability

	Related Work
	Conclusions

