
22

Conjunctive Query Containment
and Answering Under Description
Logic Constraints

DIEGO CALVANESE

Free University of Bozen-Bolzano

and

GIUSEPPE DE GIACOMO and MAURIZIO LENZERINI

Università di Roma “La Sapienza”

Query containment and query answering are two important computational tasks in databases.
While query answering amounts to computing the result of a query over a database, query contain-
ment is the problem of checking whether, for every database, the result of one query is a subset of
the result of another query.

In this article, we deal with unions of conjunctive queries, and we address query containment
and query answering under description logic constraints. Every such constraint is essentially an
inclusion dependency between concepts and relations, and their expressive power is due to the
possibility of using complex expressions in the specification of the dependencies, for example, inter-
section and difference of relations, special forms of quantification, regular expressions over binary
relations. These types of constraints capture a great variety of data models, including the rela-
tional, the entity-relationship, and the object-oriented model, all extended with various forms of
constraints. They also capture the basic features of the ontology languages used in the context of
the Semantic Web.

We present the following results on both query containment and query answering. We provide a
method for query containment under description logic constraints, thus showing that the problem
is decidable, and analyze its computational complexity. We prove that query containment is unde-
cidable in the case where we allow inequalities in the right-hand-side query, even for very simple
constraints and queries. We show that query answering under description logic constraints can be

This work has been partially supported by the EU funded FP6-7603 FET Project Thinking ON-
tologiES (TONES), by project HYPER, funded by IBM through a Shared University Research
(SUR) Award grant, and by MIUR FIRB 2005 project “Tecnologie Orientate alla Conoscenza per
Aggregazioni di Imprese in Internet” (TOCAI.IT).
This article is an extended and revised version of an article published in the Proceedings of the
17th ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODS’98).
Authors’ addresses: D. Calvanese, Faculty of Computer Science, Free University of Bozen-Bolzano,
Piazza Domenicani 3, 39100 Bolzano, Italy; email: calvanese@inf.unibz.it; G. De Giacomo and
M. Lenzerini, Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, Via
Ariosto 25, 00185, Roma, Italy; email: {degiacomo,lenzerini}@dis.uniroma1.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1529-3785/2008/06-ART22 $5.00 DOI 10.1145/1352582.1352590 http://doi.acm.org/
10.1145/1352582.1352590

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:2 • D. Calvanese et al.

reduced to query containment, and illustrate how such a reduction provides upper-bound results
with respect to both combined and data complexity.

Categories and Subject Descriptors: I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Representation languages; F.4.1 [Formal Languages]: Mathematical
Logic—Computational logic, modal logic; H.2.3 [Database Management]: Languages—Query
languages

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Description logics, conjunctve queries, query containment,
computational compexity

ACM Reference Format:

Calvanese, D., De Giacomo, G., and Lenzerini, M. 2008. Conjunctive query containment and an-
swering under description logic constraints. ACM Trans. Comput. Logic 9, 3, Article 22 (June 2008),
31 pages. DOI = 10.1145/1352582.1352590 http://doi.acm.org/10.1145/1352582.1352590

1. INTRODUCTION

Query containment and query answering are two important computational
tasks in databases. While query answering amounts to compute the result of a
query over a database, query containment is the problem of checking whether
for every database, the result of one query is a subset of the result of another
query.1 Many articles point out that checking containment is a relevant task in
several contexts, including information integration [Ullman 1997], query opti-
mization [Abiteboul et al. 1995; Aho et al. 1979a], (materialized) view mainte-
nance [Gupta and Mumick 1995], data warehousing [Widom 1995], constraint
checking [Gupta et al. 1994], and semantic caching [Amir et al. 2003].

In this article, we deal with query containment and query answering under
integrity constraints, or simply constraints.

The former is the problem of checking whether containment between two
queries holds for every database satisfying a given set of constraints. This
problem arises in those situation where one wants to check query containment
relative to a database schema specified with a rich data definition language.
For example, in the case of information integration, queries are often to be com-
pared relatively to (interschema) constraints, which are used to declaratively
specify the “glue” between two source schemas, and between one source schema
and the global schema [Calvanese et al. 1998b; Hull 1997; Ullman 1997; Catarci
and Lenzerini 1993; Levy et al. 1995; Lenzerini 2002; Halevy 2001].

The complexity of query containment in the absence of constraints has been
studied in various settings. In Chandra and Merlin [1977], NP-completeness
has been established for conjunctive queries, and in Chekuri and Rajaraman
[1997] a multiparameter analysis has been performed for the same case, show-
ing that the intractability is due to certain types of cycles in the queries. In Klug
[1988] and van der Meyden [1998], �

p
2 -completeness of containment of conjunc-

tive queries with inequalities was proved, and in Sagiv and Yannakakis [1980]
the case of queries with the union and difference operators was studied. For

1We refer to the set semantics of query containment. Bag semantics is studied, for example, in
Ioannidis and Ramakrishnan [1995]

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:3

various classes of Datalog queries with inequalities, decidability and undecid-
ability results were presented in Chaudhuri and Vardi [1992], van der Meyden
[1998], Bonatti [2004], and Calvanese et al. [2003], respectively.

Query containment under constraints has also been the subject of several
investigations. For example, decidability of conjunctive query containment was
investigated in Aho et al. [1979b] under functional and multi valued dependen-
cies, in Johnson and Klug [1984] under functional and inclusion dependencies,
in Chan [1992], Levy and Rousset [1996], and Levy and Suciu [1997] under
constraints representing is-a hierarchies and complex objects, and in Dong and
Su [1996] in the case of constraints represented as Datalog programs. Undecid-
ability was proved in Calvanese and Rosati [2003] for recursive queries under
inclusion dependencies. Several results on containment of XML queries under
constraints expressed as DTDs were reported in Neven and Schwentick [2003]
and Wood [2003].

Query answering under constraints is the problem of computing the answers
to a query over an incomplete database relatively to a set of constraints van der
Meyden [1998]. Since an incomplete database is partially specified, this task
amounts to computing the tuples that satisfy the query in every database that
conforms to the partial specification, and satisfies the constraints. It is well
known in the database literature that there is a tight connection between the
problems of conjunctive query containment and conjunctive query answering
Chandra and Merlin [1977]. Since this relationship holds also in the presence
of constraints, most of the results reported above apply to query answering as
well. In this article, we concentrate mainly on query containment, and address
query answering only in Section 5.

In this article,2 we address query containment and answering in a setting
where the following occur.

—The schema is constituted by concepts (unary relations) and relations as
basic elements, and by a set of constraints expressed in a variant of de-
scription logics [Baader et al. 2003]. Every constraint is an inclusion of
the form α1 ⊆ α2, where α1 and α2 are complex expressions built by using
intersection and difference of relations, special forms of quantification, reg-
ular expressions over binary relation, and number restrictions (i.e., car-
dinality constraints imposing limitations on the number of tuples in a
certain relation in which an object may appear). The constraints express es-
sentially inclusion dependencies between concepts and relations, and their
expressive power is due to the possibility of using complex expressions in
the specification of the dependencies. It can be shown that our formal-
ism is able to capture a great variety of data models, including the rela-
tional, the entity-relationship, and the object-oriented model, all extended
with various forms of constraints. The relevance of the constraints dealt
with in this paper is also testified by the large interest that the semantic
Web community expresses toward description logics. Indeed, several articles

2This article is an improved and extended version of part of Calvanese et al. [1998a]. In that article,
we overlooked a technical detail in the encoding of the containment problem, which was pointed
out in Horrocks et al. [2000]. Here we present a corrected version of the original encoding.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:4 • D. Calvanese et al.

point out that ontologies play a key role in developing semantic Web tools
[Gruber 1993], and description logics are regarded as the main formalisms
for the specification of ontologies in this context [Patel-Schneider et al. 2004].
The results presented in this article are also relevant as a formal analysis
on querying ontologies. In particular, DLRreg can be considered as one of the
most expressive description logics studied in the literature [Calvanese and
De Giacomo 2003]

—Queries are formed as disjunctions of conjunctive queries whose atoms are
concepts and relations, and therefore can express non-recursive Datalog pro-
grams. Regular expressions are confined to concepts and relations, and do
not constitute atoms per se.

—An incomplete database is specified as a set of facts asserting that a specific
object is an instance of a concept, or that a specific tuple of objects is an
instance of a relation. As we said before, an incomplete databaseD is intended
to provide a partial specification of a database, in the sense that a database
conforming to D contains all facts explicitely asserted in D, and may contain
additional intances of concepts and relations.

We observe that, given the form of constraints and queries allowed in our
approach, none of the previous results can be applied to get decidability/
undecidability of query containment and query answering in our setting.

We present the following results on both query containment and query an-
swering:

(1) We provide a method for query containment under description logic con-
straints, thus showing that the problem is decidable, and analyze its com-
putational complexity. This result is obtained by resorting to a translation
of the schema and the containment to be checked into a particular propo-
sitional dynamic logic (PDL) formula, and then verifying the unsatisfia-
bility of the formula. The technique is justified by the fact that reasoning
about the schema itself (without considering the queries) is optimally done
within the framework of PDL [De Giacomo and Lenzerini 1996].

(2) We prove that query containment is undecidable in the case where we allow
inequalities in the right-hand side query, even for very simple constraints
and queries.

(3) We show that query answering under description logic constraints can
be reduced to query containment, and illustrate how such a reduction
provides upper bound results with respect to both combined and data
complexity.

The article is organized as follows. In Section 2, we present the formalism
used to express both the constraints in the schema, and the queries. In Section 3,
we deal with query containment. In particular, in Section 3.1 we describe the
logic CPDLg , which will be used for deciding query containment, in Section 3.2
we describe the reduction of query containment to unsatisfiability in CPDLg , in
Section 3.3 we prove its correctness, and in Section 3.4 we analyze the com-
plexity bounds for checking containment of queries. In Section 4, we show

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:5

undecidability of query containment in the presence of inequalities. In Sec-
tion 5, we deal with query answering, and in Section 6 we conclude the article.

2. SCHEMAS AND QUERIES IN DLRreg

To specify database schemas and queries, we use the logical language DLRreg ,
inspired by Catarci and Lenzerini [1993] and Calvanese et al. [1995], belonging
to the family of (expressive) description logics [Calvanese et al. 2001b; Baader
et al. 2003]. The language is based on the relational model, in the sense that a
schema S describes the properties of a set of relations, while a query for S de-
notes a relation that is supposed to be computed from any database conforming
to S. A schema is specified in terms of a set of assertions on relations, which
express the constraints that must be satisfied by every conforming database.
Note that such a notion of schema corresponds to that of TBox in description
logics [Baader et al. 2003].

2.1 Schemas

The basic elements of DLRreg are concepts (unary relations), n-ary relations,
and regular expressions built over projections of relations on two of their
components.3

We assume to deal with a finite set of atomic concepts and relations, denoted
by A and P, respectively. Each atomic relation has an associated arity, which is
an integer greater than 1. We use C to denote arbitrary concepts, R to denote
arbitrary relations, and E to denote regular expressions, respectively, built
according to the following syntax:

C ::= �1 | A | ¬C | C1 � C2 | ∃E.C | ∃[$i]R | (≤ k [$i]R),

R ::= �n | P | ($i/n : C) | ¬R | R1 � R2,

E ::= R|$i,$ j | ε | E1 ◦ E2 | E1 	 E2 | E∗,

where i, j are positive integers that intuitively denote components of relations,
n is a positive integer greater than 1 denoting the arity of a relation, and k
is a nonnegative integer. Actually, we restrict the attention to concepts and
relations that are well-typed, which means that

—only relations of the same arity n are combined to form expressions of type
R1 � R2 (which inherit the arity n), and

—i ≤ n whenever i denotes a component of a relation of arity n.

A DLRreg schema is constituted by a finite set of assertions, of the form

C1 � C2,

R1 � R2,

where R1 and R2 are of the same arity. Note that our notion of schema corre-
sponds to that of TBox in description logics [Baader et al. 2003].

3We could include in the logic also domains, that is, sets of values such as integer, string, etc.
However, for the sake of simplicity, we do not consider this aspect in this work.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:6 • D. Calvanese et al.

Fig. 1. Semantic rules for DLRreg (P, R, R1, and R2 have arity n).

The semantics of DLRreg is specified through the notion of interpretation.
An interpretation I = (�I , ·I) of a DLRreg schema S and a set C (of constants
to be used in queries) is constituted by an interpretation domain �I and an
interpretation function ·I that assigns

—to each constant c in C, an element cI of �I under the unique name assump-
tion, that is, for any two distinct constants c1 and c2 of �I , we have that
cI1 �= cI2 ;

—to each atomic concept A, a subset AI of �I ;
—to each relation P of arity n, a subset PI of (�I)n.

The interpretation function is extended to arbitrary concepts, arbitrary rela-
tions, and regular expressions in such a way that the conditions in Figure 1 are
satisfied.

We observe that �1 denotes the interpretation domain, while �n, for n > 1,
does not denote the n-Cartesian product of the domain, but only a subset of it
that covers all relations of arity n. It follows from this property that the “¬”
constructor on relations is used to express difference of relations, rather than
complement. The constructors “¬” and “�” on concepts have the usual mean-
ing of negation and conjunction, respectively. The expression ∃[$i]R denotes
the projection of relation R on its ith component. An expression of the form
(≤ k [$i]R) is called a number restriction, and imposes a limit on the number
of times an object can participate to relation R as the ith component. The ex-
pression ($i/n : C) represents those tuples of arity n whose ith component is an
instance of concept C. Finally, E are regular expressions build over projections
of relations on two of their components.

In what follows, we abbreviate ¬∃E.¬C with ∀E.C, and ($i/n : C) with ($i : C)
when n is clear from the context.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:7

An interpretation I satisfies an assertion C1 � C2 (respectively, R1 � R2)
if CI

1 ⊆ CI
2 (respectively, RI

1 ⊆ RI
2). An interpretation that satisfies all as-

sertions in a schema S is called a model of S. It is easy to see that a model
of a schema S actually corresponds to a database conforming to S, that is, a
database satisfying all the constraints represented by S. A schema is satisfi-
able if it admits a model. A schema S logically implies an inclusion assertion
C1 � C2 (respectively, R1 � R2) if for every model I of S we have that CI

1 ⊆ CI
2

(respectively, RI
1 ⊆ RI

2).
It can be shown that DLRreg is able to capture a great variety of data models

with many forms of constraints. For example, we obtain the entity-relationship
model (including is-a relations on both entities and relations) in a straightfor-
ward way [Calvanese et al. 1995], and an object-oriented data model (extended
with several types of constraints), by restricting the use of existential and uni-
versal quantifications in concept expressions, by restricting the attention to
binary relations, and by eliminating negation, disjunction, and regular expres-
sions. Compared with the relational model, the following observations point out
the kinds of constraints that can be expressed using DLRreg .

—Assertions directly express a special case of typed inclusion dependencies,
namely, the one where no projection of relations is used.

—Unary inclusion dependencies are easily expressible by means of the ∃[$2]P
construct. For example, ∃[$2]P1 � ∃[$3]P2 is a unary inclusion dependency
between attribute 2 of P1 and attribute 3 of P2.

—Existence and exclusion dependencies are expressible by means of ∃ and ¬,
respectively.

—A limited form of functional dependencies can be expressed by means of (≤
1 [$i]R). For example, �1 � (≤ 1 [$i]P) specifies that attribute i functionally
determines all other attributes of P.

—The possibility of constructing complex expressions provides a special form
of view definition. Indeed, the two assertions P � R, R � P (where R is a
complex expression) is a view definition for P. Notably, views can be freely
used in assertions (even with cyclic references), and, therefore, all the above
discussed constraints can be imposed not only on atomic relations, but also on
views. These features make our logic particularly suited for expressing inter-
schema relationships in the context of information integration [Calvanese
et al. 1998b], where it is crucial to be able to state that a certain concept
of a schema corresponds (by means of inclusion or equivalence) to a view in
another schema.

—Finally, regular expressions can be profitably used to represent in the schema
inductively defined structures such as sequences and lists, imposing complex
conditions on them.

One of the distinguishing features of DLRreg is that it is equipped with
a method for checking logical implication. Indeed, DLRreg shares EXPTIME-
completeness of schema satisfiability and logical implication with many ex-
pressive description logics [Calvanese et al. 2001b; Baader et al. 2003] (see
below).

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:8 • D. Calvanese et al.

We point out thatDLRreg supports only special forms of functional and inclu-
sion dependencies. Hence the undecidability result of implication for (general)
functional and inclusion dependencies taken together, shown in Mitchell [1983]
and Chandra and Vardi [1985], does not apply.

We finally observe that DLRreg does not enjoy the finite model property,
similarly to all description logics that include the ability to predicate at least
on binary relations, stating their functionality and navigating them in both
directions [Calvanese and De Giacomo 2003].

2.2 Queries

A query q for a DLRreg schema is a union of conjunctive queries, written (using
Datalog notation) in the form

q(�x) ← conj 1(�x, �y1, �c1) ∨ · · · ∨ conj m(�x, �ym, �cm),

where each conj i(�x, �yi, �ci) is a conjunction of atoms, and �x, �yi (respec-
tively, �ci) are exactly the variables (respectively, constants) appearing in the
ith conjunction.4 Each atom has one of the forms C(t) or R(�t), where

—t and �t are constants or variables in �x, �yi, �ci, and
—C and R are, respectively, concepts and relations expressions over S.

The number of variables of �x is called the arity of q, that is, the arity of the
relation denoted by the query q.

We observe that the atoms in the queries are arbitrary DLRreg concepts and
relations, freely used in the assertions of the schema. This distinguishes our ap-
proach with respect to Donini et al. [1998] and Levy and Rousset [1996], where
no constraints can be expressed in the schema on the relations that appear in
the queries. Note also that regular expressions may appear in concepts and
relations. However, they cannot be used to form binary atoms specifying that
two variables or constants are connected by a path described by the regular
expression [Calvanese et al. 2000].

Given an interpretation I of a schema S, a query q for S of arity n is inter-
preted as the set qI of n-tuples (o1, . . . , on), with each oi ∈ �I , such that, under
the assignment of oi to xi, for i ∈ {1, . . . , n}, the formula

∃�y1.conj 1(�x, �y1, �c1) ∨ · · · ∨ ∃�ym.conj m(�x, �ym, �cm)

evaluates to true in I [Enderton 1972].
If q and q′ are two queries (of the same arity) for S, we say that q is contained

in q′ with respect to S, denoted S |= q ⊆ q′, if qI ⊆ qI for every model I of S.
The query q is satisfiable with respect to S, denoted S �|= q ≡ ∅, if there is a
model I of S such that qI �= ∅.

Query containment (with respect to a schema) is the problem of checking
whether S |= q ⊆ q′, where S, q, and q′ are given as input. Query satisfiability

4Note that the assumption that the variables �x appear in all conjunctions is not a limitation, since
we can always add to a conjunction new atoms �1(x), one for each variable x that does not originally
appear in the conjunction.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:9

Fig. 2. The entity-relationship diagram for the example in Section 2.3.

(with respect to a schema) is the problem of checking whether S �|= q ≡ ∅, where
S and q are given as input.

We provide now an alternative characterization of query containment, on
which we base the technique presented in Section 3. Given a DLRreg schema
S and two queries for S

q(�x) ← conj 1(�x, �y1, �c1) ∨ · · · ∨ conj m(�x, �ym, �cm),

q′(�x) ← conj ′
1(�x, �y′

1, �c′
1) ∨ · · · ∨ conj ′

m′ (�x, �y′
m′ , �c′

m′),

we have that S |= q ⊆ q′ iff there is no model I of S such that, when assigning
suitable objects in �I to �x, �y1, . . . �ym, the formula

(conj 1(�x, �y1, �c1) ∨ · · · ∨ conj m(�x, �ym, �cm)) ∧
¬∃�z1.conj ′

1(�x, �z1, �c′
1) ∧ · · · ∧ ¬∃�zm′ .conj ′

m′ (�x, �zm′ , �c′
m′)

evaluates to true in I. In other words, S |= q ⊆ q′ if and only if there is no
model of S that makes the formula

(conj 1(�a, �b1, �c1) ∨ · · · ∨ conj m(�a, �bm, �cm)) ∧
¬∃�z1.conj ′

1(�a, �z1, �c′
1) ∧ · · · ∧ ¬∃�zm′ .conj ′

m′ (�a, �zm′ , �c′
m′)

true, where �a, �b1, . . . , �bm are Skolem constants, that is, constants not appearing
elsewhere for which the unique name assumption does not hold.

2.3 Example

Consider an application where the departments of a given company can be
controlled by other departments, and sold to companies. Every department is
controlled by at most one department, and by at least one main department,
possibly indirectly. A main department is not controlled by any department. If a
main department is sold, then all the departments controlled by it are also sold.
Finally, if a department is sold, then there is a main department controlling it,
either directly or indirectly, that is also sold.

The basic concepts and relations are shown in Figure 2 in the form of an
entity-relationship diagram. The specification of the application in DLRreg

makes use of the concepts Dept, MainDept, Money, Company, and the rela-
tions CONTROLS, SOLD. In particular, CONTROLS(x, y) means that department
x has control over department y , and SOLD(x, y , z) means that department

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:10 • D. Calvanese et al.

x has been sold to company y at price z. The schema S is constituted by the
following assertions:

SOLD � ($1 : Dept) � ($2 : Company) � ($3 : Money),

CONTROLS � ($1 : Dept) � ($2 : Dept),

Dept � (≤ 1 [$2]CONTROLS) � ∃(CONTROLS|$2,$1)∗.MainDept,

MainDept � Dept � ¬∃[$2]CONTROLS,

MainDept � ∃[$1]SOLD � ∀(CONTROLS|$1,$2)∗.∃[$1]SOLD,

Dept � ∃[$1]SOLD � ∃(CONTROLS|$2,$1)∗.(MainDept � ∃[$1]SOLD).

The first two assertions are used to specify the types of the attributes of the
relations. The third and the fourth assertions specify the basic properties of Dept
and MainDept. It is easy to see that such assertions imply that, in all the models
of S, the set of CONTROLS links starting from an instance m of MainDept form
a tree (which we call CONTROLS-tree) with root m. The role of the transitive
closure (CONTROLS|$2,$1)∗ and the number restrictions is crucial for correctly
representing the above property in the schema. Finally, the last two assertions,
each one stating inclusions between views, specify the company policy for selling
departments. Note again the use of the transitive closure for this purpose.

We now consider two queries for the schema S. The first query, called q, is
used to retrieve all departments that control two departments that have been
sold to the same company and such that one of them controls the other. The
second query, called q′, retrieves all the departments that have been sold. The
queries q and q′ are defined as follows:

q(x) ← CONTROLS(x, y)∧SOLD(y , z, z1)∧CONTROLS(x, w)∧SOLD(w, z, z2)∧
CONTROLS(y , w),

q′(x) ← Dept(x) ∧ SOLD(x, z, z ′).

The schema S imposes that (i) the CONTROLS relation is typed, so that x in q is
a department; (ii) each department is controlled by at most one department;
(iii) when a department is sold, there is a main department (possibly indirectly)
controlling it that is also sold; (iv) when a main department is sold, then all
departments it (possibly indirectly) controls are also sold. From (i)–(iv) it follows
that a department controlling one that is sold, is sold as well. Therefore, in every
model of S each x satisfying q also satisfies q′, and hence S |= q ⊆ q′.

Following the same arguments, it is easy to see that the following query q′′

is unsatisfiable with respect to S:

q′′(x) ← CONTROLS(x, y) ∧ SOLD(y , z1, z2) ∧ ¬ SOLD(x, w1, w2).

3. CHECKING QUERY CONTAINMENT

We address the problem of deciding, given a schema S and two queries q and q′

of the same arity, whether S |= q ⊆ q′. To do so, we make use of a reduction of
query containment to a problem of unsatisfiability in a variant of Propositional
Dynamic Logic, called CPDLg .

The reduction we present is based on the combination of several techniques,
some of which stem from work in the description logic community, and some

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:11

of which are novel to the present research. First, the general idea of reducing
reasoning in description logics to reasoning in propositional dynamic logics has
been widely used since Schild [1991] and De Giacomo and Lenzerini [1994] to
show decidability and complexity results [Calvanese and De Giacomo 2003].
Then, we exploit reification (cf. construction of �S in Section 3.2) to deal with
relations of arbitrary arity in a formalism whose semantic structures are based
on graphs, that is, unary and binary relations only. Such a technique was intro-
duced in Catarci and Lenzerini [1993] and De Giacomo and Lenzerini [1995]
and is at the basis of the tight relationship between description logics and con-
ceptual models for databases [Calvanese et al. 1999; Borgida and Brachman
2003]. Another technique we use is the encoding of formulae denoting single
objects (here called name-formulae, a.k.a. nominals) within standard proposi-
tional dynamic logics. These techniques were introduced in De Giacomo and
Lenzerini [1994, 1996] to deal with knowledge on single individuals in expres-
sive description logics. Here, we directly build on the results in De Giacomo
and Lenzerini [1996] and use the technique to deal with what is essentially a
“disjunction of ABoxes,” instead of a single ABox (cf. construction of �aux and
of

∨m
j=1 �conj j

in Section 3.2). The core technique to deal with containment is
a novelty of this research. It is based on realizing that we can restrict our at-
tention to models in which the only cycles are those formed by explicitly named
individuals, and hence cyclic queries can only be satisfied through these indi-
viduals (cf. construction of

∧m′
j=1 ¬�conj ′

j
in Section 3.2).

In the next subsection, we introduce CPDLg . Then we present the reduction,
prove its correctness, and analyze the computational complexity of the resulting
containment algorithm.

3.1 The Propositional Dynamic Logic CPDLg

Propositional dynamic logics are specific modal logics originally proposed as
a formal system for reasoning about computer program schemas [Fischer and
Ladner 1979]. Since then PDLs have been studied extensively and extended in
several ways (see, e.g., Kozen and Tiuryn [1990] for a survey).

Here, we make use of CPDLg (studied in De Giacomo and Lenzerini [1996] in
the context of description logics), which is an extension of Converse PDL [Kozen
and Tiuryn 1990] with graded modalities [Fattorosi-Barnaba and De Caro
1985]. The syntax of CPDLg is as follows (A denotes an atomic formula, φ an
arbitrary formula, p an atomic program, and r an arbitrary program):

φ ::= A | ¬φ | φ1 ∧ φ2 | 〈r〉φ | [p]≤kφ | [p−]≤kφ,

r ::= p | ε | r1; r2 | r1 ∪ r2 | r∗ | φ? | r−.

We use the standard abbreviations, namely, T for true, F for false, ∨ for disjunc-
tion, ⇒ for material implication, and [r]φ for ¬〈r〉¬φ.

As usual for PDLs, the semantics of CPDLg is based on Kripke structures
M = (S, ·M), where S is a set of states and ·M is a mapping interpreting each
atomic formula A as a subset AM of S and each atomic program p as a binary
relation pM over S. The mapping ·M is then extended to arbitrary formulae
and programs in such a way that the conditions in Figure 3 are satisfied.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:12 • D. Calvanese et al.

Fig. 3. Semantic rules for CPDLg .

It can be shown that CPDLg has typical properties of PDLs, in particular the
connected-model property (if a formula has a model, then it has one that is
connected when viewing it as a graph), the tree-model property (if a formula
has a model, then it has one that is a tree when viewing it as an undirected
graph), and EXPTIME-completeness of checking satisfiability of a formula (with
the assumption that numbers in graded modalities are represented in unary)
[De Giacomo and Lenzerini 1996; Calvanese et al. 2001b; Baader et al. 2003].

In the following we make use of two notions related to CPDLg , namely, the
Fischer-Ladner closure of a formula and the prefix of a program. Given a CPDLg

formula φ, the Fischer-Ladner closure CL(φ) of φ is defined as the smallest set
C of formulae containing φ and such that

¬φ′ ∈ C implies φ′ ∈ C,
φ′ ∈ C implies ¬φ′ ∈ C (if φ′ �= ¬φ′′),
φ1 ∧ φ2 ∈ C implies φ1, φ2 ∈ C,
〈r〉φ′ ∈ C implies φ′ ∈ C,
[p]≤kφ ∈ C implies φ′ ∈ C,
[p−]≤kφ ∈ C implies φ′ ∈ C,
〈r1; r2〉φ′ ∈ C implies 〈r1〉〈r2〉φ′ ∈ C,
〈r1 ∪ r2〉φ′ ∈ C implies 〈r1〉φ′, 〈r2〉φ′ ∈ C,
〈r∗〉φ′ ∈ C implies 〈r〉〈r∗〉φ′ ∈ C,
〈φ′?〉φ′′ ∈ C implies φ′ ∈ C.

Given a CPDLg program r, the set Pre(r) of prefixes of r is defined as follows:

Pre(p) = {ε, p},
Pre(p−) = {ε, p−},
Pre(r1; r2) = Pre(r1) ∪ {r1; r ′

2 | r ′
2 ∈ Pre(r2)},

Pre(r1 ∪ r2) = Pre(r1) ∪ Pre(r2),
Pre(r∗

1) = {r∗
1 ; r ′

1 | r ′
1 ∈ Pre(r1)},

Pre(φ?) = {ε, φ?}.
ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:13

Fig. 4. Mapping σ (·) from DLRreg to CPDLg .

3.2 Reduction of Query Containment to Unsatisfiability in CPDLg

Our aim is to reduce query containment to a problem of unsatisfiability in CPDLg .
To this end, we construct a CPDLg formula starting from an instance of the query
containment problem. More precisely, if we have to check whether there is no
model of S that makes the formula

(conj 1(�a, �b1, �c1) ∨ · · · ∨ conj m(�a, �bm, �cm)) ∧
¬∃�z1.conj ′

1(�a, �z1, �c′
1) ∧ · · · ∧ ¬∃�zm′ .conj ′

m′ (�a, �zm′ , �c′
m′)

true, where �a, �b1, . . . , �bm are Skolem constants, we check the unsatisfiability
of the CPDLg formula

�S �|=q⊆q′ = �S ∧
(

m∨
j=1

�conj j

)
∧

(
m′∧
j=1

¬�conj ′
j

)
∧ �aux,

constructed as described below.

3.2.1 �S : Encoding of S. �S is the translation of S into a CPDLg formula
that is based on reification of n-ary relations, that is, a tuple in a model of S is
represented in a model of �S �|=q⊆q′ by a state having one functional link fi for
each tuple component $i. Let nmax be the maximum arity of relations in S. The
formula �S makes use of the mapping σ (·) from DLRreg expressions to CPDLg

formulae defined in Figure 4. The atomic formula �1 denotes those states that
represent objects, while each atomic formula �n, with n ∈ {2, . . . , nmax}, denotes
those states that represent tuples of arity n. We denote with U the program
(create∪ f1∪· · ·∪ fnmax ∪create−∪ f −

1 ∪· · ·∪ f −
nmax

)∗, where create, f1, . . . , fnmax are
all atomic programs used in �S �|=q⊆q′ . Hence, U is the so-called master modality
[Blackburn et al. 2001], which in our case, due to the connected-model property
of CPDLg , represents the universal accessibility relation. Therefore, for a given
interpretation, [U]φ expresses that φ holds in every state, and 〈U 〉φ expresses
that φ holds in some state.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:14 • D. Calvanese et al.

�S is the conjunction of the following formulae:

[U](�1 ∨ · · · ∨ �nmax), (1)

[U][fi]≤1T, for each i ∈ {1, . . . , nmax}, (2)

[U](�n ≡ 〈 f1〉�1 ∧ · · · ∧ 〈 fn〉�1 ∧ [fn+1]F), for each n ∈ {2, . . . , nmax}, (3)

[U]([fi]F ⇒ [fi+1]F), for each i ∈ {1, . . . , nmax}, (4)

[U](A ⇒ �1), for each atomic concept A, (5)

[U](P ⇒ �n), for each atomic relation P of arity n, (6)

[U](σ (C1) ⇒ σ (C2)), for each assertion C1 � C2 in S, (7)

[U](σ (R1) ⇒ σ (R2)), for each assertion R1 � R2 in S. (8)

Formula (1) above expresses that each state represents an object or a tuple
of arity between 2 and nmax . Formula (2) expresses that all programs fi are
functional (i.e., deterministic). Formulae (3) and (4) express that the states
representing tuples of arity n are exactly those connected through programs
f1, . . . , fn to states representing objects, and not connected via programs fi,
with i > n, to any state. Formulae (5) and (6) express that states satisfying
atomic propositions corresponding to atomic concepts (respectively, atomic re-
lations of arity n) are states representing objects (respectively, tuples of arity n).
Finally, formulae (7) and (8) encode the assertions in S.

3.2.2 �conj j
: Encoding of Each conj j (�a, �b, �c j). For each j ∈ {1, . . . , m}, the

encoding �conj j
of conj j (�a, �b j , �c j) makes use of special atomic propositions,

called name-formulae, whose distinguishing properties are specified by �aux

(see later). Specifically, one name-formula Nt is introduced for each term t in
�a, �b j , �c j , and one name-formula N�t for each tuple �t such that for some R,
R(�t) appears in conj j (�a, �b j , �c j). A name-formula assigns a name to a term t
(respectively, tuple �t), which allows for identifying in a model certain states
which correspond to t (respectively, reified counterpart of �t). The distinguish-
ing properties of name-formulae guarantee that these states share some crucial
properties that allow us to isolate a single state as a representative of t (respec-
tively, �t).

Once we have name-formulae in place, we define �conj j
as the conjunction of

the following formulae:

(1) for each atom C(t) in conj j (�a, �b j , �c j)

[U](Nt ⇒ σ (C)),

(2) for each atom R(�t) in conj j (�a, �b j , �c j)

[U](N�t ⇒ σ (R)).

Intuitively, each formula (1) and (2) expresses that the states satisfying the
name-formula corresponding to a term (respectively, tuple) appearing in an
atom, satisfy also the formula corresponding to the predicate of the atom.

3.2.3 �conj ′
j
: Encoding of Each ∃�z j . conj j

′(�a, �z j , �c′
j). Now consider a j ∈

{1, . . . , m′}. We construct the formula �conj ′
j

as a disjunction of formulae, one

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:15

for each possible partition of the variables �z j in ∃�z j .conj ′
j (�a, �z j , �c′

j). More pre-
cisely, to build one such formula, we consider a partition π of the variables
�z j . Then, for each equivalence class in the partition we choose a variable as
a representative, and substitute in ∃�z j .conj ′

j (�a, �z j , �c′
j) all other variables in

the same equivalence class by the representative, thus obtaining a formula
∃ �wπ .conj ′

j (�a, �wπ , �c′
j). Now, from such a formula we build a corresponding CPDLg

formula by making use of a special graph, called a tuple-graph, which intuitively
reflects the dependencies between variables and tuples resulting from the ap-
pearance of the variables in the atoms of ∃ �wπ .conj ′

j (�a, �wπ , �c′
j).

5 A tuple-graph
is a directed graph with nodes labeled by CPDLg formulae and edges labeled by
CPDLg programs, formed as follows:

—There is one node t for each term t in �a, �w, �c j , and one node �t for each tuple �t
such that R(�t) appears in ∃ �wπ .conj ′

j (�a, �wπ , �c′
j). Each node t is labeled by all

σ (C) such that C(t) appears in ∃ �wπ .conj ′
j (�a, �wπ , �c′

j). Each node �t is labeled
by all σ (R) such that R(�t) appears in ∃ �wπ .conj ′

j (�a, �wπ , �c′
j).

—There is one edge labeled by fi from the node �t = (t1, . . . , tn) to the node ti,
i ∈ {1, . . . , n}, for each tuple �t such that R(�t) appears in ∃ �wπ .conj ′

j (�a, �wπ , �c′
j).

Notice that dividing the variables �z j in ∃�z j .conj ′
j (�a, �z j , �c′

j) in all possible
ways into equivalence classes and replacing equivalent variables by one rep-
resentative, corresponds to introducing in all possible ways equalities between
variables. Such equalities allow us to take into account that a cycle in the tuple
graph can in fact be eliminated, and become simply a chain, when different vari-
ables are assigned the same object. As will become clear in the following, the
distinction between variables appearing in cycles in the tuple-graph and those
that do not, is indeed necessary for the correctness of the proposed technique
for query containment under constraints.

In the following, we call formula-template a CPDLg formula in which formula-
placeholders occur that later will be substituted by actual formulae. From the
tuple-graph G of ∃ �wπ .conj ′

j (�a, �wπ , �c′
j), we build a CPDLg formula-template δ,

and to do so we have to consider that in general the tuple-graph is composed
of several connected components. For the ith connected component we build
a formula-template δi by choosing a starting node t0 (corresponding to a term)
and performing a depth-first visit of the corresponding component and building
the formula in a postorder fashion. We describe the construction by defining
a visiting function V , which, given a node of the tuple-graph G, returns the
corresponding formula-template, and as a side effect marks the nodes of the
graph that it visits.

—If u = t, then V (t) marks t, and returns the conjunction of
(i) t itself, used as a placeholder, and every formula labeling the node t;

(ii) for each edge (�t, t) labeled by fi (i.e., t = ti in �t) such that �t is not marked
yet, the formula 〈 f −

i 〉V (�t).

5The tuple-graph is similar to the graph used in Chekuri and Rajaraman [1997] to detect cyclic
dependencies between variables.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:16 • D. Calvanese et al.

—If u = �t = (t1, . . . , tn), then V (�t) marks �t, and returns the conjunction of
(i) �t itself, used as a placeholder, and every formula labeling the node �t;

(ii) for each edge (�t, ti) labeled by fi, such that ti is not marked yet, the
formula 〈 fi〉V (ti);

(iii) for each edge (�t, ti) labeled by fi, such that ti is already marked, the
formula 〈 fi〉ti.

Then the formula-template δi for the ith connected component is defined as
V (t0), where t0 is the starting node chosen for the visit.

The formula-template δ for the whole tuple-graph G, composed of � ≥ 1
connected components, is

〈U 〉δ1 ∧ · · · ∧ 〈U 〉δ�,

where δ1, . . . , δ� are the formula-templates corresponding to all the connected
components in the tuple-graph G.

We next define the notion of G-substitution for the formula-template δ,
which allows us to obtain from δ a CPDLg formula. Let G be the tuple-graph
for ∃ �wπ .conj ′

j (�a, �wπ , �c′
j), and δ as above, a G-substitution for δ is a substitution

for the placeholders of δ that replaces:

(i) each placeholder �t by �n, where n is the arity of the tuple �t;
(ii) each placeholder t in �a, �c j by the name-formula Nt ;

(iii) each placeholder w corresponding to a variable not occurring in a cycle in
the tuple-graph by �1;

(iv) each placeholder w corresponding to a variable occurring in a cycle in the
tuple-graph by one of the name-formulae Nt corresponding to a term in �a,
�b1, . . . , �bm, �c1, . . . , �cm occurring in q.

Notice that there are several G-substitutions for a formula-template δ, one for
each possible way of choosing (possibly Skolem) constants according to (iv).
Hence, the number of such G-substitutions is O(�

�′
2

1), where �1 is the number of
variables and constants in q, and �′

2 is the number of variables occurring in a
cycle in the tuple-graph G.

We are now ready to define the CPDLg formula ϕπ corresponding to a parti-
tion π of the variables �z j : such a formula ϕπ is the disjunction of all formulae
obtained by applying to the formula-template δ a possible G-substitution (note
that both δ and G are specific for the partition π .)

Since ϕπ corresponds to one possible partition of the variables �z j , we obtain
the formula �conj ′

j
as the disjunction of all formulae ϕπ , one for each possible

partition π of the variables �z j . The number of such disjuncts is O(2�2), where
�2 is the number of variables �z j . Therefore, the total number of disjuncts for
�conj ′

j
is O(�O(�2)

1).

3.2.4 �aux: Encoding of Constants and Variables. Let �′ = �S ∧
(
∨m

j=1 �conj j
) ∧ (

∧m′
j=1 ¬�conj ′

j
). �aux is formed by the conjunction of

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:17

(1) the formula 〈create〉N , for each name-formula N appearing in �′, which
expresses the existence of a state satisfying N ;

(2) one formula of the form [U](Nci ⇒ ¬Nc j) for each pair of distinct constants
ci, c j appearing in the queries (not Skolem constants);

(3) for each name-formula N�t corresponding to a tuple �t = (t1, . . . , tn) appearing
in

∨m
j=1 �conj j

(observe that we do not have any name-formula for tuples in∧m′
j=1 ¬�conj ′

j
)

[U](N�t ≡ 〈 f1〉Nt1 ∧ · · · ∧ 〈 fn〉Ntn ∧ [fn+1]F),
[U](Nti ⇒ (〈 f −

i 〉N�t ∧ [f −
i]≤1N�t)), for each i ∈ {1, . . . , n},

these conjuncts express the relationships between the name-formulae for
tuples and those for tuple components;

(4) one formula of the form [U](N ∧ φ ⇒ [U](N ⇒ φ)) for each name-formula
N and each formula φ such that
—φ ∈ CL(�′),
—φ = 〈r〉φ′ with 〈r〉φ′ ∈ CL(�′), and
—φ = 〈r ′; p〉N ′ with r ′ ∈ Pre(r), p = f | f −, and r, f , N ′ occurring in

CL(�′),
where r is defined inductively as follows:

p = p; (∧i¬Ni)?,

r1; r2 = r1; r2,

r1 ∪ r2 = r1 ∪ r2,

r∗
1 = r1

∗,

φ? = φ?.

The role of the conjuncts (4) in �aux is to enforce that, in every model of
�S �|=q⊆q′ , for each name-formula N , one representative state can be singled out
among those satisfying N . This would be trivially obtained if we could force
all these states to satisfy exactly the same formulae of the logic. �aux forces a
weaker condition, namely, that these states satisfy the same formulae in the
finite set (whose size is polynomial wrt �′) described above. Theorem 3.3 shows
that this is sufficient for our purposes.

3.2.5 Example. We illustrate the encoding of the containment problemS |=
q ⊆ q′ into unsatisfiability of the CPDLg formula �S �|=q⊆q′ by means of a simple
example.

Consider two queries

q(x1, x2) ← p(x1, x2),

q′(x1, x2) ← r(x1, x2, z),

over a schema S such that S �|= q ⊆ q′. Let �S be the formula encoding S,
�conj the formula encoding p(a1, a2), where a1, a2 are two Skolem constants,
and �aux as specified above. Figure 5 schematically shows a model of the for-
mula �S �|=q⊆q′ that represents a counterexample to the containment. The model
contains a state s�t, where �t = (a1, a2), in which p holds, that, being connected to

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:18 • D. Calvanese et al.

Fig. 5. A model of �S �|=q⊆q′ .

sa1 and sa2 by means of f1 and f2, respectively, represents the tuple �t = (a1, a2),
which satisfies p. The objects sa1 and sa2 satisfy the name-formulae Na1 and
Na2 , respectively, and there are no other objects satisfying such name-formulae.
From sa1 and sa2 the model has a tree-like structure. We will call such model
pseudotree admissible (see later). Note that �conj is satisfied due to the part
of the model involving sa1 , sa2 , and s�t, while �aux is trivially satisfied since Na1 ,
Na2 , and N�t are true in just one state of the model.

Now, consider the formula-template for ∃z.r(a1, a2, z):

〈U 〉(a1 ∧ 〈 f −
1 〉(�t′ ∧ r ∧ 〈 f2〉a2 ∧ 〈 f3〉z)),

where �t′ = (a1, a2, z). From such a formula-template we get the formula �conj ′ =
〈U 〉(Na1 ∧〈 f −

1 〉(�t′ ∧r ∧〈 f2〉Na2 ∧〈 f3〉�1)). Note that, s�t has no outgoing f3 edge,
and hence �3 is false in s�t; also Na1 and Na2 are true, respectively, in sa1 and sa2

only. Hence, the formula ¬�conj ′ = [U](Na1⇒[f −
1]((�3∧r)⇒([f2]Na2∧[f3]¬�1)))

is true in sroot . Therefore, in the model there is no state that both represents a
tuple (a1, a2, z), for some z, and that satisfies r.

3.3 Correctness of the Reduction

We now prove the correctness of the reduction of query containment to satisfia-
bility in CPDLg based on the encoding presented above. We first prove soundness,
that is, if �S �|=q⊆q′ is unsatisfiable, then S |= q ⊆ q′ (Theorem 3.2), and then
completeness, that is, if �S �|=q⊆q′ is satisfiable, then S �|= q ⊆ q′ (Theorems 3.3
and 3.4).

To prove soundness, we need a preliminary notion. We say that a tuple-
graph G is satisfied in an interpretation M for �S �|=q⊆q′ if there exists a G-M-
homomorphism η, that is, a mapping from the nodes of G to states of M such
that

—if a node u of G is a (possibly Skolem) constant, then η(u) ∈ NM
u ;

—if a node u of G is labeled by a formula φ, then η(u) ∈ φM;
—if an edge (u, u′) of G is labeled by a program f , then (η(u), η(u′)) ∈ f M.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:19

Given a formula-template δ corresponding to a tuple-graph G and a G-
substitution θ of its placeholders, we denote by δθ the formula obtained from δ

by substituting the placeholders according to θ .

LEMMA 3.1. Let G be a tuple-graph, δ the corresponding formula-template,
and M a CPDLg interpretation. If there exists a G-substitution θ such that (δθ)M

is not empty, then G is satisfied in M.

PROOF. If (δθ)M is not empty, then it is possible to define a mapping η as
follows: for each node t (respectively, �t) in G, let st (respectively, s�t) be the state of
M that is used in satisfying δθ in the position corresponding to t (respectively, �t);
then η(t) = st (respectively, η(�t) = s�t). We show that η is a G-M-homomorphism:

—if t is a (possibly Skolem) constant, then in δθ we have substituted the place-
holder t with Nt , and hence st ∈ NM

t ;

—if t (respectively, �t) is labeled by φ in G, then in δ, in conjunction with the
placeholder t there is the formula φ, and hence st ∈ φM (respectively, s�t ∈ φM).

—Finally, if an edge (�t, t) is labeled by a program fi in G, then in δ either in
conjunction with t we have 〈 f −

i 〉�t, or in conjunction with �t we have 〈 fi〉t, and
hence (s�t, t) ∈ f M

i .

THEOREM 3.2. Let S be a schema, q, q′ two queries of the same arity, and
�S �|=q⊆q′ the formula obtained as specified above. If �S �|=q⊆q′ is unsatisfiable,
then S |= q ⊆ q′.

PROOF. We show that, if S �|= q ⊆ q′ then �S �|=q⊆q′ is satisfiable. To this end,
we consider a model I = (�I , ·I) of S that makes the following formula true:

(conj 1(�a, �b1, �c1) ∨ · · · ∨ conj m(�a, �bm, �cm)) ∧
¬∃�z1.conj ′

1(�a, �z1, �c′
1) ∧ · · · ∧ ¬∃�zm′ .conj ′

m′ (�a, �zm′ , �c′
m′).

From I, we build a reified CPDLg interpretation M = (S, ·M) for �S �|=q⊆q′ as
follows:

(a) S = �I ∪ {sroot} ∪ ⋃
n∈{2,... ,nmax }{s�d | �d ∈ �I

n};
(b) �M

n = {s(d1,... ,dn) | (d1, . . . , dn) ∈ �I
n}, for each n ∈ {2, . . . , nmax };

(c) f M
i = {(s(d1,... ,dn), di) | (d1, . . . , dn) ∈ �I

n}, for each n ∈ {2, . . . , nmax } and
each i ∈ {1, . . . , n};

(d) PM = {s(d1,... ,dn) | (d1, . . . , dn) ∈ PI}, for each atomic relation P;
(e) �M

1 = �I ∪ {sroot};
(f) AM = AI , for each atomic concept A;
(g) NM

t = {d }, for the element domain d = tI , for each (possibly Skolem)
constant t in �a, �b1, . . . , �bm, �c1, . . . , �cm, �c′

1, . . . , �c′
m;

(h) NM
�t = {s�d}, for the tuple �d = �tI of element domains, for each tuple �t of (pos-

sibly Skolem) constants occurring in conj 1(�a, �b1, �c1)∨· · ·∨conj m(�a, �bm, �cm);
(i) createM = {(sroot , s) | s ∈ NM, for some name formula N }.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:20 • D. Calvanese et al.

Next we show that �S �|=q⊆q′ is satisfiable by showing that sroot ∈ �M
S �|=q⊆q′ .

—By construction of M, the interpretation of �n (items (b) and (e)), for
n ∈ {1, . . . , nmax}, and the interpretation of fi (item (c)), for i ∈ {2, . . . , nmax},
satisfy the conjuncts (1)–(4) of �S , while the interpretation of the atoms
P and A (items (d) and (f)) corresponding to atomic relations and atomic
concepts, respectively, satisfy the conjuncts (5)–(8), considering that I is
a model of S. Hence, we have that all states of M, including sroot , satisfy
�S .

—By items (g) and (h), all name-formulae are interpreted as singletons; hence
part (4) of the definition of �aux is trivially satisfied; by items (g), (h), and (c),
part (3) is satisfied; the interpretation of constants in I guarantees that the
corresponding name-formulae are disjoint in M (item (g)); hence part (2)
is also satisfied; finally, by item (i), all instances of the name-formulae are
connected via create to sroot ; hence part (1) is satisfied as well.

—By items (f) and (d), conditions (1) and (2) of the definition of �conj j
are

satisfied if and only if conj j (�a, �b j , �c j) is true in I; hence, considering
that conj 1(�a, �b1, �c1) ∨ · · · ∨ conj m(�a, �bm, �cm) is true I, we have that sroot ∈
(
∨m

j=1 �conj j
)M.

It remains to show that sroot �∈ �M
conj ′

j
, for each j ∈ {1, . . . , m′}. Suppose not,

that is, suppose that sroot ∈ �M
conj ′

j
, for some j ∈ {1, . . . , m′}. Then there exists

a partition π of the variables �z j in ∃�z j .conj ′
j (�a, �z j , �c′

j) such that sroot ∈ ϕM
π ,

where ϕπ is the formula obtained by considering the formula-template δπ corre-
sponding to the tuple-graph G associated to ∃�z j .conj ′

j (�a, �z j , �c′
j) and applying

to it a G-substitution θ , that is, ϕπ = δπθ . Then we have sroot ∈ (δθ)M, and by
Lemma 3.1 this implies that the tuple-graph G is satisfied in M. Hence, by
items (b)–(g) of the construction of M, we would get that ∃�z j .conj ′

j (�a, �z j , �c′
j)

is true in I, contradicting the fact that ¬∃�z j .conj ′
j (�a, �z j , �c′

j) is true
in I.

Next, we prove completeness of the reduction. In particular, we show that if
�S �|=q⊆q′ is satisfiable, then it has a model of a specific form (called pseudotree
admissible), from which a model of S that is a counterexample to the contain-
ment can be derived.

We need to introduce the following notions. We say that a model of �S �|=q⊆q′

is tuple-admissible if there is no pair of states that represent the same reified
tuple. We say that a model of �S �|=q⊆q′ is admissible if it is tuple-admissible
and each name-formula is true in exactly one state. We say that a model M =
(S, ·M) of �S �|=q⊆q′ is a pseudotree-admissible model if it is admissible and has
the following form:

—it has a distinguished state sroot , and K not necessarily distinct states
sN1 , . . . , sNK , one for each name-formula Ni, such that NM

i = {sNi };
—createM = {(sroot , sNi) | i ∈ {1, . . . , K }};
—each maximal connected component of M \ ({sroot} ∪ {sNi | i ∈ {1, . . . , K }}) is

a tree, when viewed as an undirected graph.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:21

Notice that the subgraph induced by M ∩ {sNi | i ∈ {1, . . . , K }} is an arbitrary
graph, instead.

The following theorem shows that, with respect to satisfiability of �S �|=q⊆q′ ,
one can restrict the attention to pseudotree-admissible models.

THEOREM 3.3. Let S be a schema, q, q′ two queries of the same arity, and
�S �|=q⊆q′ the formula obtained as specified above. If �S �|=q⊆q′ is satisfiable then it
has a pseudotree-admissible model.

PROOF. If �S �|=q⊆q′ is satisfiable, then by the tree-model property of CPDLg ,
�S �|=q⊆q′ admits a tree-model M = (S, ·M), in which obviously there is no pair of
states that represent the same reified tuple, and is therefore tuple admissible.
Let sroot ∈ �M be the root of M. We transform M into a new model M′′ =
(S′′, ·M′′

) with S′′ ⊆ S, which is pseudotree admissible. M′′ is obtained from M
by modifying the tree-structure of M so that all name-formulae are interpreted
as singletons.

In particular, to obtain M′′ we proceed in two steps. First, we define a model
M′ = (S′′, ·M′′

) by choosing, for each name-formula Ni, i ∈ {1, . . . , K }, a state
sNi , among the states s ∈ NM

i such that (sroot , s) ∈ createM, and then defining

(a) createM
′ = {(sroot , sNi) ∈ createM | i ∈ {1, . . . , K }};

(b) f M′ = (f M \ ({(sNi , s) ∈ f M | s ∈ NM
j , i, j ∈ {1, . . . , K }} ∪

{(s, sN j) ∈ f M | s ∈ NM
i , i, j ∈ {1, . . . , K }}))

∪ {(sNi , sN j) | (sNi , s) ∈ f M, s ∈ NM
j , i, j ∈ {1, . . . , K }},

for each atomic program f corresponding to a tuple-component, that is,
for all atomic programs except create;

(c) AM′ = AM ∩ S′, for each atomic formula A including name formulae;
(d) S′ = {sroot} ∪ {s ∈ S | (sroot , s) ∈ createM

′ ◦ (
⋃

f (f M′ ∪ (f −)M
′
))∗}.

The construction above chooses one representative sNi for each name-formula
Ni among those connected through create to sroot (item (a)). Consider a pair
N1, N2 of name-formulae related through f . This means that N1 is a name-
formula denoting a tuple �t, and N2 is a name-formula denoting a component t
of �t. Consider the representatives sN1 and sN2 . By conjuncts (2) of �S , we have
that sN1 has a single f -successor s2, which is an instance of N2. Symmetrically,
by conjuncts (3) of �aux, we have that sN2 has a single f -predecessor s1 that is
an instance of N1. Item (b) in the construction above disconnects sN1 from s2

and sN2 from s1, thus cutting away the subtrees rooted at s1 and s2 (we are only
interested in the maximally connected component of the Kripke structure that
includes sroot , cf. item (d)), and connects sN1 via f to sN2 . Observe that, in doing
so, we preserve the number of outgoing f -edges of sN1 and of incoming f -edges
of sN2 .

It is possible to show, by using the construction in Lemma 5 of [De Giacomo
and Lenzerini 1996],6 that for each φ ∈ CL(�S �|=q⊆q′) and for each state s ∈ S ′

6The construction in De Giacomo and Lenzerini [1996] was phrased in the Description Logic CIQ,
and used to reduce ABox reasoning to satisfiability. CIQ and CPDLg can be seen as a syntactic
variant one of the other, and our handling of constants, through name-formulae, in CPDLg is closely

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:22 • D. Calvanese et al.

we have that s ∈ φM′
if and only if s ∈ φM. Hence, since �S �|=q⊆q′ ∈ CL(�S �|=q⊆q′),

we get that sroot ∈ (�S �|=q⊆q′)M
′
.

From M′ we get M′′ by restricting the interpretation of each name-formula
Ni to the representative sNi only, that is,

NM′′
i = {sNi }.

Notice that sroot ∈ �M′′
S , since name-formulae do not appear in �S . Also,

sroot ∈ (
∨m

j=1 �conj j
)M

′′
, since

∨m
j=1 �conj j

can be satisfied using only the rep-
resentatives for name-formulae. Also, sroot�

M′′
aux, in particular part (4) is triv-

ially satisfied since in M′′ name-formulae are interpreted as singletons. Also,
sroot ∈ (

∧m′
j=1 ¬�conj ′

j
)M

′′
since this holds already for M′, and each ¬�conj ′

j
is

a disjunction in which name-formulae occur only negatively. Hence, restrict-
ing the extension of name-formulae does not restrict the extension of such a
formula.

For pseudotree-admissible models, one can prove the “converse” of
Theorem 3.2.

THEOREM 3.4. Let S be a schema, q, q′ two queries of the same arity, and
�S �|=q⊆q′ the formula obtained as specified above. If �S �|=q⊆q′ has a pseudotree-
admissible model then S �|= q ⊆ q′.

PROOF. We show how to construct from a pseudotree-admissible model M
of �S �|=q⊆q′ a model I of S in which there is a tuple �a of objects such that �a ∈ qI

and �a �∈ qI . I is built as follows:

—�I = �M
1 ;

—PI = {(s1, . . . , sn) | ∃s′ ∈ PM.((s′, si) ∈ f M
i , for i ∈ {1, . . . , n})}, for each

atomic relation P of arity n, including �n;
— AI = AM, for each atomic concept A, including �1;
—tI = s ∈ NM

t , for each constant and Skolem constant t in q and q′.

To show that I does the job, we have to show that

—I is a model of S;
—conj 1(�a, �b1, �c1) ∨ · · · ∨ conj m(�a, �bm, �cm) is true in I, that is, there is one j ∈

{1, . . . , m} such that conj j (�a, �b j , �c j) is true in I;
—¬∃�z1.conj ′

1(�a, �z1, �c′
1) ∧ · · · ∧ ¬∃�zm′ .conj ′

m′ (�a, �zm′ , �c′
m′) is true in I, that is, for

each j ∈ {1, . . . , m′}, we have that ¬∃�z j .conj ′
j (�a, �z j , �c′

j) is true in I.

To show that I is a model of S we can exploit the fact that M = (S, ·I) is a
model of �S and that, since it is admissible, there is no pair of states in S that
represent the same reified tuple. By construction of I it is easy to see that all
assertions in S are true in I.

related to handling ABoxes in CIQ, the only difference being that for constants in the ABoxes the
unique name assumption is made, while here we do not make such an assumption. However, the
unique name assumption played no role in the construction of De Giacomo and Lenzerini [1996];
hence that construction works in our case as well.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:23

To show that there is one j ∈ {1, . . . , m} such that conj j (�a, �b j , �c j) is true
in I, we exploit that M is an admissible model of �S �|=q⊆q′ . Hence there is a
j ∈ {1, . . . , m} such that M is an admissible model of �conj j

, and since each
name-formula is true in exactly one state, the claim easily follows.

It remains to show that for each j ∈ {1, . . . , m′}, we have that
¬∃�z j .conj ′

j (�a, �z j , �c′
j) is true in I. To do so, we show that, if for some assignment

α of the variables �z j = (z1, . . . , zn) to elements �d = (d1, . . . , dn) in �I , we have
that conj ′

j (�a, �z, �c j) is true in I, then we get a contradiction to M being a model
of ¬�conj ′

j
.

By considering which variables have been assigned by α to the same domain
elements in �d, we get a partition π of the variables in �z j . Corresponding to
such a partition, we have considered in the construction of �conj ′

j
the formula

∃ �wπ .conj ′
j (�a, �wπ , �c′

j), obtained by replacing all variables in the same equiva-
lence class by a representative. Observe that, as a result, distinct variables in
�wπ are assigned distinct domain elements in �d.

Observe that, since M is a pseudotree-admissible model, the only cycles
that can be present in M are formed by the domain elements that interpret
the name-formulae corresponding to the (Skolem) constants in �a, �b1, . . . , �bm,
�c1, . . . , �cm. Let G be the tuple-graph obtained from ∃ �wπ .conj ′

j (�a, �wπ , �c′
j). Since

I keeps the pseudotree structure of M, if G contains cycles, the assignment α

must assign each variable w in a cycle to an element d that interprets one of
the (Skolem) constants t in �a, �b1, . . . , �bm, �c1, . . . , �cm. It follows, by definition of
I, that d ∈ NM

t .
Now, let δ be the formula-template corresponding to G. From α, we define a

G-substitution θ for δ as the G-substitution that replaces (cf. item (iv) in the
definition of G-substitution) each placeholder w corresponding to a variable
occurring in a cycle in the tuple-graph by the name-formulae Nt , where w is
assigned by α to d and d ∈ NM

t . By considering the construction of the formula-
template δ from G and the fact that ∃ �wπ .conj ′

j (�a, �wπ , �c′
j) is true in I with the

assignment α, it can be shown that sroot ∈ (δθ)M. But then, since δθ is one of
the disjuncts forming �conj ′

j
, we have that sroot ∈ (�conj ′

j
)M. Hence we get a

contradiction.

The following theorem, which is a consequence of Theorems 3.2, 3.3 and 3.4,
summarizes the correctness of our reduction.

THEOREM 3.5. Let S be a schema, q, q′ two queries of the same arity, and
�S �|=q⊆q′ the formula obtained as specified above. Then S |= q ⊆ q′ if and only if
�S �|=q⊆q′ is unsatisfiable.

3.4 Complexity of Query Containment

Theorem 3.5 directly provides an algorithm for checking query containment in
our setting, and therefore shows that the problem is decidable. We analyze now
the computational complexity of such an algorithm for query containment.7

7In the results presented here, we assume unary coding of numbers in number restrictions.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:24 • D. Calvanese et al.

THEOREM 3.6. Let S be a schema and q and q′ two queries. Then, deciding
whether S |= q ⊆ q′ can be done in time 2p(|S|+|q|+|q′|·��2

1), where |S|, |q|, and |q′|
are, respectively, the sizes of S, q, and q′, �1 is the sum of the number of variables
and constants in q, and �2 is the number of existentially quantified variables in
q′.

PROOF. The correctness of the encoding of query containment S |= q ⊆
q′ into unsatisfiability of �S �|=q⊆q′ is sanctioned in Theorem 3.5. With regard
to complexity, since satisfiability in CPDLg is EXPTIME-complete, it follows that
query containment can be done in time 2p(|�S �|=q⊆q′ |). It is easy to verify that
|�S �|=q⊆q′ | = O(|S| + |q| + |q′| · �

O(�2)
1).

The previous theorem provides, for the problem of checking whether S |=
q ⊆ q′, a single exponential upper bound in the size of S and of q, and a double
exponential upper bound in the size of q′ (note that |q′| is an upper bound for �2).
The single exponential upper bound in the size of S and of q is tight. Indeed,
it follows from EXPTIME-hardness of satisfiability in CPDLg (in fact plain PDL
[Fischer and Ladner 1979]) and from the fact that any CPDLg formula can be
expressed as a DLRreg concept. EXPTIME-hardness in S holds even in the case
where S does not contain regular expressions. Indeed, the formulae used in
the EXPTIME-hardness proof of satisfiability in PDL [Fischer and Ladner 1979],
can be expressed as assertions in DLRreg not involving regular expressions.
It is still open whether the double-exponential upper bound in the size of q′ is
tight.

The double exponential upper bound in the size of q′ is due to the expo-
nential blowup in the size of �S �|=q⊆q′ . By analyzing the reduction presented
in Section 3.2, one can observe that such an exponential blowup is only due
to those existentially quantified variables in q′ that appear inside a cycle in
the tuple-graph for q′. Hence, when the tuple-graph for q′ does not contain
cycles, we have that |�S �|=q⊆q′ | = O(|S| + |q| + |q′|), and query containment
can be checked in time 2p(|S|+|q|+|q′|). A relevant case when this occurs is when
(the tuple-graph for) the query on the right-hand side has the structure of a
tree.

COROLLARY 3.7. Let S be a schema, q and q′ two queries of the same arity,
and let q′ have the structure of a tree. Then deciding whether S |= q ⊆ q′ can be
done in time 2p(|S|+|q|+|q′|).

Observe that this gives us an EXPTIME-completeness result for containment
of an arbitrary query in a tree-structured one wrt a schema.

Query satisfiability can be considered as a special case of query containment.
Indeed, given a schema S, a query q is satisfiable wrt S if and only if it is not
contained in the empty query wrt S. The empty query can be expressed, for
example, as u(�x) ← P(�x)∧¬P(�x), where �x is a tuple of variables and P is a new
atomic relation, both of the same arity as q.

COROLLARY 3.8. Let S be a schema, and q a query. Then deciding whether q
is satisfiable wrt S can be done in time 2p(|S|+|q|).

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:25

Again, this result shows EXPTIME-completeness of query satisfiability wrt a
schema.

4. UNDECIDABILITY OF CONTAINMENT OF QUERIES

WITH INEQUALITIES

In this section we show that, if we allow for inequalities inside the queries, then
query containment wrt a schema becomes undecidable. The proof of undecid-
ability exploits a reduction from the unbounded tiling problem [Berger 1966].
An instance T = (D, H, V) of the tiling problem is defined by a finite set D of
tile types, a horizontal adjacency relation H ∈ D × D, and a vertical adjacency
relation V ∈ D × D, and consists in determining whether there exists a tiling
of the first quadrant of the integer plane with tiles of type in D such that the
adjacency conditions are satisfied. As shown, for example, in Harel [1985] and
van Emde Boas [1997], the tiling problem is well suited to show undecidabil-
ity of variants of modal and dynamic logics, and the difficult part of the proof
usually consists in enforcing that the tiles lie on an integer grid. To this end we
exploit a query containing one inequality.

Formally, given an instance T = (D, H, V) of the tiling problem, a T -tiling is a
total function t : N × N −→ D, and such a tiling is correct if (t(i, j), t(i + 1, j)) ∈
H and (t(i, j), t(i, j + 1)) ∈ V , for each i, j ∈ N. We reduce the problem of
checking whether there exists a correct T -tiling to the problem of checking
whether ST |= q0 ⊆ q′

0, for suitable schema ST and queries q0 and q′
0 containing

inequalities.
Consider an instance T = (D, H, V) of the tiling problem with tile

types D = {D1, . . . , Dk}. We construct a schema ST using the atomic con-
cepts Tile, D1, . . . , Dk and two binary atomic relations Right and Up as
follows:

Tile � D1 	 · · · 	 Dk , (9)

Di � Tile, for each i ∈ {1, . . . , k}, (10)

Di � ¬D j , for each i, j ∈ {1, . . . , k}, i < j , (11)

Tile � (≤ 1 [$1]Right) � (≤ 1 [$1]Up), (12)

Tile � ∃[$1](Right � ($2 : Tile)) � ∃[$1](Up � ($2 : Tile)), (13)

Di � (
⊔

(Di ,D j)∈H ¬∃[$1](Right � ($2 : ¬D j))) �
(
⊔

(Di ,D j)∈V ¬∃[$1](Up � ($2 : ¬D j))), for each i ∈ {1, . . . , k}.
(14)

Then define the Boolean queries q0 and q′
0 as follows:

q0() ← Tile(x),

q′
0() ← Right(x, y) ∧ Up(y , z) ∧ Up(x, y ′) ∧ Right(y ′, z ′) ∧ z �= z ′.

THEOREM 4.1. Let T be an instance of the tiling problem, ST a schema, and
q0 and q′

0 two queries defined as specified above. Then there is a correct T -tiling
if and only if ST �|= q0 ⊆ q′

0.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:26 • D. Calvanese et al.

PROOF. “⇒” Let t be a correct T -tiling. We construct an interpretation It of
ST as follows:

�It = N × N,

TileIt = �It ,

DIt
h = {(i, j) ∈ �It | t(i, j) = Dh}, for each h ∈ {1, . . . , k},

RightIt = {((i, j), (i + 1, j)) | i, j ∈ N},
UpIt = {((i, j), (i, j + 1)) | i, j ∈ N}.

It is immediate to verify that It is a model of ST and that qIt
0 is true while q′

0
It

is false.
“⇐” Consider a model I of ST in which q0 is true and q′

0 is false. Then I
contains an instance o0 of Tile and assertions (13) in ST force the existence of
arbitrary long chains of instances of Tile, beginning with o0 and connected one
to the next by alternations of RightI and UpI . By assertions (12), Right and Up
are functional for all instances of Tile, and since q′

0 is false in I, these chains
of objects form indeed a grid. By assertions (9) and (11), each such object is an
instance of precisely one Dh. Hence, we can construct a tiling tI by assigning to
each object o of the grid, representing an element of the first quadrant, a unique
tile type Dh. Considering also assertions (14), it is easy to show by induction on
the length of the chain from o0 to an instance o of Tile that the horizontal and
vertical adjacency conditions for o are satisfied. Hence tI is a correct T -tiling.

The theorem above immediately implies undecidability of containment with
respect to a schema of queries containing inequalities.

THEOREM 4.2. Let S be a schema, and q, q′ two queries of the same arity
that may contain atoms of the form t �= t ′. Then the query containment problem
S |= q ⊆ q′ is undecidable.

The reduction used in the proof of Theorem 4.1 shows that query containment
remains undecidable even in the restricted case where

—all relations in S, q, and q′ are binary,
—S does not contain assertions on relations, and all assertions on concepts are

of the form A � C,
—S does not contain regular expressions,
—q and q′ do not contain union, or constants expressions, and
—there is a single inequality in q′, and no inequality in q.

5. QUERY ANSWERING

As we said in the introduction, it is well known in the database literature
that there is a tight connection between the problems of conjunctive query con-
tainment and conjunctive query answering [Chandra and Merlin 1977]. Such
a relationship has had a particular importance in settings of databases with
incomplete information, such as those arising in information integration [Abite-
boul and Duschka 1998; Lenzerini 2002], semistructured data [Calvanese et al.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:27

2002], and description logics [Baader et al. 2003]. In this section we discuss
query answering under description logic constraints, taking advantage of the
results on query containment presented above. By query answering under de-
scription logics constraints, we mean to compute the answers to a query over
an incomplete database, that is, a database that is partially specified and must
satisfy all description logic constraints expressed in a schema.8

Given a DLRreg schema S, we specify an incomplete database D over S by
means of a set of facts, called membership assertions, of the form

C(a), R(�a),

where C and R are, respectively, a concept expression and a relation expression
over S, a is a constant, and �a is an tuple of constants of the same arity as R.
Note that such a notion of incomplete database corresponds to that of ABox in
description logics [Baader et al. 2003].

An interpretation I satisfies an assertion C(a) if aI ∈ CI , and it satisfies
an assertion R(�a) if �aI ∈ RI . We say that I is a model of D, if it satisfies all
assertions inD. An incomplete databaseD is satisfiable with respect to a schema
S if there is an interpretation I that is a model of both S and D. Intuitively,
every such interpretation I represents a complete database that is coherent
with both D, and the description logic constraints in S.

Given a schema S, an incomplete database D over S, and a query q for S,
the set of certain answers cert(q, S, D) of q with respect to S and D is the set
of tuples �c of constants in D that are answers to q for all complete databases
coherent with D and S, that is, such that �c ∈ qI , for all models I of S and D.

Given a query

q(�x) ← conj 1(�x, �y1, �c1) ∨ · · · ∨ conj m(�x, �ym, �cm)

in order to check whether a tuple �c of constants is in cert(q, S, D), we can resort
to query containment [Abiteboul and Duschka 1998]. In particular, let us define
the Boolean (i.e., of arity 0) queries QD and Qq, �c as follows:

QD() ← ∧
C(a)∈D C(a) ∧ ∧

R(�a)∈D R(�a),

Qq, �c() ← conj 1(�c, �y1, �c1) ∨ · · · ∨ conj m(�c, �ym, �cm).

The first query QD is the conjunction of all facts in D, while the second query
Qq, �c is obtained from q by replacing each variable in �x with the corresponding
constant in �c.

THEOREM 5.1. Let S be a schema, D an incomplete database over S, q a query
for S, and �c a tuple of constants in D of the same arity as q. Then �c ∈ cert(q, S, D)
if and only if S |= QD ⊆ Qq, �c.

PROOF. The result can be proved exactly as in Abiteboul and Duschka
[1998].

From Theorem 3.6 we immediately obtain the following complexity result.

8Note that, in the case in which we have complete information on the database, the constraints do
not play any role in query answering, assuming that the database is consistent with them.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:28 • D. Calvanese et al.

THEOREM 5.2. Let S be a schema, D an incomplete database over S, q a
query for S, and �c a tuple of constants in D of the same arity as q. Then deciding
whether �c ∈ cert(q, S, D) can be done in time 2p(|S|+|D|+|q|·d �), where |S|, |D|, and
|q| are, respectively, the sizes of S, D, and q, d is the number of constants in D
and q, and � is the number of existentially quantified variables in q.

Note that this means that, while query answering is double exponential in
combined complexity, it is actually only single exponential in the number of
constants in the database. It follows that our technique is exponential in data
complexity, that is, the complexity measured only with respect to the size of
D. Note that this is the first result on data complexity on answering unions of
conjunctive queries under such expressive description logic constraints.

Finally, it follows directly from the semantics that satisfiability of a given
incomplete database D with respect to a schema S can be rephrased as sat-
isfiability of the query QD with respect to S. Thus, we obtain the following
result.

COROLLARY 5.3. Let S be a schema and D an incomplete database over S.
Then deciding whether D is satisfiable with respect to S can be done in time
2p(|S|+|D|).

In description logic jargon, this shows EXPTIME-completeness of TBox+ABox
satisfiability in our setting. Observe that, since we allow for union of conjunc-
tive queries on the left-hand side query in the containment, this result can be
immediately extended to satisfiability of a TBox together with a disjunction of
ABoxes [Calvanese et al. 2001a].

6. CONCLUSIONS

In this article we have introduced DLRreg , an expressive language for specify-
ing database schemas and nonrecursive Datalog queries, and we have presented
decidability (with complexity) and undecidability results of both the problem of
checking query containment, and the problem of answering queries under the
constraints expressed in the schema.

The query language considered in this article allows no form of recursion,
not even the transitive closure of binary relations. It is our aim in the future to
extend our analysis to the case where queries may contain regular expressions,
in the spirit of Calvanese et al. [2000].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for many valuable comments, which helped
inprove the article.

REFERENCES

ABITEBOUL, S. AND DUSCHKA, O. 1998. Complexity of answering queries using materialized views.
In Proceedings of the 17th ACM SIGACT SIGMOD SIGART Symposium on Principles of Database
Systems (PODS’98). 254–265.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:29

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley, Reading,
MA.

AHO, A. V., SAGIV, Y., AND ULLMAN, J. D. 1979a. Efficient optimization of a class of relational ex-
pressions. ACM Trans. Database Syst. 4, 297–314.

AHO, A. V., SAGIV, Y., AND ULLMAN, J. D. 1979b. Equivalence among relational expressions. SIAM
J. Comput. 8, 218–246.

AMIR, K., PARK, S., TEWARI, R., AND PADMANABHAN, S. 2003. Scalable template-based query contain-
ment checking for Web semantic caches. In Proceedings of the 19th IEEE International Conference
on Data Engineering (ICDE 2003). 493–504.

BAADER, F., CALVANESE, D., MCGUINNESS, D., NARDI, D., AND PATEL-SCHNEIDER, P. F., EDs. 2003. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge, U.K.

BERGER, R. 1966. The undecidability of the dominoe problem. Mem. Amer. Math. Soc. 66, 1–72.
BLACKBURN, P., DE RIJKE, M., AND VENEMA, Y. 2001. Modal Logic. Cambridge Tracts in Theoretical

Computer Science, vol. 53. Cambridge University Press, Cambridge, U.K.
BONATTI, P. A. 2004. On the decidability of containment of recursive datalog queries—preliminary

report. In Proceedings of the 23rd ACM SIGACT SIGMOD SIGART Symposium on Principles of
Database Systems (PODS 2004). 297–306.

BORGIDA, A. AND BRACHMAN, R. J. 2003. Conceptual modeling with description logics. See [Baader
et al. 2003], Chapter 10, 349–372.

CALVANESE, D. AND DE GIACOMO, G. 2003. Expressive description logics. See [Baader et al. 2003],
Chapter 5, 178–218.

CALVANESE, D., DE GIACOMO, G., AND LENZERINI, M. 1995. Structured objects: Modeling and rea-
soning. In Proceedings of the 4th International Conference on Deductive and Object-Oriented
Databases (DOOD’95). Lecture Notes in Computer Science, vol. 1013. Springer, Berlin, Germany,
229–246.

CALVANESE, D., DE GIACOMO, G., AND LENZERINI, M. 1998a. On the decidability of query containment
under constraints. In Proceedings of the 17th ACM SIGACT SIGMOD SIGART Symposium on
Principles of Database Systems (PODS’98). 149–158.

CALVANESE, D., DE GIACOMO, G., AND LENZERINI, M. 2001a. Identification constraints and functional
dependencies in description logics. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence (IJCAI 2001). 155–160.

CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND NARDI, D. 2001b. Reasoning in expressive de-
scription logics. In Handbook of Automated Reasoning, A. Robinson and A. Voronkov, Eds. Vol. II.
Elsevier Science Publishers, Amsterdam, The Netherlands, Chapter 23, 1581–1634.

CALVANESE, D., DE GIACOMO, G., LENZERINI, M., NARDI, D., AND ROSATI, R. 1998b. Description logic
framework for information integration. In Proceedings of the 6th International Conference on the
Principles of Knowledge Representation and Reasoning (KR’98). 2–13.

CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND VARDI, M. Y. 2000. Containment of conjunctive
regular path queries with inverse. In Proceedings of the 7th International Conference on the
Principles of Knowledge Representation and Reasoning (KR 2000). 176–185.

CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND VARDI, M. Y. 2002. View-based query answering
and query containment over semistructured data. In Revised Papers of the 8th International
Workshop on Database Programming Languages (DBPL 2001), G. Ghelli and G. Grahne, Eds.
Lecture Notes in Computer Science, vol. 2397. Springer, Berlin, Germany, 40–61.

CALVANESE, D., DE GIACOMO, G., AND VARDI, M. Y. 2003. Decidable containment of recursive queries.
In Proceedings of the 9th International Conference on Database Theory (ICDT 2003). Lecture
Notes in Computer Science, vol. 2572. Springer, Berlin, Germany, 330–345.

CALVANESE, D., LENZERINI, M., AND NARDI, D. 1999. Unifying class-based representation formalisms.
J. Artific. Intell. Res. 11, 199–240.

CALVANESE, D. AND ROSATI, R. 2003. Answering recursive queries under keys and foreign keys is
undecidable. In Proceedings of the 10th International Workshop on Knowledge Representation
meets Databases (KRDB 2003). CEUR Electronic Workshop Proceedings. Available online at
http://ceur-ws.org/Vol-79/.

CATARCI, T. AND LENZERINI, M. 1993. Representing and using interschema knowledge in cooperative
information systems. J. Intell. Coop. Informat. Syst. 2, 4, 375–398.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

22:30 • D. Calvanese et al.

CHAN, E. P. F. 1992. Containment and minimization of positive conjunctive queries in OODB’s. In
Proceedings of the 11th ACM SIGACT SIGMOD SIGART Symposium on Principles of Database
Systems (PODS’92). 202–211.

CHANDRA, A. K. AND MERLIN, P. M. 1977. Optimal implementation of conjunctive queries in rela-
tional data bases. In Proceedings of the 9th ACM Symposium on Theory of Computing (STOC’77).
77–90.

CHANDRA, A. K. AND VARDI, M. Y. 1985. The implication problem for functional and inclusion de-
pendencies is undecidable. SIAM J. Comput. 14, 3, 671–677.

CHAUDHURI, S. AND VARDI, M. Y. 1992. On the equivalence of recursive and nonrecursive Datalog
programs. In Proceedings of the 11th ACM SIGACT SIGMOD SIGART Symposium on Principles
of Database Systems (PODS’92). 55–66.

CHEKURI, C. AND RAJARAMAN, A. 1997. Conjunctive query containment revisited. In Proceedings of
the 6th International Conference on Database Theory (ICDT’97). 56–70.

DE GIACOMO, G. AND LENZERINI, M. 1994. Boosting the correspondence between description logics
and propositional dynamic logics. In Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI’94). 205–212.

DE GIACOMO, G. AND LENZERINI, M. 1995. What’s in an aggregate: Foundations for description
logics with tuples and sets. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI’95). 801–807.

DE GIACOMO, G. AND LENZERINI, M. 1996. TBox and ABox reasoning in expressive description logics.
In Proceedings of the 5th International Conference on the Principles of Knowledge Representation
and Reasoning (KR’96). 316–327.

DONG, G. AND SU, J. 1996. Conjunctive query containment with respect to views and constraints.
Informat. Process. Lett. 57, 2, 95–102.

DONINI, F. M., LENZERINI, M., NARDI, D., AND SCHAERF, A. 1998. AL-log: Integrating Datalog and
description logics. J. Intell. Informat. Syst. 10, 3, 227–252.

ENDERTON, H. B. 1972. A Mathematical Introduction to Logic. Academic Press, New York, NY.
FATTOROSI-BARNABA, M. AND DE CARO, F. 1985. Graded modalities I. Studia Logica 44, 197–

221.
FISCHER, M. J. AND LADNER, R. E. 1979. Propositional dynamic logic of regular programs. J. Com-

put. Syst. Sci. 18, 194–211.
GRUBER, T. R. 1993. Towards principles for the design of ontologies used for knowledge sharing. In

Formal Ontology in Conceptual Analysis and Knowledge Representation, N. Guarino and R. Poli,
Eds. Kluwer Academic Publishers, Dordrecht, The Netherlands.

GUPTA, A. AND MUMICK, I. S. 1995. Maintenance of materialized views: Problems, techniques, and
applications. Bull. IEEE Comput. Soc. Tech. Comm. Data Eng. 18, 2, 3–18.

GUPTA, A., SAGIV, Y., ULLMAN, J. D., AND WIDOM, J. 1994. Constraint checking with partial informa-
tion. In Proceedings of the 13th ACM SIGACT SIGMOD SIGART Symposium on Principles of
Database Systems (PODS’94).

HALEVY, A. Y. 2001. Answering queries using views: A survey. Very Large Database J. 10, 4, 270–
294.

HAREL, D. 1985. Recurring dominoes: Making the highly undecidable highly understandable.
Ann. Discr. Math. 24, 51–72.

HORROCKS, I., SATTLER, U., TESSARIS, S., AND TOBIES, S. 2000. How to decide query containment
under constraints using a description logic. In Proceedings of the 7th International Conference
on Logic for Programming and Automated Reasoning (LPAR 2000). Lecture Notes in Computer
Science, vol. 1955. Springer, Berlin, Germany, 326–343.

HULL, R. 1997. Managing semantic heterogeneity in databases: A theoretical perspective. In Pro-
ceedings of the 16th ACM SIGACT SIGMOD SIGART Symposium on Principles of Database
Systems (PODS’97). 51–61.

IOANNIDIS, Y. E. AND RAMAKRISHNAN, R. 1995. Containment of conjunctive queries: Beyond relations
as sets. ACM Trans. Database Syst. 20, 3, 288–324.

JOHNSON, D. S. AND KLUG, A. C. 1984. Testing containment of conjunctive queries under functional
and inclusion dependencies. J. Comput. Syst. Sci. 28, 1, 167–189.

KLUG, A. C. 1988. On conjunctive queries containing inequalities. J. ACM 35, 1, 146–160.

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

Conjunctive Query Containment and Answering • 22:31

KOZEN, D. AND TIURYN, J. 1990. Logics of programs. In Handbook of Theoretical Computer Science—
Formal Models and Semantics, J. van Leeuwen, Ed. Elsevier Science Publishers, Amsterdam,
The Netherlands, 789–840.

LENZERINI, M. 2002. Data integration: A theoretical perspective. In Proceedings of the 21st ACM
SIGACT SIGMOD SIGART Symposium on Principles of Database Systems (PODS 2002). 233–
246.

LEVY, A. Y. AND ROUSSET, M.-C. 1996. CARIN: A representation language combining Horn rules
and description logics. In Proceedings of the 12th Eurpoean Conference on Artificial Intelligence
(ECAI’96). 323–327.

LEVY, A. Y., SRIVASTAVA, D., AND KIRK, T. 1995. Data model and query evaluation in global informa-
tion systems. J. Intell. Informat. Syst. 5, 121–143.

LEVY, A. Y. AND SUCIU, D. 1997. Deciding containment for queries with complex objects. In Proceed-
ings of the 16th ACM SIGACT SIGMOD SIGART Symposium on Principles of Database Systems
(PODS’97). 20–31.

MITCHELL, J. C. 1983. The implication problem for functional and inclusion dependencies. Infor-
mat. Contr. 56, 154–173.

NEVEN, F. AND SCHWENTICK, T. 2003. XPath containment in the presence of disjunction, DTDs, and
variables. In Proceedings of the 9th International Conference on Database Theory (ICDT 2003).
315–329.

PATEL-SCHNEIDER, P., HAYES, P., AND HORROCKS, I. 2004. OWL Web Ontology Language seman-
tics and abstract syntax. W3C Recommendation. Available online at http://www.w3.org/TR/

owl-semantics/.

SAGIV, Y. AND YANNAKAKIS, M. 1980. Equivalences among relational expressions with the union
and difference operators. J. ACM 27, 4, 633–655.

SCHILD, K. 1991. A correspondence theory for terminological logics: Preliminary report. In Pro-
ceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI’91). 466–471.

ULLMAN, J. D. 1997. Information integration using logical views. In Proceedings of the 6th In-
ternational Conference on Database Theory (ICDT’97). Lecture Notes in Computer Science,
vol. 1186. Springer, Berlin, Germany, 19–40.

VAN DER MEYDEN, R. 1998. Logical approaches to incomplete information. In Logics for Databases
and Information Systems, J. Chomicki and G. Saake, Eds. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 307–356.

VAN EMDE BOAS, P. 1997. The convenience of tilings. In Complexity, Logic, and Recursion Theory,
A. Sorbi, Ed. Lecture Notes in Pure and Applied Mathematics, vol. 187. Marcel Dekker Inc., New
York, NY, 331–363.

WIDOM, J. ED. 1995. Special issue on materialized views and data warehousing. Bull. IEEE Com-
put. Soc. Tech. Comm. Data Eng. 18, 2.

WOOD, P. T. 2003. Containment for XPath fragments under DTD constraints. In Proceedings of
the 9th International Conference on Database Theory (ICDT 2003). 300–314.

Received July 2005; Revised April 2006; accepted December 2006

ACM Transactions on Computational Logic, Vol. 9, No. 3, Article 22, Publication date: June 2008.

