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Abstract. One of the basic problems in the development of techniques for the semantic
web is the integration of ontologies. Indeed, the web is constituted by a variety of
information sources, each expressed over a certain ontology, and in order to extract
information from such sources, their semantic integration and reconciliation in terms
of a global ontology is required. In this paper, we address the fundamental problem
of how to specify the mapping between the global ontology and the local ontologies.
We argue that for capturing such mapping in an appropriate way, the notion ofquery
is a crucial one, since it is very likely that a concept in one ontology corresponds
to a view (i.e., a query) over the other ontologies. As a result query processing in
ontology integration systems is strongly related to view-based query answering in data
integration.

1 Introduction

One of the basic problems in the development of techniques for the semantic web is the inte-
gration of ontologies. Indeed, the web is constituted by a variety of information sources, and
in order to extract information from such sources, their semantic integration and reconcilia-
tion is required. In this paper we deal with a situation where we have various local ontologies,
developed independently from each other, and we are required to build an integrated, global
ontology as a mean for extracting information from the local ones. Thus, the main purpose
of the global ontology is to provide a unified view through which we can query the various
local ontologies.

Most of the work carried out on ontologies for the semantic web is on which language or
which method to use to build the global ontology on the basis of the local ones [13, 2]. For
example, the Ontology Inference Layer (OIL) [13, 2] proposes to use a restricted form of the
expressive and decidable DL studied in [4] to express ontologies for the semantic web.

In this paper, we address what we believe is a crucial problem for the semantic web: how
do we specify the mapping between the global ontology and the local ontologies. This aspect
is the central one if we want to use the global ontology for answering queries in the context of
the semantic web. Indeed, we are not simply using the local ontologies as an intermediate step
towards the global one. Instead, we are using the global ontology for accessing information in
the local ones. It is our opinion that, although the problem of specifying the mapping between
the global and the local ontologies is at the heart of integration in the web, it is not deeply
investigated yet.

We argue that even the most expressive ontology specification languages are not sufficient
for information integration in the semantic web. In a real world setting, different ontologies



are build by different organizations for different purposes. Hence one should expect the same
information to be represented in different forms and with different levels of abstraction in
the various ontologies. When mapping concepts in the various ontologies to each other, it
is very likely that a concept in one ontology corresponds to aview (i.e., aquery) over the
other ontologies. Observe that here the notion of “query” is a crucial one. Indeed, to express
mappings among concepts in different ontologies, suitable query languages should be added
to the ontology specification language, and considered in the various reasoning tasks, in the
spirit of [4, 5]. As a result query processing in this setting is strongly related to view-based
query answering in data integration systems [20, 16]. What distinguishes ontology integration
from data integration as studied in databases, is that, while in data integration one assumes
that each source is basically a databases, i.e., a logical theory with a single model, such an
assumption is not made in ontology integration, where a local ontology is an arbitrary logical
theory, and hence can have multiple models.

Our main contribution in this paper is to present a general framework for an ontology of
integration where the mapping between ontologies is expressed through suitable mechanisms
based on queries, and to illustrate the framework proposed with two significant case studies.

The paper is organized as follows. In the next section we set up a formal framework for on-
tology integration. In Sections 3 and 4, we illustrate the so called global-centric approach and
local-centric approach to integration, and we discuss for each of the two approaches a specific
case study showing the subtleties involved. In Section 5 we briefly present an approach to in-
tegration that goes beyond the distinction between global-centric and local-centric. Finally,
Section 6 concludes the paper.

2 Ontology integration framework

In this section we set up a formal framework forontology integration systems(OISs). We
argue that this framework provides the basis of anontology of integration. For the sake of
simplicity, we will refer to a simplified framework, where the components of an OIS are the
global ontology, the local ontologies, and the mapping between the two. We call such systems
“one-layered”. More complex situations can be modeled by extending the framework in order
to represent, for example, mappings between local ontologies (in the spirit of [12, 6]), or
global ontologies that act as local ones with respect to another layer.

In what follows, one of the main aspects is the definition of the semantics of both the
OIS, and of queries posed to the global ontology. For keeping things simple, we will use in
the following a unique semantic domain∆, constituted by a fixed, infinite set of symbols.

Formally, an OISO is a triple〈G,S,MG,S〉, whereG is the global ontology,S is the set
of local ontologies, andMG,S is the mapping betweenG and the local ontologies inS.

Global ontology. We denote withAG the alphabet of terms of the global ontology, and we
assume that the global ontologyG of an OIS is expressed as a theory (named simplyG)
in some logicLG.

Local ontologies. We assume to have a setS of n local ontologiesS1, . . . ,Sn. We denote
with ASi the alphabet of terms of the local ontologySi. We also denote withAS the
union of all theASi ’s. We assume that the variousASi ’s are mutually disjoint, and each
one is disjoint from the alphabetAG. We assume that each local ontology is expressed as



a theory (named simplySi) in some logicLSi, and we useS to denote the collection of
theoriesS1, . . . ,Sn.

Mapping. The mappingMG,S is the heart of the OIS, in that it specifies how the concepts1

in the global ontologyG and in the local ontologiesS map to each other.

Semantics. Intuitively, in specifying the semantics of an OIS, we have to start with a model
of the local ontologies, and the crucial point is to specify which are the models of the
global ontology. Thus, for assigning semantics to an OISO = 〈G,S,MG,S〉, we start by
considering alocal modelD forO, i.e., an interpretation that is a model for all the theories
of S. We callglobal interpretationfor O any interpretation forG. A global interpretation
I for O is said to be aglobal model forO wrt D if:

• I is a model ofG, and

• I satisfies the mappingMG,S wrt D.

In the next sections, we will come back to the notion of satisfying a mapping wrt a local
model. The semantics ofO, denotedsem(O), is defined as follows:

sem(O) = { I | there exists a local modelD for O
s.t.I is a global model forO wrt D }

Queries. Queries posed to an OISO are expressed in terms of a query languageQG over the
alphabetAG and are intended to extract a set of tuples of elements of∆. Thus, every query
has an associated arity, and the semantics of a queryq of arity n is defined as follows. The
answerqO of q toO is the set of tuples

qO = {〈c1, . . . , cn〉 | for all I ∈ sem(O), 〈c1, . . . , cn〉 ∈ qI }

whereqI denotes the result of evaluatingq in the interpretationI.

As we said before, the mappingMG,S represents the heart of an OISO = 〈G,S,MG,S〉.
In the usual approaches to ontology integration, the mechanisms for specifying the mapping
between concepts in different ontologies are limited to expressing direct correspondences
between terms. We argue that, in a real-world setting, one needs a much more powerful
mechanism. In particular, such a mechanism should allow for mapping a concept in one
ontology into aview, i.e., a query over the other ontologies, which acquires the relevant
information by navigating and aggregating several concepts.

Following the research done in data integration [17, 16], we can distinguish two basic
approaches for defining this mapping:

• the global-centric approach, where concepts of the global ontologyG are mapped into
queries over the local ontologies inS;

• the local-centric approach, where concepts of the local ontologies inS are mapped to
queries over the global ontologyG.

We discuss these two approaches in the following sections.
1Here and below we use the term “concept” for denoting a concept of the ontology.



3 Global-centric approach

In the global-centric approach (aka global-as-view approach), we assume we have a query
languageVS over the alphabetAS , and the mapping between the global and the local on-
tologies is given by associating to each term in the global ontology aview, i.e., a query, over
the local ontologies. The intended meaning of associating to a termC in G a queryVs over
S, is that such a query represents the best way to characterize the instances ofC using the
concepts inS. A further mechanism is used to specify if the correspondence betweenC and
the associated view issound, complete, orexact. LetD be a local model forO, andI a global
interpretation forO:

• I satisfies the correspondence〈C, Vs, sound〉 in MG,S wrt D, if all the tuples satisfying
Vs in D satisfyC in I,

• I satisfies the correspondence〈C, Vs, complete〉 in MG,S wrt D, if no tuple other than
those satisfyingVs in D satisfiesC in I.

• I satisfies the correspondence〈C, Vs, exact〉 in MG,S wrt D, if the set of tuples that
satisfyC in I is exactly the set of tuples satisfyingVs in D.

We say thatI satisfiesthe mappingMG,S wrt D, if I satisfies every correspondence in
MG,S wrt D.

The global-centric approach is the one adopted in most data integration systems. In such
systems, sources are databases (in general relational ones), the global ontology is actually a
database schema (again, represented in relational form), and the mapping is specified by as-
sociating to each relation in the global schema one relational query over the source relations.
It is a common opinion that this mechanism allow for a simple query processing strategy,
which basically reduces to unfolding the query using the definition specified in the mapping,
so as to translate the query in terms of accesses to the sources [20]. Actually, when we add
constraints (even of a very simple form) to the global schema, query processing becomes
even harder, as shown in the following case study.

3.1 A case study

We now set up a global-centric framework for ontology integration, which is based on ideas
developed for data integration over global schemas expressed in the Entity-Relationship
model [3]. In particular, we describe the main components of the ontology integration system,
and we provide the semantics both of the system, and of query answering.

The OISO = 〈G,S,MG,S〉 is defined as follows:

• Theglobal ontologyG is expressed in theEntity-Relationship model(or equivalently as
UML class diagrams). In particular,G may include:

– typing constraints on relationships, assigning an entity to each component of the
relationship;

– mandatory participation to relationships, saying that each instance of an entity must
participate asi-th component to a relationship;

– ISA relations between both entities and relationships;



– typing constraints, functional restrictions, and mandatory existence, for attributes
both of entities and of relationships.

• The local ontologiesS are constituted simply by a relational alphabetAS , and by the
extensions of the relations inAS . For example, such extensions may be expressed as
relational databases. Observe that we are assuming that no intensional relation between
terms inAS is present in the local ontologies.

• The mappingMG,S betweenG andS is given by a set of correspondences of the form
〈C, Vs, sound〉, whereC is a concept (i.e., either an entity, a relationship, or an attribute)
in the global ontology andVs is a query overS. More precisely,

– The mapping associates a query of arity 1 to each entity ofG.

– The mapping associates a query of arity 2 to each entity attributeA of G. Intuitively,
if the query retrieves the pair〈x, y〉 from the extension of the local ontologies, this
means thaty is a value of the attributeA of the entity instancex. Thus, the first
argument of the query corresponds to the instances of the entity for whichA is
defined, and the second argument corresponds to the values of the attributeA.

– The mapping associates a query of arityn to each relationshipR of arity n in G.
Intuitively, if the query retrieves the tuple〈x1, . . . , xn〉 from the extension of the
local ontologies, this means that〈x1, . . . , xn〉 is an instance ofR.

– The mapping associates a query of arityn + 1 to each attributeA of a relationship
R of arity n in G. The firstn arguments of the query correspond to the tuples ofR,
and the last argument corresponds to the values ofA.

As specified above, the intended meaning of the queryVs associated to the conceptC
is that it specifies how to retrieve the data corresponding toC in the global schema
starting from the data at the sources. This confirms that we are following the global-
as-views approach: each concept in the global ontology is defined as a view over the
concepts in the local ontologies. We do not pose any constraint on the language used
to express the queries in the mapping. Since the extensions of local ontologies are rela-
tional databases, we simply assume that the language is able to express computations over
relational databases.

To specify the semantics of a data integration system, we have to characterize, given the
set of tuples in the extension of the various relations of the local ontologies, which are the
data satisfying the global ontology. In principle, one would like to have a single extension as
model of the global ontology. Indeed, this is the case for most of the data integration systems
described in the literature. However, we will show in the following the surprising result that,
due to the presence of the semantic conditions that are implicit in the conceptual schemaG,
in general, we will have to account for a set of possible extensions.

Example 1. Figure 1 shows the global schemaG1 of a data integration systemO1 =
〈G1,S1,M1〉, whereAge is a functional attribute,Student has a mandatory participation in
the relationshipEnrolled, Enrolled isaMember, andUniversity isaOrganization. The schema
models persons who can be members of one or more organizations, and students who are
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Figure 1: Global ontology of Example 1

enrolled in universities. Suppose thatS is constituted byS1, S2, S3, S4, S5, S6, S7, S8, and that
the mappingM1 is as follows:

Person(x) ← S1(x)
Organization(x) ← S2(x)

Member(x, y) ← S7(x, z) ∧ S8(z, y)
Student(x) ← S3(x, y) ∨ S4(x)

Age(x, y) ← S3(x, y) ∨ S6(x, y, z)
University(x) ← S5(x)
Enrolled(x, y) ← S4(x, y)

From the semantics of the OISO it is easy to see that, given a local modelD, several
situations are possible:

1. No global model exists. This happens, in particular, when the data in the extension of the
local ontologies retrieved by the queries associated to the elements of the global ontology
do not satisfy the functional attribute constraints.

2. Several global models exist. This happens, for example, when the data in the extension
of the local ontologies retrieved by the queries associated to the global concepts do not
satisfy the ISA relationships of the global ontology. In this case, it may happen that several
ways exist to add suitable objects to the elements ofG in order to satisfy the constraints.
Each such ways yields a global model.

Example 2. Referring to Example 1, consider a local modelD1, whereS3 contains the tuple
〈t1, a1〉, andS6 contains the tuple〈t1, a2, v1〉. The query associated toAge by the mapping
M1 specifies that, in every model ofO1 both tuples should belong to the extension ofAge.
However, sinceAge is a functional attribute inG1, it follows that no model exists for the OIS
O1.

Example 3. Referring again to Example 1, consider a local modelD2, whereS1 containsp1

andp2, S2 containso1, S5 containsu1, S4 containst1, and the pairs〈p1, o1〉 and〈p2, u1〉 are
in the join betweenS7 andS8. By the mappingM1, it follows that in every model ofO1, we



have thatp1, p2 ∈ Person, 〈p1, o1〉, 〈p2, u1〉 ∈ Member, o1 ∈ Organization, t1 ∈ Student, and
u1 ∈ University. Moreover, sinceG1 specifies thatStudent has a mandatory participation in
the relationshipEnrolled, in every model forO1, t1 mustbe enrolled in a certain university.
The key point is that nothing is said inD2 aboutwhichuniversity, and therefore we have to
accept as models all interpretations forO1 that differ in the universityt1 is enrolled in.

In the framework proposed, it is assumed that the first problem is solved by the queries
extracting data from the extension of the local ontologies. In other words, it is assumed that,
for any functional attributeA, the corresponding query implements a suitable data cleaning
strategy (see, e.g., [15]) that ensures that, for every local modelD and everyx, there is at
most one tuple(x, y) in the extension ofA (a similar condition holds for functional attributes
of relationships).

The second problem shows that the issue of query answering with incomplete informa-
tion arises even in the global-as-view approach to data integration. Indeed, the existence of
multiple global models for the OIS implies that query processing cannot simply reduce to
evaluating the query over a single relational database. Rather, we should in principle takeall
possible global models into account when answering a query.

It is interesting to observe that there are at least two different strategies to simplify
the setting, and overcome this problem that are frequently adopted in data integration sys-
tems [17, 20, 16]:

• Data integration systems usually adopt a simpler data model (often, a plain relational data
model) for expressing the global schema (i.e., the global ontology). In this case, the data
retrieved from the sources (i.e., the local ontologies) trivially fits into the schema, and can
be directly considered as the unique database to be processed during query answering.

• The queries associated to the concepts of the global schema are often considered as exact.
In this case, analogously to the previous one, it is easy to see that the only global exten-
sion to be considered is the one formed by the data retrieved by the extension of the local
ontologies. However, observe that, when data in this extension do not obey all semantic
conditions that are implicit in the global ontology, this single extension is not coherent
with the global ontology, and the OIS is inconsistent. This implies that query answering
in meaningless. We argue that, in the usual case of autonomous, heterogeneous local on-
tologies, it is very unlikely that data fit in the global ontology, and therefore, this approach
is too restrictive, in the sense that the OIS would be often inconsistent.

The fact that the problem of incomplete information is overlooked in current approaches
can be explained by observing that traditional data integration systems follow one of the
above mentioned simplifying strategies: they either express the global schema as a set of
plain relations, or consider the sources as exact (see, for instance, [11, 19, 1]).

In [3] we present an algorithm for computing the set of certain answers to queries posed to
a data integration system. The key feature of the algorithm is to reason about both the query
and the global ontology in order to infer which tuples satisfy the query in all models of the
OIS. Thus, the algorithm does not simply unfold the query on the basis of the mapping, as
usually done in data integration systems based on the global-as-view approach. Indeed, the
algorithm is able to add more answers to those directly extracted from the local ontologies,
by exploiting the semantic conditions expressed in the conceptual global schema.

LetO = 〈G,S,MG,S〉 be an OIS, letD be a local model, and letQ be a query over the
global ontologyG. The algorithm is constituted by three major steps.



1. From the queryQ, obtain a new queryexpandG(Q) over the elements of the global ontol-
ogyG in which the knowledge inG that is relevant forQ has been compiled in.

2. From expandG(Q), compute the queryunfoldMG,S
(expandG(Q)), by unfolding

expandG(Q) on the basis of the mappingMG,S . The unfolding simply substitutes each
atom ofexpandG(Q) with the query associated byMG,S to the element in the atom. The
resultingunfoldMG,S

(expandG(Q)) is a query over the relations in the local ontologies.

3. Evaluate the queryunfoldMG,S
(expandG(Q)) over the local modelD.

The last two steps are quite obvious. Instead, the first one requires to find a way to compile
into the query the semantic relations holding among the concepts of the global schemaG. A
way to do so is shown in [3]. The queryexpandG(Q) returned by the algorithm is exponential
wrt to Q. However,expandG(Q) is a union of conjunctive queries, which, if the queries in the
mapping are polynomial, makes the entire algorithm polynomial in data complexity.

Example 4. Referring to Example 3, consider the queryQ1 toO1:

Q1(x) ← Member(x, y) ∧ University(y)

It is easy to see that{p2, t1} is the set of certain answers toQ1 with respect toO1 andD2.
Thus, althoughD2 does not indicate in which universityt1 is enrolled, the semantics ofO1

specifies thatt1 is enrolled ina university in all legal database forO1. SinceMember is a
generalization ofEnrolled, this implies thatt1 is in QO

1 , and hence is inunfM1
(expG1

(Q1))
evaluated overD2.

4 Local-centric approach

In the local-centric approach (aka local-as-view approach), we assume we have a query lan-
guageVG over the alphabetAG, and the mapping between the global and the local ontologies
is given by associating to each term in the local ontologies aview, i.e., a query over the
global ontology. Again, the intended meaning of associating to a termC in S a queryVg

overG, is that such a query represents the best way to characterize the instances ofC using
the concepts inG. As in the global-centric approach, the correspondence betweenC and the
associated view can be either sound, complete, or exact. LetD be a local model forO, andI
a global interpretation forO:

• I satisfies the correspondence〈Vg, C, sound〉 in MG,S wrt D, if all the tuples satisfying
C in D satisfyVg in I,

• I satisfies the correspondence〈Vg, C, complete〉 in MG,S wrt D, if no tuple other than
those satisfyingC in D satisfiesVg in I,

• I satisfies the correspondence〈Vg, C, exact〉 in MG,S wrt D, if the set of tuples that
satisfyC in D is exactly the set of tuples satisfyingVg in I.

As in the global-centric approach, we say thatI satisfiesthe mappingMG,S wrt D, if I
satisfies every correspondence inMG,S wrt D.

Recent research work on data integration follows the local-centric approach [20, 16, 18, 6,
8]. The major challenge of this approach is that, in order to answer a query expressed over the



global schema, one must be able to reformulate the query in terms of queries to the sources.
While in the global-centric approach such a reformulation is guided by the correspondences
in the mapping, here the problem requires a reasoning step, so as to infer how to use the
sources for answering the query. Many authors point out that, despite its difficulty, the local-
centric approach better supports a dynamic environment, where local ontologies can be added
to the systems without the need for restructuring the global ontology.

4.1 A case study

We present here an OIS architecture based on the use of Description Logics to represent
ontologies [6, 7]. Specifically, we adopt the Description LogicDLR, in which both classes
andn-ary relations can be represented [4]. We first introduceDLR, and then we illustrate
how we use the logic to define an OIS.

4.1.1 The Description LogicDLR

Description Logics2 (DLs) are knowledge representation formalisms that are able to capture
virtually all class-based representation formalisms used in Artificial Intelligence, Software
Engineering, and Databases [9, 10].

One of the distinguishing features of these logics is that they have optimal reasoning algo-
rithms, and practical systems implementing such algorithms are now used in several projects.

In DLs, the domain of interest is modeled by means ofconceptsand relations, which
denote classes of objects and relationships, respectively. Here, we focus our attention on the
DL DLR [4, 6], whose basic elements areconcepts(unary relations), andn-ary relations.
We assume to deal with an alphabetA constituted by a finite set of atomic relations, atomic
concepts, andconstants, denoted byP , A, anda, respectively. We useR to denote arbitrary
relations (of given arity between 2 andnmax), andC to denote arbitrary concepts, respectively
built according to the following syntax:

C ::= >1 | A | ¬C | C1 u C2 | ∃[i]R | (≤ k [i]R)
R ::= >n | P | i/n : C | ¬R | R1 uR2

wherei denotes a component of a relation, i.e., an integer between 1 andnmax, n denotes the
arity of a relation, i.e., an integer between 2 andnmax, andk denotes a nonnegative integer.
We consider only concepts and relations that arewell-typed, which means that only relations
of the same arityn are combined to form expressions of typeR1 u R2 (which inherit the
arity n), andi ≤ n wheneveri denotes a component of a relation of arityn.

The semantics ofDLR is specified as follows. AninterpretationI is constituted by an
interpretation domain∆I , and aninterpretation function·I that assigns to each constant an
element of∆I under the unique name assumption, to each conceptC a subsetCI of ∆I ,
and to each relationR of arity n a subsetRI of (∆I)n, such that the conditions in Figure 2
are satisfied. Observe that, the “¬” constructor on relations is used to express difference of
relations, and not the complement [4].

A DLR knowledge base is a set of inclusion assertions of the form

C1 v C2 R1 v R2

2Seehttp://dl.kr.org for the home page of Description Logics.



>I1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 u C2)I = CI
1 ∩ CI

2
(∃[i]R)I = {d ∈ ∆I | ∃〈d1, . . . , dn〉 ∈ RI .di = d}

(≤ k [i]R)I = {d ∈ ∆I | ]{〈d1, . . . , dn〉 ∈ RI
1 | di = d} ≤ k}

>In ⊆ (∆I)n

P I ⊆ >In
i/n : CI = {〈d1, . . . , dn〉 ∈ >In | di ∈ CI}
(¬R)I = >In \RI

(R1 uR2)I = RI
1 ∩RI

2

Figure 2: Semantic rules forDLR (P , R, R1, andR2 have arityn)

whereC1 andC2 are concepts, andR1 andR2 are relations of the same arity. An inclusion
assertionC1 v C2 (resp.,R1 v R2) is satisfied in an interpretationI if CI

1 ⊆ CI
2 (resp.,

RI
1 ⊆ RI

2 ). An interpretation is amodelof a knowledge baseK, if it satisfies all assertions in
K.K logically impliesan inclusion assertionρ if ρ is satisfied in all models ofK.

Finally, we introduce the notion of query expression inDLR. We assume that the al-
phabetA is enriched with a finite set of variable symbols, simply calledvariables. A query
expressionQ over aDLR knowledge baseK is a non-recursive datalog query of the form

Q(~x) ← conj 1(~x, ~y1) ∨ · · · ∨ conjm(~x, ~ym)

where eachconj i(~x, ~yi) is a conjunction ofatoms, and~x, ~yi are all the variables appearing
in the conjunct. Each atom has one of the formsR(~t) or C(t), where~t andt are variables
in ~x and~yi or constants inA, R is a relation ofK, andC is a concept ofK. The number of
variables of~x is called thearity of Q, and is the arity of the relation denoted by the queryQ.
We observe that the atoms in query expressions are arbitraryDLR concepts and relations,
freely used in the assertions of the KB.

Given an interpretationI, a query expressionQ of arity n is interpreted as the setQI of
n-tuples of constants〈c1, . . . , cn〉, such that, when substituting eachci for xi, the formula

∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃~ym.conjm(~x, ~ym)

evaluates to true inI.
DLR is equipped with effective reasoning techniques that are sound and complete with

respect to the semantics. In particular, checking whether a given assertion logically follows
from a set of assertions is EXPTIME-complete in (assuming that numbers are encoded in
unary), and query containment, i.e., checking whether one query is contained in another one
in every model of a set of assertions, is EXPTIME-hard and solvable in 2EXPTIME [4].

4.1.2 DLR local-centric OIS

We now set up a local-centric framework for ontology integration, which is based on ideas
developed for data integration overDLR knowledge bases [6, 5]. In particular, we describe



the main components of the ontology integration system, and we provide the semantics both
of the system, and of query answering.

In this setting, an OISO = 〈G,S,MG,S〉 is defined as follows:

• Theglobal ontologyG is aDLR knowledge base.

• The local ontologiesS are again seen as a set of relations each giving the extension of
an ontology-concept in the ontology. We observe that again we have only extensional
knowledge on such relations inS.

• The mappingMG,S betweenG andS is given by a set of correspondences of the form
〈Vg, T, as〉, whereT is a relation of a local ontology,Vg is a query expression overG, and
as is eithersound , complete, or exact .

Observe that we could partition the global ontology in several parts, one for each local
ontology, modeling the intensional knowledge on the local ontology wrt the OIS, plus one for
the reconciled global view of such ontologies. By making use of the so called interschema
assertions [12] the different parts can be related to each at the intesional level. For simplicity
we do not deal with interschema assertion in this case study, however it is immediate to extend
the framework presented here to include them as well [6, 7].

Query answering in this setting requires quite sophisticated techniques that take into ac-
count the knowledge both in the global ontology and in the mapping in answering a query
posed over the global ontology with the data contained in the local ontologies. Such query
answering techniques are studied in [5].

Example 5. Consider for example the OISOd = 〈Gd,Sd,Md〉 defined as follows:

• The global ontologyGd is theDLR knowledge base

American u ∃[1](RELATIVE u 2 : Doctor) v Wealthy

Surgeon v Doctor

expressing that Americans who have a doctor as relative are wealthy, and that each sur-
geon is also a doctor.

• The setSd of local ontologies consists of two ontologies, containing respectively the
relationsT1 andT2, with extensions{ann, bill} and{ann, dan}.

• The mappingMG,S is {〈V1, T1, sound〉, 〈V2, T2, sound〉}, with

V1(x) ← RELATIVE(x, y) ∧ Surgeon(y)
V2(x) ← American(x)

Given the query expressionQw(x) ← Wealthy(x) overGd, asking for those who are wealthy,
we have that the only answer inQOd

w is ann. Consider an additional local ontology, consisting
of a relationT3 with an extension not containingbill, and mapped toG by the correspondence
〈V3, T3, exact〉, with V3(x) ← Wealthy(x). Then, from the constraints inGd and the infor-
mation we have on the correspondences, we can conclude thatbill is not an answer to the
query asking for the Americans.



5 Combining the global-centric and local-centric approaches

The global-centric and the local-centric approach can be combined together into an approach
using unrestricted mappings, in which the restrictions on the direction of the correspondence
between global and local ontologies are overcome [14]. In the unrestricted approach, we have
both a query languageVS over the alphabetAS , and a query languageVG over the alphabet
AG, and the mapping between the global and the local ontologies is given by relating views
over the global ontology to views over the local ontologies. Again, the intended meaning of
relating the viewVg over the global ontology to the viewVs over the local ontology is thatVs

represents the best way to characterize the objects satisfyingVg in terms of the concepts inS.
Analogously to the other cases, the correspondences betweenVg andVs can be characterized
as sound, complete, or exact. LetD be a local model forO, andI a global interpretation for
O:

• I satisfies the correspondence〈Vg, Vs, sound〉 in MG,S wrt D, if all the tuples satisfying
satisfyingVs in D satisfyVg in I,

• I satisfies the correspondence〈Vg, Vs, complete〉 in MG,S wrt D, if no tuple other than
those satisfyingVs in D satisfyVg in I,

• I satisfies the correspondence〈Vg, Vs, exact〉 in MG,S wrt D, if the set of tuples that
satisfyVg in I is exactly the set of tuples satisfyingVs in D.

Again, we say thatI satisfiesthe mappingMG,S wrt D, if I satisfies every correspon-
dence inMG,S wrt D.

Example 6. Consider the OISOu = 〈Gu,Su,Mu〉, where bothGu and the two ontologiesS1

andS2 formingSu are simply sets of relations with their extensions.

• The global ontologyGu contains two binary relations,WorksFor, denoting researchers
and projects they work for, andArea, denoting projects and research areas they belong to.

• The local ontologyS1 contains a binary relationInterestedIn denoting persons and fields
they are interested in, and the local ontologyS2 contains a binary relationGetGrant,
denoting researchers and grants assigned to them, and a binary relationGrantFor denoting
grants and projects they refer to.

• The mappingMu is formed by the following correspondences

– 〈V1, InterestedIn, complete〉, with V1(r, f) ← WorksFor(r, p) ∧ Area(p, f)

– 〈WorkFor, V2, sound〉, with V2(r, p) ← GetGrant(r, g) ∧ GrantFor(g, p)

This situation can be represented neither in the global-centric nor in the local-centric ap-
proach.

Query answering in this approach is largely unexplored, mainly because it combines the
difficulties of the other ones. However, in a real world setting, this may be the only approach
that provides the appropriate expressive power.



6 Conclusions

We have presented a general framework for ontology integration, where a global ontology
is used to provide a unified view for querying local ontologies, as in the semantic web. The
framework represents a sort of design space for the problem of integrating ontologies within
semantic web applications. We have argued that the mapping between the global and the local
ontologies is the main aspect of the framework, and we have discussed various approaches for
specifying such a mapping. Independently of the approach, we have stressed that the notion
of query is crucial for the task of ontology integration.

The two case studies we have presented have shown the need of sophisticated techniques
for query answering in an ontology integration system. The two case studies illustrated sim-
plified settings, drawn from data integration. One should expect things to become even more
complex when ontology integration is considered in its full generality. Recently several pro-
posals have been made, based on the idea of expressing ontologies as knowledge bases, e.g.,
in Description Logics [13, 2], and applying automated reasoning techniques for several ser-
vices in the design of and the interaction with the semantic web. We believe however that
such an idea needs to be extended by considering queries as first order citizens and having
the ability to reason on them.
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