
On the Decidability of Query Containment under Constraints

Diego Calvanese
Dip. di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy

calvanese@dis.uniroma1.it

Giuseppe De Giacomo
Dip. di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy

degiacomo@dis.uniroma1.it

Maurizio Lenzerini
Dip. di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy

lenzerini@dis.uniroma1.it

Abstract

Query containment under constraints is the problem of
checking whether for every database satisfying a given set of
constraints, the result of one query is a subset of the result
of another query. Recent research points out that this is a
central problem in several database applications, and we ad-
dress it within a setting where constraints are specified in the
form of special inclusion dependencies over complex expres-
sions, built by using intersection and difference of relations,
special forms of quantification, regular expressions over bi-
nary relations, and cardinality constraints. These types of
constraints capture a great variety of data models, including
the relational, the entity-relational, and the object-oriented
model.

We study the problem of checking whether q is contained
in q′ with respect to the constraints specified in a schema
S, where q and q′ are nonrecursive Datalog programs whose
atoms are complex expressions. We present the following
results on query containment. For the case where q does
not contain regular expressions, we provide a method for
deciding query containment, and analyze its computational
complexity. We do the same for the case where neither S nor
q, q′ contain number restrictions. To the best of our knowl-
edge, this yields the first decidability result on containment
of conjunctive queries with regular expressions. Finally, we
prove that the problem is undecidable for the case where we
admit inequalities in q′.

1 Introduction

Query containment is the problem of checking whether for
every database, the result of one query is a subset of the re-
sult of another query1. Many recent papers point out that
this problem is important in several contexts, including in-
formation integration [33], query optimization [2, 3], (mate-

1We refer to the set semantics of query containment. Bag seman-
tics is studied, for example, in [25].

rialized) view maintenance [21], data warehousing [36], and
constraint checking [22].

We deal with the problem of query containment under
constraints, i.e. the one of checking whether containment
between two queries holds for every database satisfying a
given set of constraints. This problem is relevant in every
situation where the database schema is specified with a rich
data definition language. In particular in the case of infor-
mation integration, queries are to be compared relatively to
(inter-schema) constraints, which are used to declaratively
specify the “glue” between two source schemas, and between
one source schema and the global schema [7, 24, 33, 8, 29].

The complexity of query containment in the absence of
constraints has been studied in various settings. In [10], NP-
completeness has been established for conjunctive queries,
and in [13] a multi-parameter analysis has been performed
for the same case, showing that the intractability is due
to certain types of cycles in the queries. In [26, 34], Πp

2-
completeness of containment of conjunctive queries with in-
equalities was proved, and in [32] the case of queries with
the union and difference operators was studied. For vari-
ous classes of Datalog queries with inequalities, decidability
and undecidability results were presented in [12] and [34],
respectively.

Query containment under constraints has also been the
subject of several investigations. For example, decidability
of conjunctive query containment was investigated in [4] un-
der functional and multi-valued dependencies, in [14] under
functional and inclusion dependencies, in [9, 28, 30] under
constraints representing is-a hierarchies and complex ob-
jects, and in [17] in the case of constraints represented as
Datalog programs.

In this paper we address query containment in a setting
where:

• The schema is constituted by concepts (unary rela-
tions) and relations as basic elements, and by a set of
constraints expressed in a logic-based formalism. Ev-
ery constraint is an inclusion of the form α1 ⊆ α2,
where α1 and α2 are complex expressions built by
using intersection and difference of relations, special
forms of quantification, regular expressions over bi-
nary relation, and number restrictions (i.e. cardinal-
ity constraints imposing limitations on the number of
tuples in a certain relation in which an object may ap-
pear). The constraints express essentially inclusion de-
pendencies between concepts and relations, and their
expressive power is due to the possibility of using com-
plex expressions in the specification of the dependen-

cies. It can be shown that our formalism is able to cap-
ture a great variety of data models, including the re-
lational, the entity-relational, and the object-oriented
model, all extended with various forms of constraints.

• Queries are formed as disjunctions of conjunctive
queries whose atoms are complex expressions, and
therefore, can express non-recursive Datalog programs.
Since complex expressions are the basic building blocks
of queries, it is possible to specify queries whose atoms
are regular expressions. Recent papers point out
that this feature is important in modern query lan-
guages (see e.g. [1]).

We observe that, given the form of constraints and
queries allowed in our approach, none of the previous re-
sults can be applied to get decidability/undecidability of
query containment. We adopt a novel technique for ad-
dressing the problem, based on translating the schema and
the queries into a particular Propositional Dynamic Logic
(PDL) formula, and then checking the unsatisfiability of the
formula. The technique is justified by the fact that reason-
ing about the schema itself (without the queries) is optimally
done within the framework of PDL [16].

We present the following results on checking whether a
query q is contained in another query q′ with respect to the
constraints specified in a schema S:

1. For the case where q does not contain regular expres-
sions, we provide a method for query containment,
thus showing that the problem is decidable, and an-
alyze its computational complexity.

2. We do the same for the case where neither S nor q, q′

contain number restrictions. To the best of our knowl-
edge, this is the first decidability result on containment
of conjunctive queries with regular expressions.

3. For the case where we allow inequalities in q′, we prove
that the problem is undecidable, even for very simple
schemas and queries.

The paper is organized as follows. In Section 2 we present
the formalism used to express both the constraints in the
schema, and the queries. In Section 3 we describe the logic
cpdlg, which will be used for deciding query containment.
In Sections 4, 5 and 6 we present the two decidability results,
and the undecidability result, respectively. Finally, Section 7
concludes the paper.

2 Schemas and Queries in DLRreg

We use the logical language DLRreg , inspired by [8, 6], to
specify database schemas and queries. The language is based
on the relational model, in the sense that a schema S de-
scribes the properties of a set of relations, while a query
for S denotes a relation that is supposed to be computed
from any database conforming to S. A schema is specified
in terms of a set of assertions on relations, which express
the constraints that must be satisfied by every conforming
database.

2.1 Schemas

The basic elements of DLRreg are concepts (unary rela-
tions), n-ary relations, and regular expressions built over

projections of relations on two of their components.2.
We assume to deal with a finite set of atomic relations

and concepts, denoted by P and A respectively. We use
R to denote arbitrary relations (of given arity between 2
and nmax), E to denote regular expressions, and C to de-
note arbitrary concepts, respectively built according to the
following syntax

R ::= >n | P | ($i/n : C) | ¬R | R1 uR2

E ::= ε | R|$i,$j | E1 ◦ E2 | E1 t E2 | E∗

C ::= >1 | A | ¬C | C1 u C2 | ∃E.C |
∃[$i]R | (≤ k [$i]R)

where i and j denote components of relations, i.e. integers
between 1 and nmax, n denotes the arity of a relation, i.e. an
integer between 2 and nmax, and k denotes a nonnegative
integer.

Expressions of the form (≤ k [$i]R) are called number
restrictions. In what follows, we abbreviate ¬∃E.¬C with
∀E.C, and ($i/n : C) with ($i : C) when n is clear from the
context. Also, we consider only concepts and relations that
are well-typed, which means that

• only relations of the same arity n are combined to form
expressions of type R1uR2 (which inherit the arity n),
and

• i ≤ n whenever i denotes a component of a relation of
arity n.

A DLRreg schema is constituted by a finite set of asser-
tions, of the form

R1 v R2

C1 v C2

where R1 and R2 are of the same arity.
The semantics of DLRreg is specified through the no-

tion of interpretation. An interpretation I = (∆I , ·I) of a
DLRreg schema S and a set of constants C (to be used in
queries) is constituted by an interpretation domain ∆I and
an interpretation function ·I that assigns

• to each constant c in C an element of ∆I under the
unique name assumption

• to each concept C a subset CI of ∆I

• to each regular expression E a subset EI of ∆I ×∆I

• to each relation R of arity n a subset RI of (∆I)n

such that the conditions in Figure 1 are satisfied. We ob-
serve that >1 denotes the interpretation domain, while >n,
for n > 1, does not denote the n-Cartesian product of the
domain, but only a subset of it, that covers all relations
of arity n. It follows, from this property, that the “¬” con-
structor on relations is used to express difference of relations,
rather than complement.

An interpretation I satisfies an assertion R1 v R2

(resp. C1 v C2) if RI
1 ⊆ RI

2 (resp. CI1 ⊆ CI2). An interpre-
tation that satisfies all assertions in a schema S is called a
model of S. It is easy to see that a model of a schema S
actually corresponds to a database conforming to S, i.e. a
database satisfying all the constraints represented by S.

2We could include in the logic also domains, i.e. sets of values such
as integer, string, etc.. However, for the sake of simplicity, we do not
consider this aspect in this work.

>In ⊆ (∆I)n

PI ⊆ >In
($i/n : C)I = {(d1, . . . , dn) ∈ >In | di ∈ CI}

(¬R)I = >In \RI

(R1 uR2)
I = RI

1 ∩RI
2

εI = {(x, x) | x ∈ ∆I}
(R|$i,$j)

I = {(xi, xj) | (x1, . . . , xn) ∈ RI}
(E1 ◦ E2)

I = EI
1 ◦ EI

2

(E1 t E2)
I = EI

1 ∪ EI
2

(E∗)I = (EI)∗

>I1 = ∆I (¬C)I = ∆I \ CI

AI ⊆ ∆I (C1 u C2)
I = CI1 ∩ CI2

(∃E.C)I = {d ∈ ∆I | ∃d′ ∈ CI.(d, d′) ∈ EI}
(∃[$i]R)I = {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI.di = d}

(≤ k [$i]R)I = {d ∈ ∆I | #{(d1, . . . , dn) ∈ RI
1 | di = d} ≤ k}

Figure 1: Semantic rules for DLRreg (P, R, R1, and R2 have arity n)

It can be shown that DLRreg is able to capture a great
variety of data models with many forms of constraints. For
example, we obtain the entity-relationship model (including
is-a relations on both entities and relations) in a straightfor-
ward way [6], and an object-oriented data model (extended
with several types of constraints), by restricting the use of
existential and universal quantifications in concept expres-
sions, by restricting the attention to binary relations, and
by eliminating negation, disjunction and regular expressions.
Compared with the relational model, the following observa-
tions point out the kinds of constraints that can be expressed
using DLRreg .

• Assertions directly express a special case of typed in-
clusion dependencies, namely the one where no projec-
tion of relations is used.

• Unary inclusion dependencies are easily expressible
by means of the ∃[$2]P construct. For example,
∃[$2]P1 v ∃[$3]P2 is a unary inclusion dependency
between attribute 2 of P1 and attribute 3 of P2.

• Existence and exclusion dependencies are expressible
by means of ∃ and ¬, respectively, whereas a limited
form of functional dependencies can be expressed by
means of (≤ 1 [$i]R). For example, >1 v (≤ 1 [$i]P)
specifies that attribute i functionally determines all
other attributes of P.

• The possibility of constructing complex expressions
provides a special form of view definition. Indeed, the
two assertions P v R, R v P (where R is a com-
plex expression) is a view definition for P. Notably,
views can be freely used in assertions (even with cyclic
references), and, therefore, all the above discussed con-
straints can be imposed not only on atomic relations,
but also on views. These features make our logic par-
ticularly suited for expressing inter-schema relation-
ships in the context of information integration [7],
where it is crucial to be able to state that a certain
concept of a schema corresponds (by means of inclu-
sion or equivalence) to a view in another schema.

• Finally, regular expressions can be profitably used to
represent in the schema inductively defined structures
such as sequences and lists, imposing complex condi-
tions on them.

One of the distinguishing features of DLRreg is that it
is equipped with a method for checking logical implication.

Indeed, the method described in [6] allows one to verify in
EXPTIME whether a given assertion is satisfied in every
model of a schema.

It follows from EXPTIME-hardness of satisfiability in
PDL and from the fact that any PDL formula can be ex-
pressed as a DLRreg concept, that logical implication in
DLRreg is EXPTIME-hard. This holds even in the case
where the schema does not contain regular expressions. In-
deed, the formulas used in the EXPTIME-hardness proof of
satisfiability in PDL [20], can be expressed as assertions in
DLRreg not involving regular expressions.

We point out that DLRreg supports only special forms
of functional and inclusion dependencies. Hence the unde-
cidability result of implication for (general) functional and
inclusion dependencies taken together, shown independently
in [31, 11], does not apply.

2.2 Queries

A query q for a DLRreg schema is a non-recursive Datalog
query, written in the form:

q(~x) ← body1(~x, ~y1,~c1) ∨ · · · ∨ bodym(~x, ~ym,~cm)

where each body i(~x, ~yi,~ci) is a conjunction of atoms, and
~x, ~yi (resp. ~ci) are all the variables (resp. constants) ap-
pearing in the conjunct. Each atom has one of the forms
R(~t), C(t), or E(t, t′), where

• ~t, t, and t′ are constants or variables in ~x, ~yi,~ci

• R, C, and E are relations, concepts, and regular ex-
pressions over S.

The number of variables of ~x is called the arity of q, i.e. the
arity of the relation denoted by the query q.

We observe that the atoms in the queries are arbitrary
DLRreg relations and concepts, freely used in the assertions
of the schema. This distinguishes our approach with respect
to [18, 28], where no constraints can be expressed in the
schema on the relations that appear in the queries.

Given an interpretation I of a schema S, a query q for S
of arity n is interpreted as the set qI of n-tuples (o1, . . . , on),
with each oi ∈ ∆I , such that, when substituting each oi for
xi, the formula

∃~y1.body1(~x, ~y1,~c1) ∨ · · · ∨ ∃~ym.bodym(~x, ~ym,~cm)

evaluates to true in I.

If q and q′ are two queries (of the same arity) for S, we
say that q is contained in q′ wrt S, denoted S |= q ⊆ q′, if
qI ⊆ q′I for every model I of S. Given a DLRreg schema S
and two queries for S

q(~x) ← body1(~x, ~y1,~c1) ∨ · · · ∨ bodym(~x, ~ym,~cm)

q′(~x) ← body ′1(~x, ~y′1,~c
′
1) ∨ · · · ∨ body ′m′(~x, ~y′m′ ,~c

′
m′)

we have that S |= q ⊆ q′ iff there is no model I of S
such that, when substituting suitable objects in ∆I for
~x, ~y1, . . . ~ym, the formula

(body1(~x, ~y1,~c1) ∨ · · · ∨ bodym(~x, ~ym,~cm)) ∧
¬∃~z1.body

′
1(~x,~z1,~c

′
1) ∧ · · · ∧ ¬∃~zm′ .body

′
m′(~x,~zm′ ,~c

′
m′)

evaluates to true in I. In other words, S |= q ⊆ q′ iff there
is no model of S that makes the formula

(body1(~a, ~b1,~c1) ∨ · · · ∨ bodym(~a, ~bm,~cm))∧
¬∃~z1.body

′
1(~a,~z1,~c1) ∧ · · · ∧ ¬∃~zm′ .body

′
m′(~a,~zm′ ,~cm′)

true, where ~a, ~b1, . . . , ~bm are Skolem constants, i.e. con-
stants not appearing elsewhere for which the unique name
assumption does not hold.

The query containment problem is the one of checking
whether S |= q ⊆ q′, where S, q, q′ are given as input.
A special case of query containment is query satisfiability,
which amounts to verify whether a given query is interpreted
as the empty set in every model of the schema (note that
the query u(~x ← P(~x ∧ ¬P(~x) is unsatisfiable).

We observe that, since logical implication in DLRreg is
already EXPTIME-complete, query containment in our set-
ting is EXPTIME-hard, even in the case where neither the
schema nor the queries contain regular expressions.

2.3 Example

Consider an application where the departments of a given
company can be controlled by other departments, and sold
to companies. Every department is controlled by at most
one department, and by at least one main department, pos-
sibly indirectly. A main department is not controlled by
any department. If a main department is sold, then all the
departments controlled by it are also sold. Finally, if a de-
partment is sold, then all the department that, directly or
indirectly, controls it are also sold.

The basic concepts and relations are shown in Figure 2 in
the form of an entity-relationship diagram. The specification
of the application in DLRreg makes use of the concepts Dept,
MainDept, Money, Company, and the relations CONTROLS,
SOLD. In particular, CONTROLS(x, y) means that department
x has control over department y, and SOLD(x, y, z) means
that department x has been sold to company y at price z.
The schema S is constituted by the following assertions:

SOLD v ($1 : Dept) u ($2 : Company) u
($3 : Money)

CONTROLS v ($1 : Dept) u ($2 : Dept)

Dept v (≤ 1 [$2]CONTROLS) u
∃(CONTROLS|$2,$1)

∗.MainDept

MainDept v Dept u ¬∃[$2]CONTROLS

MainDept u ∃[$1]SOLD v ∀(CONTROLS|$1,$2)
∗.∃[$1]SOLD

Dept u ∃[$1]SOLD v ∃(CONTROLS|$2,$1)
∗.

(MainDept u ∃[$1]SOLD)

The first two assertions are used to specify the types of the
attributes of the relations.

The third and the fourth assertions specify the basic
properties of Dept and MainDept. It is easy to see that
such assertions imply that, in all the models of S, the set
of CONTROLS links starting from an instance m of MainDept
form a tree (which we call CONTROLS-tree) with root m. The
role of the transitive closure (CONTROLS|$2,$1)

∗ and the num-
ber restrictions is crucial for correctly representing the above
property in the schema.

Finally, the last two assertions, each one stating inclu-
sions between views, specify the company policy for selling
departments. Note again the use of the transitive closure
for this purpose.

We now consider two queries for the schema S. The first
query, called q is used to retrieve all the pairs of departments
that are controlled by the same department and that com-
prise at least one sold department. The second query, called
q′, retrieves all the pair (x, y) of departments such that x
has been sold, and y belong to the same CONTROLS-tree of x.
The queries q and q′ are defined as follows:

q(x, y) ← CONTROLS(z1, x) ∧ CONTROLS(z1, y) ∧
SOLD(y, z2, z3)

q′(x, y) ← Dept(x) ∧ SOLD(x, z1, z2) ∧
(CONTROLS|$1,$2 t CONTROLS|$2,$1)

∗(x, y)

One can verify that S |= q ⊆ q′. This follows from the fact
that the regular expression (CONTROLS|$2,$1 ◦CONTROLS|$1,$2)
is “contained” in the regular expression (CONTROLS|$1,$2 t
CONTROLS|$2,$1)

∗, and from the notion of CONTROLS-tree as
defined in S.

Also, if we add to q′(x, y) the condition that department
y is not sold, we obtain the query

q′′(x, y) ← Dept(x) ∧ SOLD(x, z1, z2) ∧ ¬SOLD(y, w1, w2) ∧
(CONTROLS|$1,$2 t CONTROLS|$2,$1)

∗(x, y)

which is unsatisfiable.

3 The Propositional Dynamic Logic cpdlg

Propositional Dynamic Logics are specific modal logics orig-
inally proposed as a formal system for reasoning about
computer program schemas [20]. Since then PDLs have
been studied extensively and extended in several ways (see
e.g. [27] for a survey).

Here, we make use of cpdlg (studied in [16] in the con-
text of description logics), which is an extension of Converse
PDL [27] with graded modalities [19]. The syntax of cpdlg

is as follows (A denotes an atomic formula, φ an arbitrary
formula, p an atomic program, and r an arbitrary program):

φ ::= A | ¬φ | φ1 ∧ φ2 | 〈r〉φ | [p]≤kφ | [p−]≤kφ

r ::= p | r1; r2 | r1 ∪ r2 | r∗ | φ? | r−

The abbreviation [r]φ is used for ¬〈r〉¬φ.

As usual for PDLs, the semantics of cpdlg is based on
Kripke structures M = (S, ·M), where S is a set of states
and ·M formulae as subsets of S and programs as binary
relations over S. The semantics of each construct is reported
below:

MainDept

Dept

CONTROLS Money

Company

$2

$1 $2

$1

SOLD

(0,1)

$3

Figure 2: The entity-relationship diagram for the example in Section 2.3

AM ⊆ S
(¬φ)M = S \φM

(φ1 ∧ φ2)
M = φM1 ∩ φM2

(〈r〉φ)M = {s | ∃s′.(s, s′) ∈ rM ∧ s′ ∈ φM}
([p]≤kφ)M = {s | #{s′ | (s, s′) ∈ pM ∧ s′ ∈ φM} ≤ k}

([p−]≤kφ)M = {s | #{s′ | (s′, s) ∈ pM ∧ s′ ∈ φM} ≤ k}

pM ⊆ S × S
(r1; r2)

M = rM1 ◦ rM2
(r1 ∪ r2)

M = rM1 ∪ rM2
(r∗)M = (rM)∗ =

⋃
i≥0

(rM)i

(φ?)M = {(s, s) | s ∈ φM}
(r−)M = {(s, s′) | (s′, s) ∈ rM}

It can be shown that cpdlg has typical properties of
PDLs, in particular the connected-model property (if a for-
mula has a model, then it has one that is connected when
viewing it as a graph), the tree-model property (if a formula
has a model, then it has one that is a tree when viewing
it as an undirected graph), and EXPTIME decidability of
checking satisfiability of a formula (with the assumption that
numbers in graded modalities are represented in unary) [16].

4 Queries without Regular Expressions

In this section we study the problem of deciding whether
S |= q ⊆ q′, in the case where q does not contain regular
expressions, i.e. atoms of the form E(t, t′). Note that the
example in Section 2 falls into this case.

Our aim is to reduce query containment to a problem
of unsatisfiability of in cpdlg. To this end, we construct
a cpdlg formula starting from an instance of the query
containment problem. More precisely, if we have to check
whether there is no model of S that makes the formula

(body1(~a, ~b1,~c1) ∨ · · · ∨ bodym(~a, ~bm,~cm)) ∧
¬∃~z1.body

′
1(~a,~z1,~c1) ∧ · · · ∧ ¬∃~zm′ .body

′
m′(~a,~zm′ ,~cm′)

true, where ~a, ~b1, . . . , ~bm are Skolem constants, we check
the unsatisfiability of the cpdlg formula

Φ = ΦS ∧ (

m∨
j=1

Φbodyj
) ∧ (

m′∧
j=1

Φbody′
j
) ∧ Φaux,

constructed as described below.

ΦS : encoding of S
ΦS is the translation of S into a cpdlg formula, and makes
use of the mapping σ(·) from DLRreg expressions to cpdlg

formulae defined in Figure 3. We denote with U the pro-
gram (create∪f1∪· · ·∪fnmax ∪create−∪f−1 ∪· · ·∪f−nmax

)∗,
where create, f1, . . . , fnmax are all atomic programs used in
Φ. Due to the connected-model property of cpdlg, U rep-
resents the universal accessibility relation. Therefore, for a
given interpretation, [U]φ expresses that φ holds in every
state, and 〈U〉φ expresses that φ holds in some state.

ΦS is the conjunction of σ(S), for all assertions S ∈ S,
in turn conjoined to the following formulae:

[U](>1 ∨ · · · ∨ >nmax)
[U]([fi]≤1>) for each i ∈ {1, . . . , nmax}
[U]([fi]⊥ ⊃ [fi+1]⊥) for each i ∈ {1, . . . , nmax}
[U](>n ≡ 〈f1〉>1 ∧ · · · ∧ 〈fn〉>1 ∧ [fn+1]⊥)

for each n ∈ {2, . . . , nmax}
[U](P ⊃ >n) for each atomic relation P of arity n
[U](A ⊃ >1) for each atomic concept A

Intuitively, ΦS makes use of reification of n-ary relations,
i.e. a tuple in a model of S is represented in a model of
Φ by a state having one functional link fi for each tuple
component $i.

Φbodyj
: encoding of each bodyj(~a, ~bj ,~cj)

For each j ∈ {1, . . . , m}, the encoding Φbodyj
of

bodyj(~a, ~bj ,~cj) makes use of special atomic propositions,
called name-formulae whose distinguishing properties are
specified by Φaux (see later). Specifically, one name-formula

Nt is introduced for each term t in ~a, ~bj , ~cj , and one name-

formula N~t for each tuple ~t such that for some R, R(~t)

appears in bodyj(~a, ~bj ,~cj). A name-formula assigns a name

to a term t (resp. tuple ~t), which allows for identifying in
a model certain states which correspond to t (resp. reified

counterpart of ~t). The distinguishing properties of name-
formulae guarantee that these states share some crucial
properties that allow us to isolate a single state as a rep-
resentative of t (resp. ~t).

The formula Φbodyj
is the conjunction of the following

formulae:

• for each R(~t) in bodyj(~a, ~bj ,~cj)

[U](N~t ⊃ σ(R))

• for each C(t) in bodyj(~a, ~bj ,~cj)

[U](Nt ⊃ σ(C))

σ(>n) = >n

σ(P) = P
σ((i/n : C)) = >n ∧ [fi]σ(C)

σ(¬R) = >n ∧ ¬σ(R)
σ(R1 uR2) = σ(R1) ∧ σ(R2)

σ(R|$i,$j) = f−i ; σ(R)?; fj

σ(E1 ◦ E2) = σ(E1); σ(E2)
σ(E1 t E2) = σ(E1) ∪ σ(E2)

σ(E∗) = σ(E)∗

σ(>1) = >1

σ(A) = A
σ(¬C) = >1 ∧ ¬σ(C)

σ(C1 u C2) = σ(C1) ∧ σ(C2)
σ(∃E.C) = 〈σ(E)〉σ(C)

σ(∃[$i]R) = 〈f−i 〉σ(R)
σ((≤ k [$i]R)) = [f−i]≤kσ(R)

σ(C1 v C2) = [U](σ(C1) ⊃ σ(C2))
σ(R1 v R2) = [U](σ(R1) ⊃ σ(R2))

Figure 3: Mapping σ(·) from DLRreg to cpdlg

• for each N~t with ~t = (t1, . . . , tn)

[U](N~t ≡ 〈f1〉Nt1 ∧ · · · ∧ 〈fn〉Ntn ∧ [fn+1]⊥)

and for each Nti

[U](Nti ⊃ 〈f−i 〉N~t) and [U](Nti ⊃ [f−i]≤1N~t)

Intuitively, Φbodyj
expresses the relationships between

terms in bodyj(~a, ~bj ,~cj) by using reification and name-
formulae.

Φbody′
j
: encoding of each ¬∃~zj.body

′
j(~a,~zj ,~cj)

For each j ∈ {1, . . . , m′}, Φbody′
j

encodes

¬∃~zj.body
′
j(~a,~zj ,~cj) by making use of a special graph,

called tuple-graph, which intuitively reflects the depen-
dencies between variables and tuples resulting from the
appearance of the variables in the atoms3. A tuple-graph is
a directed graph with nodes labeled by cpdlg formulae and
edges labeled by cpdlg programs, formed as follows:

• There is one node t for each term t in ~a, ~zj , ~cj ,

and one node ~t for each ~t such that R(~t) ap-
pears in ¬∃~zj.body

′
j(~a,~zj ,~cj). Each node t is la-

beled by Nt and all σ(C) such that C(t) appears in

¬∃~zj.body
′
j(~a,~zj ,~cj). Each node ~t is labeled by all

σ(R) such that R(~t) appears in ¬∃~zj.body
′
j(~a,~zj ,~cj).

• There is one edge labeled by fi from the node ~t =
(t1, . . . , tn) to the node ti, i ∈ {1, . . . , n}, for each tuple
~t such that R(~t) appears in ¬∃~zj.body

′
j(~a,~zj ,~cj). In

addition, there is one edge labeled by σ(E) from the
node t to the node t′, for each atom E(t, t′) occurring
in ¬∃~zj.body

′
j(~a,~zj ,~cj).

In general the tuple-graph is composed of m ≥ 1 con-
nected components. For the i-th connected component we
build a cpdlg formula δi(~zj) by starting from a node t0
(corresponding to a term) and visiting the corresponding
component as follows (let u be the current node in the visit
and φu the formula produced by visiting u):

• If u = t, and has not already been visited then con-
struct φu as the conjunction of:

(i) every formula labeling the node t (including Nt);

3The tuple graph is similar to the graph used in [13] to detect
cyclic dependencies between variables.

(ii) one formula 〈f−i 〉φ for each non-marked edge (~t, t)

labeled by fi (i.e. t = ti in ~t), where φ is the

formula resulting by marking the edge (~t, t) and

visiting the node ~t;

(iii) one formula 〈σ(E)〉(φ∧〈σ(E)−〉Nt) for each non-
marked edge (t, t′) labeled by σ(E), where φ is
the formula resulting by marking the edge (t, t′)
and visiting the node t′;

(iv) one formula 〈σ(E)−〉(φ∧〈σ(E)〉Nt) for each non-
marked edge (t′, t) labeled by σ(E), where φ is
the formula resulting by marking the edge (t′, t)
and visiting the node t′;

• If u = ~t = (t1, . . . , tn), let e1, . . . , eh be the non-
marked edges from u to nodes ti. Mark e1, . . . , eh and
construct φu as the conjunction of:

(i) every formula labeling the node ~t;

(ii) one formula 〈fi〉φ for each edge ej = (~t, ti), where
fi is the label of ej , and φ is the formula resulting
by visiting the node ti.

• If u has already been visited then it corresponds to a
term t, and the resulting formula φu is Nt.

Then δi(~zj) = φt0 . Observe that δi(~zj) contains newly in-
troduced formulae Nzi , one for each zi in ~zj .

Φbody′
j

consists of the conjunction of all formulae ob-

tained by replacing in

([U]¬δ1(~zj)) ∨ · · · ∨ ([U]¬δ`(~zj))

(i) each Nzi not occurring in a cycle in the tuple-graph
by >1, and

(ii) each Nzi occurring in a cycle in the tuple-graph by
each of the name-formulae Nt corresponding to a

term in ~a, ~b1, . . . , ~bm, ~c1, . . . ,~cm occurring in q or
~c′1, . . . ,~c

′
m′ occurring in q′.

Observe that the number of such conjuncts in Φbody′
j

is

O(``2
1), where `1 is the number of variables and constants in

q plus the number of constants in q′, and `2 is the number
of variables zi occurring in a cycle in the tuple-graph for q′.

Φaux: encoding of constants and variables

Let Φ′ = ΦS ∧ (
∨m

j=1
Φbodyj

) ∧ (
∧m′

j=1
Φbody′

j
), and

N1, . . . , NK all name-formulae in Φ′. Φaux is formed by
the conjunction of:

• the formula 〈create〉N1 ∧ · · · ∧ 〈create〉NK which ex-
presses the existence of a state satisfying a name-
formula Ni, for each i ∈ {1, . . . , K};

• one formula of the form [U](Nci ⊃ ¬Ncj) for each pair
of distinct constants ci, cj appearing in the queries
(not Skolem constants);

• one formula of the form [U](Ni ∧ φ ⊃ [U](Ni ⊃ φ))
for each name-formula Ni, i ∈ {1, . . . , K}, and each
formula φ such that4:

(a) φ ∈ CL(Φ′),

(b) φ = 〈r〉φ′ with 〈r〉φ′ ∈ CL(Φ′), and

(c) φ = 〈r′; p〉Nj with r′ ∈ Pre(r), p = f | f−, and
r, f , Nj occurring in CL(Φ′)

where r is defined inductively as follows:

p = p; (∧i¬Ni)?
r1; r2 = r1; r2

r1 ∪ r2 = r1 ∪ r2

r∗1 = r1
∗

φ? = φ?

The role of Φaux is to enforce that, in every model of
Φ, for each Nk, one representative state can be singled out
among those satisfying Nk. This would be trivially ob-
tained if we could force all these states to satisfy exactly
the same formulae of the logic. Φaux forces a weaker condi-
tion, namely that these states satisfy the same formulae in
the finite set (whose size is polynomial with respect to Φ′)
described above. Theorem 1 proves that this is sufficient for
our purposes.

To see how Φ encodes the containment problem, con-
sider two queries q(x1, x2) ← p(x1, x2), and q′(x1, x2) ←
r(x1, x2, z) over a schema S such that S 6|= q ⊆ q′. Fig-
ure 4 schematically shows a model of the encoding Φ in
this case, that represents a counterexample to the contain-
ment. Indeed, the model contains a state s~t in which p
holds, that, being connected to sa1 , sa2 by means of f1

and f2, respectively, represents a tuple (a1, a2) that satis-
fies p. Since sa1 , sa2 satisfy Na1 , Na2 , respectively, and
Φbody′ = [U](Na1 ⊃ [f−1](r ⊃ [f2](¬Na2 ∨ [f3]⊥))) is true in

sroot, it follows that sa1 satisfies [f−1](r ⊃ [f2]¬Na2). There-
fore, in the model there is no state satisfying r representing
a tuple (a1, a2, z).

By exploiting the properties of the encoding Φ, we can
now prove decidability of query containment in our case.

Theorem 1 Let S be a schema, q, q′ be two queries, and
let q not contain regular expressions. Then deciding whether

S |= q ⊆ q′ can be done in time O(2p(|S|·``2
1))), where |S| is

the size of S, `1 is the sum of the number of variables in
q and the number of constants in q and q′, and `2 is the
number of existentially quantified variables in q′ that appear
in a cycle of the tuple-graph for q′.

Proof (sketch). Soundness of the encoding: Φ unsatis-
fiable implies S |= q ⊆ q′. One can verify that every model
I of S in which there is at least one tuple satisfying q and
not q′, can be turned into a model of Φ.

4CL(φ) is the Fisher-Ladner closure of a cpdlg formula φ, and
Pre(r) is the set of “prefixes” of a program r [16].

Completeness of the encoding: Φ satisfiable implies
S 6|= q ⊆ q′. We need to consider tuple-admissible models,
i.e. models where there is no pair of states that represent
the same reified tuple. We first prove that if Φ is satisfi-
able, then it admits a tuple-admissible model in which each
name-formula is true in exactly one state. By the tree-model

property, Φ admits a tree-model M′ = (S′, ·M′
), which is

obviously tuple-admissible. Let sroot ∈ ΦM be the root of
M′. We transform M′ into a new model M = (S, ·M)
with S ⊆ S′, which interprets name-formulae as single-
tons and is still tuple-admissible, as follows. For each Ni,
i ∈ {1, . . . , K}, we select a state sNi , among the states

s ∈ NM′
i such that (sroot, s) ∈ createM

′
. Then we define:

createM = {(sroot, sNi) ∈ createM
′ | i ∈ {1, . . . , K}}

pM = (pM
′−{(sNi , s) ∈ pM

′ | s ∈ NM′
j , i, j ∈ {1, . . . , K}}

−{(s, sNj) ∈ pM
′ | s ∈ NM′

i , i, j ∈ {1, . . . , K}})
∪ {(sNi , sNj) | (sNi , s) ∈ pM

′
, s ∈ NM′

j , i, j ∈ {1, . . . , K}}
for each atomic program p except create

NM
i = {sNi} for each name-formula Ni, i ∈ {1, . . . , K}

AM = AM
′ ∩ S

for each atomic formula A except name formulae
S = {sroot} ∪

{s ∈ S | (sroot, s) ∈ createM
′ ◦ (

⋃
p
(pM

′ ∪ (p−)M
′
))∗}

To show thatM is indeed a model one can proceed as in [16].
We now prove that if Φ has a tuple-admissible model

M in which each name-formula is true in exactly one
state, then S 6|= q ⊆ q′. We do so by showing
how to construct from M a model I of S that makes
the formula (body1(~a, ~b1,~c1) ∨ · · · ∨ bodym(~a, ~bm,~cm)) ∧
¬∃~z1.body

′
1(~a,~z1,~c1)∧· · ·∧¬∃~zm′ .body

′
m′(~a,~zm′ ,~cm′) true.

I is built as follows: ∆I = >M1 , PI = {~s | ∃s′ ∈
PM.(s′, si) ∈ fMi , i ∈ {1, . . . , n}}, AI = AM, and tI = s ∈
NM

t for each constant and Skolem constant t in q and q′. To
show that I does the job, the most difficult part is to show
that ~a 6∈ q′I , i.e., for one j ¬∃~zj.body

′
j(~a,~zj ,~cj) is true in

I. Conceptually, we need to distinguish between two cases,
depending on whether there is a cycle in the tuple-graph for
¬∃~zj.body

′
j(~a,~zj ,~cj).

If there is no cycle in the tuple-graph, then the con-
junct Φbodyj

directly enforces the constraints expressed by

¬∃~zj.body
′
j(~a,~zj ,~cj).

If there is a cycle then, due to the fundamental inabil-
ity of expressing in PDLs that two chains of links meet
the same state, no cpdlg formula can directly express
¬∃~zj.body

′
j(~a,~zj ,~cj). For the same reason, however, we can

assume that the only cycles present in M are those formed
by the states corresponding to the constants in the queries.
Therefore the replacement of name-formulae in Φbody′

j
suf-

fices.
Complexity: Since satisfiability in cpdlg is

EXPTIME-complete, and the encoding is sound and
complete, it follows that query containment can be done in
time O(2p(|Φ|). It is easy to verify that |Φ| = O(|S| · ``2

1).

5 Schemas and Queries without Number Restrictions

In this section we study the problem of deciding whether
S |= q ⊆ q′, where S is a schema and q, q′ are two queries,
in the case where neither the schema nor the queries contain

create

create

sa1

sa2

f2

f1

sroot
create

s~t

Φ is true in sroot

N~t ∧ p is true in s~t

Na1 is true in sa1

Na2 is true in sa2

Figure 4: A model of Φ

number restrictions. We consider an encoding Ψ defined as:

Ψ = ΦS ∧ (
∨m

j=1
Ψbodyj

) ∧ (
∧m′

j=1
Φbody′

j
) ∧ Ψaux, where ΦS

and Φbody′
j

are defined as in the previous section, and Ψbodyj
,

Ψaux are variants of Φbodyj
, Φaux, as described below.

The encoding Ψbodyj
of bodyj(~a, ~bj ,~cj) makes again use

of name-formulae, whose distinguishing properties are spec-
ified by Ψaux. Name-formulae are introduced for terms only
(not for tuples). Specifically, one name-formula Nt is intro-

duced for each term t in ~a, ~bj , ~cj . The formula Ψbodyj
is

the conjunction of the following formulae:

• for each R(t1, . . . , tn) in bodyj(~a, ~bj ,~cj)

[U](〈f1〉Nt1 ∧ · · · ∧ 〈fn〉Ntn ∧ [fn+1]⊥ ⊃ σ(R))

and for each Nti

[U](Nti ⊃ 〈f−i 〉(〈f1〉Nt1 ∧ · · · ∧ 〈fn〉Ntn ∧ [fn+1]⊥))

• for each C(t) in bodyj(~a, ~bj ,~cj)

[U](Nt ⊃ σ(C))

Let Ψ′ = ΦS ∧ (
∨m

j=1
Ψbodyj

) ∧ (
∧m′

j=1
Φbody′

j
), and let

N1, . . . , NK be all name-formulae in Ψ′. The formula Ψaux

is the conjunction of the following formulae:

• the formula 〈create〉N1∧· · ·∧〈create〉NK where create
is a newly introduced atomic program

• one formula of the form [U](Nci ⊃ ¬Ncj) for each
pair of distinct constants ci, cj appearing in the queries
(not Skolem constants);

• one formula of the form [U](Ni∧φ ⊃ [U](Ni ⊃ φ)) for
each name-formula Ni in Ψ′ and each formula φ ∈
CL(Ψ′).

We observe that the only graded modalities appearing in
Ψ are those in ΦS , imposing the functionality of all atomic
programs5.

By exploiting the properties of the encoding Ψ, we can
now prove decidability of query containment in our case.

Theorem 2 Let S be a schema, q, q′ be two queries, and
let S, q, q′ not contain number restrictions. Then deciding

whether S |= q ⊆ q′ can be done in time O(2p(|S|·``2
1))),

where |S|, `1, and `2 are as in Theorem 1.

5This means that Ψ can be viewed as a Converse Deterministic
PDL formula [35].

Proof (sketch). Soundness of the encoding and com-
plexity: As in Theorem 1.

Completeness of the encoding: Ψ satisfiable implies
S 6|= q ⊆ q′. We first prove that if Ψ is satisfiable it admits a
tuple-admissible model in which each name-formula is true

in exactly one state. LetM′ = (S′, ·M′
) be a model of Ψ and

sroot ∈ ΨM
′
. By the results in [15] we can assume without

loss of generality that M′ is tuple-admissible. We transform
M′ into a new modelM = (S, ·M) with S′ ⊆ S, which is still
tuple-admissible and interprets name-formulae as singletons.
For each Ni, i ∈ {1, . . . , K}, we select a state sNi , among

the states s ∈ NM′
i such that (sroot, s) ∈ createM

′
. Then

we define the model M as follows. For each name-formula
Ni, NM

i = {sNi}. For each s ∈ S′ ⊆ S, and for each atomic
formula A which is not a name-formula, s ∈ AM iff s ∈
AM

′
. For each (s, s′) ∈ pM

′
and for each atomic program p,

(s, s′) ∈ pM. In addition, for each n ∈ {1, . . . , nmax}, and

for each s ∈ >M′
n such that for some s′ ∈ ∆M′

(1) (s, s′) ∈
fM

′
i for some i ∈ {1, . . . , n}, and (2) s′ ∈ NM′

j for some
j ∈ {1, . . . , K}, we include in S a new state v and proceed
as follows: (i) for every atomic formula A (including >n),

v ∈ AM iff s ∈ AM
′
; (ii) for i ∈ {1, . . . , n}, let (s, si) ∈ fM

′
i ;

if si ∈ NM′
j , for some j ∈ {1, . . . , K}, then (v, sNj) ∈ fMi ,

otherwise (v, si) ∈ fMi . To show that M is indeed a model
of Ψ we use the same technique as in [16], although in this
case the proof is much simpler. Finally, we proceed as in
Theorem 1 to prove that if Ψ has a tuple-admissible model
M in which each name-formula is true in exactly one state,
then S 6|= q ⊆ q′.

6 Undecidability of Containment of Queries with Inequal-
ities

In this section we show that if we allow for inequalities in-
side the queries, then query containment becomes undecid-
able. The proof of undecidability exploits a reduction from
the unbounded tiling problem [5], which consists in deciding
whether (a portion of) the integer grid can be tiled using a
finite set of square tile types (fixed in orientation and with
colored edges) in such a way that adjacent tiles have the
same color on the common edge. As shown in [23], the
tiling problem is well suited to show undecidability of vari-
ants of modal and dynamic logics, and the difficult part of
the proof usually consists in enforcing that the tiles lie on
an integer grid. To this end we exploit a query containing
one inequality.

Theorem 3 Let S be a schema, and q, q′ two queries that
may contain atoms of the form t 6= t′. Then the query con-
tainment problem S |= q ⊆ q′ is undecidable.

Proof (sketch). Consider an instance T of the tiling prob-
lem with tile types D1, . . . , Dk, where the colors on the four
sides of tiles of type Di are left(Di), right(Di), up(Di), and
down(Di). We construct a schema ST using the atomic
concepts Tile, D1, . . . , Dk and two binary atomic relations
Right and Up as follows:

Tile v (D1 t · · · tDk) u
∃[$1](Right u ($2 :Tile)) u ∃[$1](Up u ($2 :Tile))

Di v Tile for each i ∈ {1, . . . , k}
Di v ¬Dj for each i, j ∈ {1, . . . , k}, i 6= j

Di v (
∨

j:left(Dj)=right(Di)
¬∃[$1](Right u ($2 :¬Dj))) u

(
∨

j:down(Dj)=up(Di)
¬∃[$1](Up u ($2 :¬Dj)))

Then there is a tiling of the upper right quadrant consistent
with T iff ST 6|= q0 ⊆ q′0, where:

q0() ← Tile(x)

q′0() ← Right(x, y) ∧Up(y, z) ∧
Up(x, y′) ∧ Right(y′, z′) ∧ z 6= z′.

Indeed, from a tiling of the upper right quadrant consis-
tent with T one obtains immediately a model of ST in which
q0 is true while q′0 is false. Conversely, consider a model I
of ST in which q0 is true and q′0 is false. Then I contains
an instance o0 of Tile and the assertions in ST force the
existence of arbitrary long chains of objects beginning with
o0 and connected one to the next by alternations of RightI

and UpI . Since q′0 is false in I, these chains of objects form
indeed a grid. Moreover, by viewing such objects as tiles,
the tiling constraints are satisfied due to the assertions in
ST .

The proof of Theorem 3 shows that query containment
remains undecidable even in the restricted case where: (i) S
does not contain assertions on relations, and all assertions
on concepts are of the form A v C, (ii) S, q, and q′ do
not contain regular expressions or number restrictions, (iii)
q and q′ do not contain union, or constants expressions, and
(iv) there is a single inequality in q′, and no inequality in q.

7 Conclusions

In this paper we have introduced DLRreg , an expressive
language for specifying database schemas and non-recursive
Datalog queries, and we have presented decidability (with
complexity) and undecidability results of the problem of
checking query containment under the constraints expressed
in the schema.

In particular, the decidability results refer to the case
where either regular expressions are ruled out in the queries,
or number restrictions or not allowed both in the schema and
in the queries. The second case yields the first decidability
result that we are aware of on containment of conjunctive
queries with regular expressions. The decidability of query
containment with regular expressions and number restric-
tions both in the schema and in the queries remains open,
and will be the subject of future research.

Acknowledgments

This work was partly supported by MURST, ESPRIT
LTR Project No. 22469 DWQ (Foundations of Data Ware-
house Quality), the Italian Research Council (CNR) under
Progetto Strategico “Informatica nella Pubblica Amminis-
trazione”, sottoprogetto PROGRESS (Reingegnerizzazione
dei Processi e dei Dati nella Pubblica Amministrazione), and
the Italian Space Agency (ASI) under project “Integrazione
ed Accesso a Basi di Dati Eterogenee”.

References

[1] Serge Abiteboul. Querying semi-structured data. In
Proc. of the 6th Int. Conf. on Database Theory (ICDT-
97), pages 1–18, 1997.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu.
Foundations of Databases. Addison Wesley Publ. Co.,
Reading, Massachussetts, 1995.

[3] A.V. Aho, Y. Sagiv, and J.D. Ullman. Efficient op-
timization of a class of relational expressions. ACM
Trans. on Database Systems, 4:297–314, 1979.

[4] A.V. Aho, Y. Sagiv, and J.D. Ullman. Equivalence
among relational expressions. SIAM J. on Computing,
8:218–246, 1979.

[5] R. Berger. The undecidability of the dominoe problem.
Mem. Amer. Math. Soc., 66:1–72, 1966.

[6] Diego Calvanese, Giuseppe De Giacomo, and Maurizio
Lenzerini. Structured objects: Modeling and reason-
ing. In Proc. of the 4th Int. Conf. on Deductive and
Object-Oriented Databases (DOOD-95), number 1013
in Lecture Notes in Computer Science, pages 229–246.
Springer-Verlag, 1995.

[7] Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, Daniele Nardi, and Riccardo Rosati. Descrip-
tion logic framework for information integration. In
Proc. of the 6th Int. Conf. on the Principles of Knowl-
edge Representation and Reasoning (KR-98), 1998.

[8] Tiziana Catarci and Maurizio Lenzerini. Representing
and using interschema knowledge in cooperative infor-
mation systems. J. of Intelligent and Cooperative In-
formation Systems, 2(4):375–398, 1993.

[9] Edward P. F. Chan. Containment and minimization
of positive conjunctive queries in oodb’s. In Proc. of
the 11th ACM SIGACT SIGMOD SIGART Sym. on
Principles of Database Systems (PODS-92), pages 202–
211, 1992.

[10] Ashok K. Chandra and Philip M. Merlin. Optimal im-
plementation of conjunctive queries in relational data
bases. In Proc. of the 5th ACM Sym. on Theory of
Computing (STOC-77), pages 77–90, 1977.

[11] Ashok K. Chandra and Moshe Y. Vardi. The implica-
tion problem for functional and inclusion dependencies
is undecidable. SIAM J. on Computing, 14(3):671–677,
1985.

[12] Surajit Chaudhuri and Moshe Y. Vardi. On the equiv-
alence of recursive and nonrecursive Datalog programs.
In Proc. of the 11th ACM SIGACT SIGMOD SIGART
Sym. on Principles of Database Systems (PODS-92),
pages 55–66, 1992.

[13] Chandra Chekuri and Anand Rajaraman. Conjunc-
tive query containment revisited. In Proc. of the 6th
Int. Conf. on Database Theory (ICDT-97), pages 56–
70, 1997.

[14] Anthony C. Klug David S. Johnson. Testing contain-
ment of conjunctive queries under functional and in-
clusion dependencies. J. of Computer and System Sci-
ences, 28(1):167–189, 1984.

[15] Giuseppe De Giacomo and Maurizio Lenzerini. What’s
in an aggregate: Foundations for description logics with
tuples and sets. In Proc. of the 14th Int. Joint Conf. on
Artificial Intelligence (IJCAI-95), pages 801–807, 1995.

[16] Giuseppe De Giacomo and Maurizio Lenzerini. TBox
and ABox reasoning in expressive description logics. In
Luigia C. Aiello, John Doyle, and Stuart C. Shapiro,
editors, Proc. of the 5th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR-96),
pages 316–327. Morgan Kaufmann, Los Altos, 1996.

[17] Guozhu Dong and Jianwen Su. Conjunctive query con-
tainment with respect to views and constraints. Infor-
mation Processing Letters, 57(2):95–102, 1996.

[18] Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, and Andrea Schaerf. AL-log: Integrating data-
log and description logics. J. of Intelligent Information
Systems, 1998. To appear.

[19] M. Fattorosi-Barnaba and F. De Caro. Graded modal-
ities I. Studia Logica, 44:197–221, 1985.

[20] Michael J. Fischer and Richard E. Ladner. Proposi-
tional dynamic logic of regular programs. J. of Com-
puter and System Sciences, 18:194–211, 1979.

[21] A. Gupta and I. S. Mumick. Maintenance of mate-
rialized views: Problems, techniques, and applications.
IEEE Bulletin of the Technical Committee on Data En-
gineering, 18(2):3–18, 1995.

[22] A. Gupta, Y. Sagiv, J.D. Ullman, and J. Widom. Con-
straint checking with partial information. In Proc. of
the 13th ACM SIGACT SIGMOD SIGART Sym. on
Principles of Database Systems (PODS-94), 1994.

[23] David Harel. Recurring dominoes: Making the highly
undecidable highly understandable. Annals of Discrete
Mathematics, 24:51–72, 1985.

[24] Richard Hull. Managing semantic heterogeneity in
databases: A theoretical perspective. In Proc. of the
16th ACM SIGACT SIGMOD SIGART Sym. on Prin-
ciples of Database Systems (PODS-97), 1997.

[25] Yannis E. Ioannidis and Raghu Ramakrishnan. Con-
tainment of conjunctive queries: Beyond relations as
sets. ACM Trans. on Database Systems, 20(3):288–324,
1995.

[26] Anthony C. Klug. On conjunctive queries containing
inequalities. J. of the ACM, 35(1):146–160, 1988.

[27] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In
J. Van Leeuwen, editor, Handbook of Theoretical Com-
puter Science – Formal Models and Semantics, pages
789–840. Elsevier Science Publishers (North-Holland),
Amsterdam, 1990.

[28] Alon Y. Levy and Marie-Christine Rousset. CARIN: A
representation language combining Horn rules and de-
scription logics. In Proc. of the 12th European Conf. on
Artificial Intelligence (ECAI-96), pages 323–327, 1996.

[29] Alon Y. Levy, Divesh Srivastava, and Thomas Kirk.
Data model and query evaluation in global information
systems. J. of Intelligent Information Systems, 5:121–
143, 1995.

[30] Alon Y. Levy and Dan Suciu. Deciding containment
for queries with complex objects. In Proc. of the 16th
ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS-97), pages 20–31, 1997.

[31] John C. Mitchell. The implication problem for func-
tional and inclusion dependencies. Information and
Control, 56:154–173, 1983.

[32] Y. Sagiv and M. Yannakakis. Equivalences among rela-
tional expressions with the union and difference opera-
tors. J. of the ACM, 27(4):633–655, 1980.

[33] Jeffrey D. Ullman. Information integration using logical
views. In Proc. of the 6th Int. Conf. on Database Theory
(ICDT-97), number 1186 in Lecture Notes in Computer
Science, pages 19–40. Springer-Verlag, 1997.

[34] Ron van der Meyden. The Complexity of Querying In-
definite Information. PhD thesis, Rutgers University,
1992.

[35] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic
techniques for modal logics of programs. J. of Computer
and System Sciences, 32:183–221, 1986. A preliminary
version appeared in Proc. of the 16th ACM SIGACT
Symp. on Theory of Computing (STOC-84).

[36] Jennifer Widom. Special issue on materialized views
and data warehousing. IEEE Bulletin on Data Engi-
neering, 18(2), 1995.

