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Abstract

Class-based languages express knowledge in terms of
objects and classes, and have inspired a huge number of
formalisms in computer science. Description logics form a
family of both class-based and logic-based knowledge rep-
resentation languages which allow for modeling an appli-
cation domain in terms of objects, classes and relationships
between classes, and for reasoning about them. This paper
presents an overview of the research carried out in the last
years in description logics, with the main goal of illustrat-
ing how these logics provide the foundations for class-based
knowledge representation formalisms.

1 Introduction

There are several families of knowledge representation
languages, including logic-based, rule-based, and class-
based languages. Class-based languages express knowledge
in terms of objects and classes, and have inspired a huge
number of formalisms in several areas of computer science,
including programming languages, database models, and
software specification languages. Description logics (DLs)
[24, 64, 44, 5]1 form a family of languages for modeling an
application domain in terms of objects, classes and relation-
ships between classes, and for reasoning about them. Dif-
ferently from object-oriented languages used in databases
and programming languages, DLs permit the specification
of a domain by providing the definition of classes, and by
describing classes using a rich set of logical operators. They
are therefore both class-based and logic-based knowledge
representation languages. Notably, when using DLs, one
can specify not only the necessary conditions that objects
of a given class must obey, but also the sufficient conditions
for an object to belong to a certain class. This feature in-
troduces the possibility of automatically classifying objects

1http://dl.kr.org/

and class descriptions. Indeed, the definition of a class may
imply that it is subsumed by, or is even equivalent to, an-
other class.

One of the main reasoning services of a DL system is to
automatically build the so-called subsumption hierarchy of
classes, i.e., a graph showing all the subsumption relations
between the classes of an application. If one considers that
all class-based languages exploit the notion of inheritance,
and this notion is based on the subsumption relation, one
realizes how important this kind of relation between classes
is in fields such as knowledge representation, databases, and
software engineering.

This paper provides an overview of the salient character-
istics of DLs. Special emphasis is given to illustrating how
such logics provide a foundation for the whole family of
class-based knowledge representation. Also, particular at-
tention is given to the large body of research devoted to the
design of reasoning techniques for DLs, and their computa-
tional characterization. This research work has resulted in
effective automated reasoning systems based on DLs. The
availability of reasoning systems, and the vast number of re-
sults on algorithms and complexity for reasoning in DLs has
stimulated their usage in various domains, including plan-
ning, action representation, software engineering, informa-
tion systems, databases, information integration, and the se-
mantic web.

The paper is organized as follows. In Section 2, we for-
mally introduce DLs, in terms of both syntax and semantics,
and associated reasoning tasks. Section 3 provides a short
overview of the development of research in DLs, pointing
out the aspects that make these logics applicable in several
interesting contexts. Section 4 emphasizes the relationship
with other logics, in particular propositional dynamic log-
ics and modal logics. Section 5 illustrates the main tech-
niques for reasoning in DLs, delving into some details about
automata-based techniques. Finally, Section 6 concludes
the paper, by mentioning several aspects of the research on
DLs that have not been discussed in the previous sections.



2 What is a Description Logic?

The basic elements of DLs are classes (also called con-
cepts) and roles, which denote sets of objects and binary re-
lations, respectively. Concept expressions and role expres-
sions (in the following simply called concepts and roles)
are formed by starting from a set of atomic concepts and
atomic roles, i.e., concepts and roles denoted simply by a
name, and applying concept and role constructs. For a com-
prehensive discussion on the constructs used in DLs, see
[124, 50, 35, 64].

The most expressive DL that we refer to in this paper
is called ALCQIreg . In such logic, concepts and roles are
formed according to the following syntax:

C,C ′ −→ A | ¬C | C � C ′ | ∀R.C | (� nQ.C)
Q −→ P | P−

R,R′ −→ Q | R ∪ R′ | R ◦ R′ | R∗ | id(C)

where A and P denote respectively atomic concepts and
atomic roles, and C and R denote respectively arbitrary
concepts and roles, and n denotes a positive integer. We
use Q to denote basic roles, which for ALCQIreg are ei-
ther atomic or inverses of atomic roles.

We also use the following abbreviations to increase read-
ability:

• ⊥ for A � ¬A (where A is any atomic concept),
• � for A � ¬A,
• (� nR.C) for ¬(� n + 1R.C),
• (= nR.C) for (� nR.C) � (� nR.C),
• C � D for ¬(¬C � ¬D),
• ∃R.C for ¬∀R.¬C.

Let us comment on the constructs of ALCQIreg . Among
the constructs used in forming concept expressions we find
the basic set operators, namely set complement, intersec-
tion, and union. DLs admit a restricted form of quantifi-
cation which is realized through so-called quantified role
restrictions. A quantified role restriction is composed by
a quantifier (existential or universal), a role, and a con-
cept expression. Quantified role restrictions allow one to
represent the relationships existing between the objects in
two concepts. For example, one can characterize the set
of objects all of whose children are male as ∀child.Male,
as well as the set of objects that have at least one male
child as ∃child.Male. Number restrictions are used to con-
strain the number of fillers, i.e., the objects that are in
a certain relationship with a given object. For example,
((= 2 child.Male)) characterizes the set of parents with
exactly two male children. The form used in ALCQIreg ,
called qualified number restriction [79], is a very general
one. It allows one to pose restrictions on the number of ob-
jects connected through a certain role, counting only those
objects that satisfy a certain condition.

In addition to concept forming constructs, ALCQIreg

provides the inverse role construct, which allows us to de-
note the inverse of a given relation, and the constructs for
denoting regular expressions on basic roles.

From the semantic point of view, concepts are inter-
preted as subsets of a domain, and roles as binary relations
over that domain. An interpretation I = (∆I , ·I) over a set
A of atomic concepts and a set P of atomic roles consists of
a nonempty set ∆I (the domain of I) and a function ·I (the
interpretation function of I) that maps every atomic con-
cept A ∈ A to a subset AI of ∆I (the set of instances of A)
and every atomic role P ∈ P to a subset P I of ∆I × ∆I

(the set of instances of P ). The interpretation function can
then be extended to arbitrary concepts and roles as follows2:

(¬C)I = ∆I \ CI

(C � C ′)I = CI ∩ C ′I

(∃R.C)I = {o ∈ ∆I | ∃o′. (o, o′) ∈ RI ∧ o′ ∈ CI}
(� nR.C)I = {o ∈ ∆I | �{o′ | (o, o′) ∈ RI

∧ o′ ∈ CI} ≥ n

(P−)I = {(o, o′) ∈ ∆I × ∆I | (o′, o) ∈ P I}
(R ∪ R′)I = (R)I ∪ (R′)I

(R ◦ R′)I = (R)I ◦ (R′)I

(R∗)I = reflexive transitive closure of (R)I

(id(C))I = {(o, o) ∈ ∆I × ∆I | o ∈ CI}

Usually, in DLs, a knowledge base is formed by two
components, traditionally called TBox and ABox. A TBox,
expresses intensional knowledge about classes and rela-
tions, and an ABox expresses extensional knowledge about
individual objects. Here we concentrate on intensional
knowledge only, and therefore we identify a knowledge
base with a TBox.

Formally, an ALCQIreg knowledge base is constituted
by a finite set of inclusion assertions of the form

C1 � C2

with C1 and C2 arbitrary concept expressions.
The semantics of a knowledge base is specified through

the notion of satisfaction of assertions. An interpretation
I satisfies the assertion C1 � C2 if CI

1 ⊆ CI
2 . An inter-

pretation is a model of a knowledge base if it satisfies all
assertions in it. A knowledge base is satisfiable if it admits
a model.

Assertions of the form above are usually called arbitrary
assertions. Special cases of assertions are also of interest. A
primitive inclusion assertion is an inclusion assertion of the
form A � C, which specifies (by means of C) only neces-
sary conditions for an object to be an instance of the atomic
concept A. Symmetrically, an assertion C � A specifies

2We use �S to denote the cardinality of a set S.



a sufficient condition for an object to be an instance of A.
An equality assertion A ≡ C, which corresponds to the pair
of assertions A � C and C � A, specifies both necessary
and sufficient conditions for the instances of A. Equality
assertions are typical of the frame systems from which DLs
originate, where assertions of this kind (without cycles, see
later) are used to define a taxonomy of concepts.

The basic reasoning tasks with respect to a given knowl-
edge base that we consider, are the following:

• Knowledge base satisfiability is the problem of decid-
ing whether a knowledge base K is satisfiable, i.e.,
whether K admits at least one model.

• Concept consistency is the problem of deciding
whether a concept C is consistent in a KB K, i.e.,
whether K admits a model I such that CI �= ∅.

• Concept subsumption is the problem of deciding
whether a KB K implies an inclusion assertion C1 �
C2 (written as K |= C1 � C2), i.e., whether CI

1 ⊆ CI
2

for each model I of K.

The basic reasoning tasks above can be reduced to each
other (provided the language over which the knowledge
base is built is sufficiently expressive). We have that K |=
C1 � C2 can be reformulated as inconsistency of C1�¬C2

in K, while consistency of C in K can be reformulated
as K �|= C � ⊥. In addition, consistency of C in K
can be reformulated as satisfiability of the knowledge base
K ∪ {� � ∃Pnew .C}, where Pnew is a newly introduced
atomic role. Finally, satisfiability of a knowledge base K
can be reformulated as consistency of � in K.

3 Description Logics as a Basis for Class-
based Formalisms

As we said in the introduction, one of the main research
lines of the field of knowledge representation has been con-
cerned with the idea that the knowledge structure should be
expressed in terms of the classes of objects that are of in-
terest in the domain, as well as the relevant relationships
holding among such classes. Consequently, investigation of
suitable formalisms for representing classes and their rela-
tionships, has been carried out since the beginning of the
research on knowledge representation.

The above principle formed the basis for the develop-
ment of the first frame systems and semantic networks.
However, such systems were in general defined informally,
and the associated reasoning tools were strongly dependent
on the implementation strategies. A fundamental step to-
wards a logic-based characterization of such systems has
been accomplished through the work on the KL-ONE sys-
tem [28], which collected many of the ideas stemming from
earlier semantic networks and frame-based systems, and

provided a logical basis for interpreting objects, classes (or
concepts), and relationships (or roles) between them (see
for example, [124]). A basic goal of such a logical re-
construction was the precise characterization of the set of
constructs used to build class and role expressions. Provid-
ing a formal meaning to the constructs of the representa-
tion language has been fundamental, but knowledge repre-
sentation systems should also come with reasoning proce-
dures that are sound and complete with respect to a spec-
ified formal semantics, and that are precisely character-
ized in terms of computational complexity. With the ar-
ticle “The tractability of subsumption in Frame-Based De-
scription Languages” by [26], a research line addressing the
tradeoff between the expressiveness of KL-ONE like lan-
guages and the computational complexity of reasoning was
originated. In fact, it was shown that an apparently minor
extension of the language could make the basic deduction
problem in the language computationally hard (even unde-
cidable). [26] is now generally considered as the first paper
on DLs. Many subsequent papers addressed the question
of the computational complexity of reasoning in DLs in a
simplified context where both the TBox and the ABox are
empty [96, 112, 60, 64, 61]. This is not surprising, since
these works aimed at studying the language constructs in
isolation, with the goal of singling out their impact on the
complexity of subsumption between concept expressions.
After more than a decade, this investigation is basically
completed, and we have now a global picture of the expres-
siveness/complexity trade-off. It is worth mentioning that
these results have led to the development of successful DL
systems, such as CLASSIC [27], that have been extremely
important in showing the effectiveness of applying DLs in
real world applications.

In the last years, the investigation on DLs has been
driven by the goal of applying class-based representation
formalisms in several areas, such as planning [123], action
representation [2], software engineering [58], information
systems [49], databases [24, 19, 113], information integra-
tion [45], intelligent access to the web [91, 23], semantic
web [69].

The modeling requirements arising in the above areas
have stimulated the need of incorporating increasingly ex-
pressive representation mechanisms, and to adapt/extend
the corresponding reasoning techniques:

• The goal of capturing the semantics of database mod-
els and reasoning about data schemas has stressed the
importance of number restrictions, and cyclic asser-
tions in the knowledge base [47, 48]. Similar require-
ments are emerged with the need of representing on-
tologies in the context of the semantic web [82].

• Information integration systems require inclusion as-
sertions not only on concepts, but also on rela-
tions [118, 45, 75].



• Semistructured data, used in applications such as dig-
ital libraries, Internet information systems, etc., re-
quire the ability to represent data whose structure is not
rigid and strictly typed as in conventional database sys-
tems. Models for semi-structured data represent data
as graphs with labeled edges, and adopt flexible typ-
ing schemes in order to classify data [33]. A special
case of such models is XML [29], which is becom-
ing the standard for exchanging data on the web. In
general, correctly modeling such typing schemes calls
for the use of fixpoints in the representation formal-
ism [38, 40].

• UML [106] is nowadays the standard language for the
analysis phase of software and information system de-
velopment. CASE tools that perform automated rea-
soning on UML schemas (for example, to test consis-
tency or redundancy) would be of great interest. Fully
capturing UML schemas in DLs requires inverse roles,
number restrictions, and general fixpoints on concepts
for modeling recursive structures [39].

Virtually all the above characteristics point out the need
for dealing with cyclic assertions in the knowledge base.
The presence of a cycles in the assertions of a knowledge
base does have a strong impact on the DL. Different types
of semantics can be adopted, which differ in the interpre-
tation of cycles (but coincide for acyclic knowledge bases).
The semantics specified in the previous section is called de-
scriptive semantics. Alternatively, fixpoint semantics have
been considered, in which the assertions are viewed as
equations and only those interpretations that are (least or
greatest) fixpoints of the equations are accepted as mod-
els. For a detailed discussion on the different semantics,
see [98, 31, 30, 111, 56].

The importance of dealing with arbitrary assertions mo-
tivated the strong interest in the problem of reasoning with
TBox assertions without the acyclicity assumption [98, 3,
111, 51, 36, 81, 84]. One important outcome of this line of
research is that, with this new feature, DLs have been shown
to provide a unifying formalism for class-based knowledge
representation [48]. Note that, when cycles are permit-
ted, limiting the expressive power of the language with the
goal of gaining tractability is useless, because the power
of TBox assertions alone generally leads to high complex-
ity in the inference mechanisms even in simple languages.
For this reason, the investigation on DLs has turned towards
very powerful languages for expressing concepts and roles,
where the property of interest is no longer tractability of
reasoning, but rather decidability [31, 35, 50].

4 Relationship with other Logics

In 1991, a seminal paper [110] pointed out a tight corre-
spondence between DLs and propositional dynamic logics

(PDLs)3, which are modal logics specifically designed for
reasoning about program schemes [86]. In particular, [110]
showed that ALCIreg can be considered a notational vari-
ant of converse PDL. This observation allowed for exploit-
ing the results on converse PDL for instantly closing long
standing issues regarding the decidability and complexity
of both satisfiability and logical implication in ALCreg and
ALCIreg .4

The correspondence is based on the similarity between
the interpretation structures of the two kinds of logics: at
the extensional level, objects in DLs correspond to states
in PDLs, whereas links between two objects correspond to
state transitions. At the intensional level, concepts corre-
spond to propositions, and roles correspond to programs.
Formally, the correspondence is realized through a one-to-
one and onto mapping τ from DLs concepts and roles to
PDLs formulae and programs, respectively. In particular
the mapping τ from ALCIreg to converse PDL is defined
inductively as follows:

τ(A) = A τ(P ) = P
τ(¬C) = ¬τ(C) τ(R−) = τ(R)−

τ(C � C′) = τ(C) ∧ τ(C′) τ(R � R′) = τ(R) ∪ τ(R′)
τ(C � C′) = τ(C) ∨ τ(C′) τ(R ◦ R′) = τ(R); τ(R′)
τ(∀R.C) = [τ(R)]τ(C) τ(R∗) = τ(R)∗

τ(∃R.C) = 〈τ(R)〉τ(C) τ(id(C)) = τ(C)?

Axioms in DLs TBoxes correspond in the obvious way to
axioms in PDLs. Moreover all forms of reasoning (satisfi-
ability, logical implication, etc.) have their natural counter-
part in PDLs.

One of the most important contributions of the corre-
spondence is the so-called internalization theorem, which
says that every TBox can be “internalized” into a single con-
cept, i.e., it is possible to build a concept that expresses all
the axioms of the TBox [110]. In doing so we rely on the
ability to build a “universal” role, i.e., a role linking all indi-
viduals in a (connected) model. Indeed, a universal role can
be expressed by using regular expressions over roles, and in
particular the union of roles and the reflexive-transitive clo-
sure. The possibility of internalizing the TBox when deal-
ing with expressive DLs tells us that for such DLs reasoning
with TBoxes, i.e., logical implication, is no harder that rea-
soning with a single concept.

As a consequence of the correspondence, the large body
of research on PDLs, and more generally modal logics, has
been exploited in the context of DLs. E.g., the correspon-
dence with modal mu-calculus [111, 52, 56] has settled the
issue of which semantics to adopt for cyclic knowledge
bases. Conversely, the work on DLs has lead to a number of
interesting extensions of PDLs in terms of those constructs
that are typical of DLs and but not well-studied in PDLs.

3We use the term “propositional dynamic logics” in a slightly more
general sense than usual, so as to include the basic multi-modal logic Ki,
and modal mu-calculus.

4In fact, the decidability of ALCreg without the id(C) construct was
independently established in [3].



Several constructs typical of DLs have a natural coun-
terpart in PDLs. Functional restrictions on roles [51] used
in DLs are closely related to deterministic programs in
PDLs [16]. Observe however that a functional restriction
would impose that a program is deterministic (has a sin-
gle execution) locally, i.e., the program is deterministic if it
starts from a state where the functional restriction holds.

Qualified number restrictions on roles [80, 54, 55] corre-
spond directly to graded modalities studied in modal log-
ics [119, 120, 68, 70]. Note that first results on graded
modalities in full-fledged PDLs were obtained from the
correspondence with DLs. More recently, in the context
of DLs, mu-calculus extended with inverses and graded
modalities has also been studied [39].

In DLs ways to denote single objects are often consid-
ered. ABoxes, i.e., collections of membership assertions
(see, e.g., [108, 55]), and constructs involving single in-
dividuals, such as ONE-OF or FILLS [109], are the most
common ones. Recently, the notion of object name, i.e.,
a concept that has a single instance, has attracted interest
in DLs [50, 116]. These names corresponds to nominals
in modal logics [22, 73, 21, 105, 32]. PDLs with nomi-
nals are sometimes called combinatory PDLs [99, 74, 100].
The results on names obtained in the context of DLs [50]
closed some open problems related to combinatory PDLs,
by characterizing the computational complexity of deter-
ministic combinatory PDL , and establishing the decidabil-
ity and characterizing the computational complexity of con-
verse combinatory PDL . Modal mu-calculus extended with
nominals has been investigated in the context of DLs [107].
Finally the DLs that include ways to denote both a uni-
versal modality and nominals, such as those in [50, 107],
are tightly related to so-called hybrid logics, a family of
logics that has attracted the interest of modal logicians re-
cently [1].

It is worth mentioning that, besides the above results, the
correspondence between DLs and modal logics is generat-
ing quite interesting works, such as [88] on expressiveness
characterization of DLs that are not propositionally closed,
or [76] that looks at the guarded fragments as forms of DLs
with n-ary relations, or [12] on very general conditions for
combining DLs constructs without losing decidability, just
to mention a few.

5 Reasoning Techniques

The study of suitable techniques for solving the reason-
ing problems in DLs has been developed starting with se-
vere restrictions on the expressiveness of the language and
on the form of the knowledge base. The reasoning tech-
niques have then evolved over time, from specialized, ad-
hoc methods to fully general ones. We discuss the various
approaches that have been proposed.

5.1 Structural Techniques

The first approaches were developed under the assump-
tion that one can embody the knowledge represented in the
terminology directly into concept expressions, rather than
assertions. Therefore, subsumption on concept expressions
was regarded as the basic reasoning task. The proposed
techniques were based on structural comparisons concept
expressions in simple languages [26, 102, 96, 97]. At the
heart of structural comparison is the idea that, if the two
concept expressions to be compared are made of subex-
pressions, one can compare separately one subexpression
of a concept with all those of the others. For example, the
structural algorithm for subsumption checking in [26, 90],
which applies to the subset of ALCQIreg comprising only
the constructs C � C ′, ∀P .C, and ∃P .�, works in two
phases: First, concepts are rewritten in a normal form con-
sisting of a conjunction of atomic concepts, concepts of the
form ∃P .� and, for each role P , at most one concept of
the form ∀P .C ′, where C ′ is again normalized. Then, the
structures of the normalized concepts are compared, which
can be done by considering one conjunct from each concept
at a time. The algorithm works in time linear in the size
of the two concepts (provided subexpressions are ordered).
The algorithm can be extended straightforwardly with the
same complexity also to a few constructs, e.g., atomic nega-
tion. For more expressive languages, however, structural
techniques fail since they do not capture the complex in-
teraction that may occur between different constructs. Ex-
ceptions, obtained by considering particular combinations
of constructs are reported in [101, 97].

5.2 Tableaux-based Techniques

Structural subsumption techniques are applicable only
to relatively weak DLs, and only for reasoning on con-
cept expressions, rather than assertions in a knowledge base.
In [112] the notion of constraint system was proposed as a
general technique to reason in more expressive DLs. Sub-
sequent investigations showed that constraint systems can
be seen as specialized forms of tableaux. Many results on
algorithms for reasoning on concept expressions, and their
complexity were then derived using tableau-based tech-
niques [60, 80, 59, 63, 61]. Such techniques, besides being
intuitively appealing, provided a useful framework for mod-
ularizing the problem of designing reasoning algorithms for
languages formed by different sets on constructs. In fact,
a tableau-based algorithm essentially amounts to providing
an expansion rule for each of the constructs in the language,
and then showing the correctness of each rule and the termi-
nation of the expansion process. The algorithms for concept
satisfiability and subsumption obtained in this way have
also lead to actual implementations, by application of clever
control strategies and optimization techniques [96, 103, 7].



In [4, 7, 31], tableau-based techniques for reasoning on
arbitrary inclusion assertions have been proposed. Such
techniques [13] have later been refined and optimized, and
have led to the development of various systems for reason-
ing in expressive DLs in the presence of assertions [81, 84,
83, 78, 77].

Tableaux techniques can also be used in the presence of
regular expressions over roles [3] (see also [104, 57] in the
context of PDLs). However, current DL reasoning systems
still do not support regular expressions over roles. More-
over, to obtain tableaux algorithms that are computation-
ally tight (i.e., EXPTIME-complete) in the presence of arbi-
trary inclusion assertions, requires quite sophisticated tech-
niques [66], which are not implemented in actual systems.

5.3 Automata-based Techniques

The most successful techniques for reasoning in expres-
sive DLs that include forms of fixpoints (regular expres-
sions, well-foundedness constraints, fixpoint constructs) are
automata-theoretic. In particular, the correspondence be-
tween PDLs and DLs described in Section 4, has led to
the application, also in the context of DLs, of techniques
based on automata on infinite trees. Such techniques, which
rely on the tree-model property shared by most PDLs (and
DLs), have been used to devise computationally optimal
reasoning procedures for virtually all variants of expressive
PDLs [114, 115, 122, 121]. Recently, they have been ex-
tended and adapted to take into account typical constructs
of DLs, such as qualified number restrictions and object
names [39, 107, 43].

Here we give some detail on techniques based on two-
way alternating automata on infinite trees (2ATAs), intro-
duced originally in [121] for reasoning in the modal mu-
calculus with converse. 2ATAs provide a very elegant and
effective formal tool for addressing reasoning in expressive
DLs. In particular, differently from usual (one-way non-
deterministic) tree automata [115], they provide an high
level description of the automaton computation that ab-
stracts from the combinatorics and allows one to concen-
trate on the logical aspects. As a result, the encoding of
a DL concept (to be checked for satisfiability) into an au-
tomaton (to be checked for non-emptiness) is intuitive (in-
deed, comparable to tableaux rules), modular (since each
construct is dealt with separately), short (since the encoding
is polynomial), and computationally adequate (i.e., optimal
w.r.t. the complexity class of reasoning).

Most of the recent results on reasoning in expressive
DLs can be easily reconstructed using techniques based on
2ATAs. Here we illustrate how to reduce ALCFIreg con-
cept satisfiability (and hence, in virtue of internalization,
all other reasoning services) to non-emptiness of 2ATAs.
ALCFIreg is a restrictions of ALCQIreg in which the only
allowed number restrictions are of the form (� 1Q.�),

which we abbreviate with (� 1Q). The construction for
ALCFIreg can be easily extended to deal with other con-
structs and illustrates the main ideas of such a reduction.

Infinite trees are represented as prefix closed (infinite)
sets of words over N (the set of positive natural numbers).
Formally, an infinite tree is a set of words T ⊆ N

∗, such
that if x·c ∈ T , where x ∈ N

∗ and c ∈ N, then also x ∈ T .
The elements of T are called nodes, the empty word ε is the
root of T , and for every x ∈ T , the nodes x·c, with c ∈ N,
are the successors of x. By convention we take x·0 = x,
and x·i·−1 = x. The branching degree d(x) of a node x
denotes the number of successors of x. If the branching
degree of all nodes of a tree is bounded by k, we say that
the tree has branching degree k. An infinite path P of T is
a prefix-closed set P ⊆ T such that for every i ≥ 0 there
exists a unique node x ∈ P with |x| = i. A labeled tree
over an alphabet Σ is a pair (T, V ), where T is a tree and
V : T → Σ maps each node of T to an element of Σ.

Alternating automata on infinite trees are a generaliza-
tion of nondeterministic automata on infinite trees, intro-
duced in [95]. They allow for an elegant reduction of de-
cision problems for temporal and program logics [67, 20].
Let B(I) be the set of positive boolean formulae over I ,
built inductively by applying ∧ and ∨ starting from true,
false, and elements of I . For a set J ⊆ I and a for-
mula ϕ ∈ B(I), we say that J satisfies ϕ if and only if,
assigning true to the elements in J and false to those in
I \ J , makes ϕ true. For a positive integer k, let [k] =
{−1, 0, 1, . . . , k}. A two-way alternating tree automaton
(2ATA) running over infinite trees with branching degree k,
is a tuple A = 〈Σ, Q, δ, q0, F 〉, where Σ is the input alpha-
bet, Q is a finite set of states, δ : Q × Σ → B([k] × Q)
is the transition function, q0 ∈ Q is the initial state, and F
specifies the acceptance condition.

The transition function maps a state q ∈ Q and an input
letter σ ∈ Σ to a positive boolean formula over [k]×Q. In-
tuitively, if δ(q, σ) = ϕ, then each pair (c, q′) appearing in
ϕ corresponds to a new copy of the automaton going to the
direction suggested by c and starting in state q′. For exam-
ple, if k = 2 and δ(q1, σ) = (1, q2) ∧ (1, q3) ∨ (−1, q1) ∧
(0, q3), when the automaton is in the state q1 and is read-
ing the node x labeled by the letter σ, it proceeds either by
sending off two copies, in the states q2 and q3 respectively,
to the first successor of x (i.e., x·1), or by sending off one
copy in the state q1 to the predecessor of x (i.e., x·−1) and
one copy in the state q3 to x itself (i.e., x·0).

A run of a 2ATA A over a labeled tree (T, V ) is a labeled
tree (Tr, r) in which every node is labeled by an element of
T ×Q. A node in Tr labeled by (x, q) describes a copy of A
that is in the state q and reads the node x of T . The labels of
adjacent nodes have to satisfy the transition function of A.
Formally, a run (Tr, r) is a T × Q-labeled tree satisfying:

1. ε ∈ Tr and r(ε) = (ε, q0).



2. Let y ∈ Tr, with r(y) = (x, q) and δ(q, V (x)) =
ϕ. Then there is a (possibly empty) set S =
{(c1, q1), . . . , (cn, qn)} ⊆ [k] × Q such that:

• S satisfies ϕ and

• for all 1 ≤ i ≤ n, we have that y·i ∈ Tr, x·ci is
defined, and r(y·i) = (x·ci, qi).

A run (Tr, r) is accepting if all its infinite paths satisfy
the acceptance condition5. Given an infinite path P ⊆ Tr,
let inf (P ) ⊆ Q be the set of states that appear infinitely
often in P (as second components of node labels). We con-
sider here Büchi acceptance conditions. A Büchi condition
over a state set Q is a subset F of Q, and an infinite path P
satisfies F if inf (P ) ∩ F �= ∅.

The non-emptiness problem for 2ATAs consists in deter-
mining, for a given 2ATA, whether the set of trees it ac-
cepts is nonempty. In [121] it is shown that deciding non-
emptiness of a 2ATA with n states and an input alphabet
with m elements can be done in time exponential in n and
polynomial in m.

We show how to decide satisfiability of ALCFIreg con-
cepts by reducing it to nonemptiness of 2ATAs. To this end
we first define the (syntactic) closure for ALCFIreg , which
extends the standard Fischer-Ladner for converse PDL [71],
by treating functional restrictions as atomic concepts. For
technical reasons we include in the closure also additional
elements representing basic roles and their negations. In
particular, the closure CLF (C0) of an ALCFIreg con-
cept C0 is defined as the smallest set of concepts such that
C0 ∈ CLF (C0) and such that (assuming � and ∀ to be ex-
pressed by means of � and ∃, and using Q− to denote P
when Q = P−)6:

C ∈ CLF (C0) ⇒ ¬C ∈ CLF (C0)
(if C is not of the form ¬C ′)

¬C ∈ CLF (C0) ⇒ C ∈ CLF (C0)
C � C ′ ∈ CLF (C0) ⇒ C, C ′ ∈ CLF (C0)
∃R.C ∈ CLF (C0) ⇒ C ∈ CLF (C0)
∃(R ∪ R′).C ∈ CLF (C0) ⇒ ∃R.C, ∃R′.C ∈ CLF (C0)
∃(R ◦ R′).C ∈ CLF (C0) ⇒ ∃R.∃R′.C ∈ CLF (C0)
∃R∗.C ∈ CLF (C0) ⇒ ∃R.∃R∗.C ∈ CLF (C0)
∃id(C).C ′ ∈ CLF (C0) ⇒ C ∈ CLF (C0)
∃Q.C ∈ CLF (C0) ⇒ Q, Q−, ¬Q, ¬Q− ∈ CLF (C0)

The cardinality of CLF (C0) is linear in the length of C0.
It can be shown, following the lines of the proof in [122]

for converse deterministic PDL, that ALCFIreg enjoys the
tree-model property, i.e., every satisfiable concept has a
model that has the structure of a (possibly infinite) tree with
branching degree linearly bounded by the size of the con-
cept. More precisely, the following result holds.

5No condition is imposed on the finite paths of the run.
6We remind that C and C′ stand for arbitrary concepts, and R and R′

stand for arbitrary roles.

Theorem 5.1 Every satisfiable ALCFIreg concept C0 has
a tree model with branching degree kC0 equal to twice the
number of elements of CLF (C0).

This property allows us to check satisfiability of an
ALCFIreg concept C0 by building a 2ATA that accepts the
(labeled) trees that correspond to tree models of C0. Let
A be the set of atomic concepts appearing in C0, and B
the set of atomic roles appearing in C0 and their inverses.
We construct from the ALCFIreg concept C0 a 2ATA AF

C0

that checks that C0 is satisfied at the root of the input tree.
We represent in each node of the tree the information about
which atomic concepts are true in the node, and about the
basic role that connects the predecessor of the node to the
node itself (except for the root). More precisely, we label
each node x with a set σ of atomic concepts and basic roles.
The atomic concepts in σ are those that are true in x, and
(for ALCFIreg ) σ contains, except for the root, a single ba-
sic role, which is the one through which x is reached from
its predecessor. That is, if Q stands for an atomic role P ,
then x is reached from its predecessor through P , and if
Q stands for P−, then the predecessor is reached from x
through P . In the root, σ contains no basic role.

Given an ALCFIreg concept C0, we construct an au-
tomaton AF

C0
that accepts trees that correspond to tree mod-

els of C0. For technical reasons, it is convenient to con-
sider concepts in negation normal form (i.e., negations are
pushed inside as much as possible). It is easy to check
that the transformation of a concept into an equivalent one
in negation normal form can be performed in linear time
in the size of the concept. Below, we denote by nnf (C)
the negation normal form of C, and with CLnnf

F (C0) the
set {nnf (C) | C ∈ CLF (C0)}. The automaton AF

C0
=

(Σ, S, δ, sini , F ) is defined as follows.

• The alphabet is Σ =
⋃

Q∈B 2A∪{Q}, i.e., all sets con-
sisting of atomic concepts and at most one basic role.
This corresponds to labeling each node of the tree with
a truth assignment to the atomic concepts, and with the
role used to reach the node from its predecessor.

• The set of states is S = {sini} ∪ CLnnf
F (C0), where

sini is the initial state7. Intuitively, when the automa-
ton is in a state σ ∈ CLnnf

F (C0) and visits a node x
of the tree, this means that the automaton has to check
that σ holds in x. When σ is an atomic concept A
(resp. a basic role Q), this amounts to check that the
node label contains A (resp. Q).

• The set F of final states is the set of concepts in
CLnnf

F (C0) of the form ∀R∗.C. Observe that concepts

7Recall that CLnnf
F (C0) contains also the atomic roles appearing in

C0 and their inverses.



of the form ∃R∗.C are not final states, and this is suf-
ficient to guarantee that such concepts are satisfied in
all accepting runs of the automaton.

• The transition function δ is defined below.

1. For each σ ∈ 2A, i.e., containing no basic role, there
is a transition from the initial state

δ(sini , σ) = (0,nnf (C0))

Such a transition checks that the root of the tree is not
labeled with any basic role, and moves to the state that
verifies C0 in the root itself.

2. For each σ ∈ Σ, and each atomic concept or basic role
s ∈ A ∪ B there are transitions

δ(s, σ) =
{

true if s ∈ σ
false if s �∈ σ

δ(¬s, σ) =
{

true if s �∈ σ
false if s ∈ σ

For s ∈ A, such transitions check the truth value of
atomic concepts and their negations in the current node
of the tree. For s ∈ B, such transitions check through
which role the current node is reached.

3. For the concepts in CLnnf
F (C0) and each σ ∈ Σ there

are transitions

δ(C � C ′, σ) = (0, C) ∧ (0, C ′)
δ(C � C ′, σ) = (0, C) ∨ (0, C ′)
δ(∀Q.C, σ) = ((0,¬Q−) ∨ (−1, C)) ∧∧

1≤i≤kC0
((i,¬Q) ∨ (i, C))

δ(∀(R ∪ R′).C, σ) = (0,∀R.C) ∧ (0,∀R′.C)
δ(∀(R ◦ R′).C, σ) = (0,∀R.∀R′.C)

δ(∀R∗.C, σ) = (0, C) ∧ (0,∀R.∀R∗.C)
δ(∀id(C).C ′, σ) = (0,nnf (¬C)) ∨ (0, C ′)

δ(∃Q.C, σ) = ((0, Q−) ∧ (−1, C)) ∨∨
1≤i≤kC0

((i, Q) ∧ (i, C))
δ(∃(R ∪ R′).C, σ) = (0,∃R.C) ∨ (0,∃R′.C)
δ(∃(R ◦ R′).C, σ) = (0,∃R.∃R′.C)

δ(∃R∗.C, σ) = (0, C) ∨ (0,∃R.∃R∗.C)
δ(∃id(C).C ′, σ) = (0, C) ∧ (0, C ′)

All such transitions, except for those involving ∀R∗.C
and ∃R∗.C, inductively decompose concepts and
roles, and move to appropriate states of the automaton
and nodes of the tree. The transitions involving ∀R∗.C
treat ∀R∗.C as the equivalent concept C �∀R.∀R∗.C,
and the transitions involving ∃R∗.C treat ∃R∗.C as the
equivalent concept C � ∃R.∃R∗.C.

4. For each concept of the form (� 1Q) in CLnnf
F (C)

and each σ ∈ Σ there is a transition

δ((� 1Q), σ) =
((0, Q−) ∧

∧
1≤i≤kC0

(i,¬Q)) ∨
((0,¬Q−) ∧

∧
1≤i<j≤kC0

((i,¬Q) ∨ (j,¬Q)))

Such transitions check that, for a node x labeled with
(� 1Q), there exists at most one node (among the
predecessor and the successors of x) reachable from
x through Q.

5. For each concept of the form ¬(� 1Q) in CLnnf
F (C)

and each σ ∈ Σ there is a transition

δ(¬(� 1Q), σ) =
((0, Q−) ∧

∨
1≤i≤kC0

(i, Q)) ∨∨
1≤i<j≤kC0

((i, Q) ∧ (j,Q))

Such transitions check that, for a node x labeled with
¬(� 1Q), there exist at least two nodes (among the
predecessor and the successors of x) reachable from x
through Q.

A run of the automaton AF
C0

on an infinite tree starts
in the root checking that C0 holds there (item 1 above). It
does so by inductively decomposing nnf (C0) while appro-
priately navigating the tree (item 3) until it arrives to atomic
concepts, functional restrictions, and their negations. These
are checked locally (items 2, 4 and 5). Concepts of the form
∀R∗.C and ∃R∗.C are propagated using the equivalent con-
cepts C � ∀R.∀R∗.C and C � ∃R.∃R∗.C, respectively. It
is only the propagation of such concepts that may gener-
ate infinite branches in a run. Now, a run of the automaton
may contain an infinite branch in which ∃R∗.C is always
resolved by choosing the disjunct ∃R.∃R∗.C, without ever
choosing the disjunct C. This infinite branch in the run cor-
responds to an infinite path in the tree where R is iterated
forever and in which C is never fulfilled. However, the se-
mantics of ∃R∗.C requires that C is fulfilled after a finite
number of iterations of R. Hence such an infinite path can-
not be used to satisfy ∃R∗.C. The acceptance condition of
the automaton, which requires that each infinite branch in
a run contains a state of the form ∀R∗.C, rules out such
infinite branches in accepting runs. Indeed, a run always
deferring the fulfillment of C will contain an infinite branch
where all states have the form ∃R1. · · · ∃Rn.∃R∗.C, with
n ≥ 0 and R1 ◦ · · · ◦ Rn a postfix of R. Observe that the
only remaining infinite branches in a run are those that arise
by propagating concepts of the form ∀R∗.C indefinitely of-
ten. The acceptance condition allows for such branches.

Given a labeled tree T = (T, V ) accepted by AF
C0

, one
can define an interpretation IT that is a model of C0. Con-
versely, given a tree model I of C0 with branching degree
kC0 , one can obtain a labeled tree TI (with branching de-
gree kC0) that is accepted by AF

C0
. Hence, an ALCFIreg

concept C0 is satisfiable if and only if the set of trees ac-
cepted by AF

C0
is not empty. It follows that we can use

algorithms for nonemptiness of 2ATAs to check satisfiabil-
ity in ALCFIreg . It turns out that such a decision pro-
cedure is indeed optimal w.r.t. the computational complex-
ity. The 2ATA AF

C0
has a number of states that is linear



in the size of C0, while the alphabet is exponential in the
number of atomic concepts occurring in C0. By the com-
plexity characterization of non-emptiness of 2ATAs men-
tioned above [121], we get an upper bound for reasoning in
ALCFIreg that matches the EXPTIME lower bound.

Theorem 5.2 Concept satisfiability (and hence logical im-
plication) in ALCFIreg is EXPTIME-complete.

The construction above can be adapted to deal with sev-
eral other construct. For example, by adding to the automa-
ton suitable states and transitions that count the number of
successors of a node that satisfy a certain concept, one can
deal with qualified number restrictions [43, 87]. Similarly,
one can easily extend the automaton to handle intersection,
union, and difference of basic roles (i.e., atomic roles and
their inverses) [117, 43]. By changing the acceptance con-
dition of the automaton to a parity condition, one can deal
with fixpoint constructs [121, 39, 107].

6 Conclusions

In the previous sections we provided an overview of the
most important characteristics of DLs, focusing mainly on
the problem of devising automated techniques for reason-
ing in these logics. We conclude the paper by mentioning
several other important issues in the research on DLs, that
have not been addressed here.

• There are other interesting modeling features that have
been investigated in the context of DLs. Among them
we mention: ABox [63], n-ary relations and data de-
pendencies [53, 25, 85, 42], concrete domains [6, 93,
94], queries [89, 92, 17, 65, 37, 41, 18].

• Following the experience of early terminological sys-
tems like [96, 27, 103, 7], DL systems such as
FACT [81] and RACER [78] have proved to be suffi-
ciently efficient to be used in several interesting appli-
cations. Furthermore, several tools exploiting DL rea-
soners in specific domain applications have been built
in recent years [72, 14].

• Besides classical first-order reasoning, other types of
reasoning have been investigated for DLs, such as
nonmonotonic and epistemic reasoning [8, 62], finite
model reasoning [46, 34], unification [9], computation
of the Least Common Subsumers [10], and rewriting
of concept expressions [15, 11].

Finally, we did not discuss applications of DLs in this
paper. The interested reader will find details on this subject
and on all the above mentioned issues in the forthcoming
Handbook on DLs [5].
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[77] V. Haarslev and R. Möller. High performance reasoning
with very large knowledge bases: A practical case study.
In Proc. of IJCAI 2001, pages 161–168, 2001.
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