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Abstract

Recent proposals to improve the quality of interaction with the World Wide Web suggest considering the Web as

a huge semistructured database, so that retrieving information can be supported by the task of database querying.

Under this view, it is important to represent the form of both the network, and the documents placed in the nodes

of the network. However, the current proposals do not pay sufficient attention to represent document structures and

reasoning about them. In this paper, we address these problems by providing a framework where Document Type

Definitions (DTDs) expressed in the eXtensible Markup Language (XML) are formalized in an expressive Description

Logic equipped with sound and complete inference algorithms. We provide methods for verifying conformance of a

document to a DTD in polynomial time, and structural equivalence of DTDs in worst case deterministic exponential

time, improving known algorithms for this problem which were double exponential. We also deal with parametric

versions of conformance and structural equivalence, and investigate other forms of reasoning on DTDs. Finally, we

show how to take advantage of the reasoning capabilities of our formalism in order to perform several optimization

steps in answering queries posed to a document base.

Keywords: knowledge representation, automated reasoning, description logics, XML, SGML

1 Introduction

The view of the World Wide Web as a large information system constituted by a collection of documents
connected by hypertext links, is stimulating many lines of research related to Knowledge Representation and
Databases [25, 32, 26, 28]. One of the most interesting aspects addressed in recent papers is the design of
suitable mechanisms for querying the World Wide Web information system. While the basic mechanism for
retrieving information in this context is browsing and/or searching by keywords, several authors point out
that some form of declarative query formulation would greatly improve the effectiveness of the interaction
with the Web (see for example [32]).

One possibility of pursuing the goal of querying the World Wide Web is to consider the Web as a huge
semi-structured database, so that retrieving information can be supported by the traditional task of database
querying. The result of the query could be some representation of the portion of the Web containing the
information of interest: from such a portion, further interaction may start, possibly based on browsing
and searching. This framework is adopted, for instance, in [26, 28, 32]. One important assumption of these
approaches is that the query process operates on the basis of a representation of the structure of the network.
For example, the query language WebSQL [32] considers the underlying database as constituted by suitable
virtual relations describing the Web in terms of its nodes and its hypertext links.

The current proposals based on the above ideas, however, do not pay sufficient attention to the problem
of representing the structure of documents placed in the nodes of the network. Representing such struc-
tural aspects, and having the ability to reason about them, would help in several tasks related to query
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processing, such as query formulation, optimization and restructuring [15, 35, 21, 32, 23]. The role paid by
the information on both document and link structures corresponds to the one paid by the schema and the
associated constraints in a traditional database system. In this sense, it is important to study suitable mech-
anisms for reasoning about the representation of structural aspects. This reasoning facility is the analogue of
the schema level reasoning techniques in the traditional database setting (constraint inference in relational
database, inheritance and subtyping inference in object-oriented databases, etc.), and enables to improve
both the precision of the information retrieved, by providing flexible additional selection criteria, and the
efficiency of the retrieval process, by allowing for retrieving just a short description of a large document to
decide its relevance, instead of the document itself [31, 29, 30, 15, 35, 32].

In order to address the issue of devising more sophisticated forms of representation and reasoning about
document structures, one must take into account that documents in the World Wide Web are described by
means of ad-hoc languages. Indeed, the structure of a document is typically made explicit by using special
tags to mark its various parts. One of the most prominent formalisms for defining marked-up documents is
the eXtended Markup Language (XML) [8], which is a specialization of the Standard Generalized Markup
Language (SGML) [24]. In XML, the structure of marked-up documents is described by means of Document
Type Definitions (DTDs) which assert the set of “rules” that each document of a given document type must
conform to. Such rules can be formalized by means of Extended Context Free Grammars (ECFGs), in such
a way that marked-up documents that are instances of a DTD are seen as syntax trees of the corresponding
grammar [42]. It is worth noticing that XML DTDs have been used to define wide range of document types,
from very general ones, such as generic HTML documents, to very specific ones, e.g. a specific form of email
messages.

Several types of reasoning about DTDs are of interest for the purpose of supporting query processing over
a document base. Given two DTDs, a natural and fundamental question is whether they are equivalent in
some sense [42, 36]. Under the above formalization of DTDs as ECFGs, this question can be reformulated in
terms of checking various forms of equivalence between grammars. In particular, checking strong equivalence
of DTDs, i.e. whether two DTDs define the same sets of documents, can be effectively done by checking
whether the two corresponding grammars generate the same sets of syntax trees. Open problems concerning
reasoning on DTDs are pointed out in [42], such as:

1. Find algorithms and study the computational properties of structural equivalence, which is a weaker
form of equivalence abstracting from tag names in the documents.

2. Determine meaningful variants of structural equivalence, and study their computational complexity.

The goal of this paper is to demonstrate that expressive Description Logics are well suited to represent
and reason about the structure of documents. Specifically, we provide the following contributions:

• We present a formalization of XML DTDs in terms of an expressive Description Logic, called DL,
equipped with sound, complete, and terminating inference procedures. This logic includes non-first-
order constructs, such as reflexive-transitive closure and well-foundedness, which play a crucial role in
the formalization. The inference procedures for DL provide us with a general reasoning mechanism
that enables reasoning tasks on DTDs to be effectively carried out. These include the verification of
typical forms of equivalences between DTDs [42, 36], such as strong equivalence, structural equivalence,
and parametric versions of equivalence. Notably, this general reasoning mechanism allows for verifying
structural equivalence in worst case deterministic exponential time, in contrast to the known algorithms
which are double exponential.

• We illustrate a method for retrieving a set of documents from a document base, that takes advantage
of the reasoning capabilities of DL. Documents are retrieved by means of queries that ask for all
documents conforming to a given structure. Reasoning is exploited in order to devise several optimiza-
tion strategies that improve upon the brute force approach of scanning the entire document base and
checking, for every document instance, whether it satisfies the query.

The paper is organized as follows. In Section 2, XML DTDs and documents are introduced, and the basic
reasoning tasks on DTDs are defined. In Section 3, the Description Logic DL is presented. In Section 4,
the formalization of DTDs and related reasoning tasks within DL is developed. In Section 5, we address
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the problem of answering queries posed to a document base. In Section 6, we discuss possible extensions
of our approach, and compare our proposal with recent work on modeling semi-structured data. Finally,
conclusions are drawn in Section 7.

2 The eXtended Markup Language (XML)

The eXtended Markup Language is a specialization of the Standard Generalized Markup Language whose
goal is to facilitate the processing of generic marked-up documents on the World Wide Web in a way that
goes beyond what is now possible with HTML documents [8]. We focus only on aspects of XML and marked-
up documents that are directly related to the document structure, abstracting with respect to additional
features that are related to the physical representation of documents.

2.1 XML DTDs and Documents

XML describes marked-up documents, called XML documents, each of which can be considered a pair (D, d),
where D is a Document Type Definition (DTD) and d is the document instance. The document instance is
made up of units, called elements, which denote the logical components of the document and are delimited
by marking tags. The DTD specifies the logical structures, and hence the markups, that are admissible,
in terms of a set of element type definitions. In an XML document (D, d) the document instance d has to
conform to the DTD D, according to the definition of conformance provided below.

We start by describing the form of document instances independently of the particular DTD the document
instance may conform to. We assume to deal with two alphabets T of terminals and E of element types. To
each element type E ∈ E we associate a start tag <E> and an end tag </E>.

Definition 1 The set docsT,E of all possible document instances that can be built over T and E is defined
inductively as follows:

• If d is a terminal in T, then d ∈ docsT,E.

• If d is a sequence of the form <E> d1 · · · dk </E>, where E ∈ E is an element type and d1, . . . , dk ∈
docsT,E, then d ∈ docsT,E.

In the following we assume without loss of generality that the alphabets T of terminals and E of element
types are fixed, and we denote the set docsT,E simply by docs.

While the terminals in T are the basic types of XML, such as #CDATA and #PCDATA, which represent
generic (unmarked) strings with no associated structure, the structure of elements corresponding to element
types in E is specified by using DTDs. With the term symbol, denoted by the letter S, we mean an element
in T ∪E, i.e., either a generic terminal or an element type.

Definition 2 A Document Type Definition (DTD) D is a pair (P, R), where P is a set of element type
definitions, and R ∈ E is the root element type, i.e. the element type that specifies the document type. Each
element type definition has the form E → α, where E is the defined element type, and α, called content
model, is an expression over symbols in T ∪E constructed according to the following abstract syntax:

α ::= S | empty | α1|α2 | α1, α2 | α? | α∗ | α+

i.e., α is a regular expression with empty denoting the empty string, “,” denoting concatenation, and “|”
denoting union, extended with both optional expressions (“?”) and transitive closure (“+”)1. In addition,
XML content models may contain the construct any that stands for any sequence of elements types defined
in the DTD. Formally, any is an abbreviation for (E1| · · · |En)∗, where E1, . . . , En are all element types that
appear in P.

Consistently with XML, we assume that for each element type E ∈ E, P contains at most one element
type definition E → α where E appears on the left hand side. We also assume that for each element type E
appearing in P, there is an element type definition E → α in P in which E is the symbol on the left hand
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<!DOCTYPE Mail [
<!ELEMENT Mail (From, To, (Subject)?, Body)>
<!ELEMENT From (Address)>
<!ELEMENT To (Address)+>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT Subject (#PCDATA)>
<!ELEMENT Body (#PCDATA | any)>

]>

Figure 1: DTD M for mail documents

<Mail>

<From>

<Address> Dante@dsn.fi.it </Address>

</From>

<To>

<Address> Beatrice@pitti.fi.it </Address>

<Address> Virgilio@spqr.rm.it </Address>

</To>

<Subject> Appointment </Subject>

<Body>

Why don’t we meet at disco.inferno at midnight.

Tell also Caronte. Cheers,

- D.A.

</Body>

</Mail>

Figure 2: A document instance conforming to the DTD in Figure 1

side. In fact, if such condition is not satisfied, the DTD can easily be transformed (in polynomial time) into
one that generates the same set of document instances, and in which the condition holds.

Example 3 (Mail documents) Figure 1 shows an example of a DTD M for a simple mail document,
expressed in XML syntax – it is straightforward to rephrase the element type definitions using the abstract
syntax above.

Definition 4 The set docs(P, S) of document instances generated by a set of element type definitions P
starting from a symbol S is inductively defined as follows:

• If S is a terminal F , then docs(P, F ) = F .

• If S is an element type E and E → α ∈ P, then docs(P, E) is the set of sequences <E> d1 · · · dk </E>,
where <E> and </E> are the start and end tags associated to E, and d1, . . . , dk are document instances
generated by an instance of the content model α. Formally:

docs(P, E) = {<E> d1 · · · dk </E> | there exists a word S1 · · ·Sk generated by
α such that di ∈ docs(P, Si), for i ∈ {1, . . . , k}}

The set docs(D) of document instances generated by a DTD D = (P, R) is given by docs(P, R). A document
instance d conforms to a DTD D if d ∈ docs(D).

Example 5 (Mail documents) Figure 2 shows a document instance conforming to the DTD in Figure 1.

1Observe that in XML the “&” operator of SGML is not allowed.
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From a formal point of view, a DTD can be considered as an Extended Context Free Grammar
(ECFG) [42], which is used to generate a set of syntax trees rather than a language. The set of element
types and terminals are the nonterminal and terminal symbols of the ECFG, the root element type is the
initial symbol, and the element type definitions are the production rules. Marked-up documents are seen as
syntax trees constructed according to the grammar, where the tree structure is determined by the various
tags that occur in the document and that constitute the markup.

2.2 Basic Reasoning Tasks on XML DTDs

Besides conformance defined above, several other reasoning tasks turn out to be useful when managing
XML documents. A fundamental problem is to check various forms of equivalence between DTDs [42, 36].
Additionally, the possibility of checking inclusion, and disjointness between DTDs can be exploited to improve
the efficiency of retrieving documents from a document base (see Section 5).

The most basic form of inclusion (equivalence, disjointness) is inclusion (equivalence, disjointness) of the
sets of document instances conforming to the two DTDs.

Definition 6 Given two DTDs D1 and D2,

• D1 is strongly included in D2, denoted with D1 vs D2, if docs(D1) ⊆ docs(D2);

• D1 is strongly equivalent to D2, denoted with D1 ≡s D2, if docs(D1) = docs(D2);

• D1 is strongly disjoint from D2, denoted with D1 ⊗s D2, if docs(D1) ∩ docs(D2) = ∅.

For determining strong inclusion (equivalence, disjointness), the names of the start and end tags that
constitute the markup of documents play a fundamental role.

In some cases, however, the actual names of the tags may not be relevant, while the document structure
imposed by the tags is of importance. For example, if we simply want to check if two DTDs describe
documents with the same level of nesting of tags, the names of the tags are irrelevant. The form of inclusion
(equivalence, disjointness) obtained by ignoring the names of tags and considering only their positions is
called structural inclusion (equivalence, disjointness) [42]. One DTDs is structurally included into another
if, when we replace in every document conforming to the DTDs all start and end tags with the unnamed
tags <> and </> respectively, the resulting sets of documents for the two DTDs are one included into the
other. Similar definitions hold for structural equivalence and disjointness.

Structural equivalence of two DTDs is decidable, but the known algorithms take time doubly exponential
in the size of the two DTDs [42]2.

While the restrictions imposed by strong inclusion (equivalence, disjointness) may be too strict in some
cases, structural inclusion, which ignores completely all tag names, may be too weak. A natural general-
ization of these two concepts is obtained by considering a spectrum of possible inclusions, of which strong
and structural inclusion are just the two extremes. The different forms of inclusion are obtained by con-
sidering certain tag names as equal, and others as different, when confronting documents. This allows us
to parameterize inclusion of DTDs with respect to an equivalence relation on the set of tag names. For
example, when checking equivalence of two DTDs, we may want to abstract from the difference between the
names enumerate and itemize. This can be obtained by imposing that the two tags are equivalent, and by
checking whether the DTDs enforce the same structure (for example a list of items) on the corresponding
parts of the documents.

Formally, we consider an equivalence relation R on the set E of element types. For an element type
E ∈ E, we denote by [E]R the equivalence class of E with respect to R.

Definition 7 The set docsR(P, S) of R-document instances generated by a set of element type definitions
P starting from a symbol S is inductively defined as follows:

• If S is a terminal F , then docsR(P, F ) = F .

2This complexity bound holds if one does not consider the “&” operator of SGML (as in XML), which, if expanded may
lead to an additional exponential blowup.
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<!DOCTYPE Note [
<!ELEMENT Note (From, To, Text)>
<!ELEMENT From (Address)>
<!ELEMENT To (Address)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT Text (#PCDATA | any)>

]>

Figure 3: DTD N for note documents

• If S is an element type E and (E → α) ∈ P, then

docsR(P, E) = {<E′> d1 · · · dk </E′> | E′ ∈ [E]R, and there exists a word
S1 · · ·Sk generated by α such that di ∈ docsR(P, Si), for
i ∈ {1, . . . , k}}

The set docsR(D) of R-document instances generated by a DTD D = (P, R) is given by docsR(P, R). A
document instance d R-conforms to a DTD D if d ∈ docsR(D).

Definition 8 A DTD D1 is R-included in a DTD D2, denoted with D1 vR D2, if docsR(D1) ⊆ docsR(D2).
R-equivalence, denoted with ≡R, and R-disjointness, denoted with ⊗R, of two DTDs are defined in a similar
way.

Example 9 (Note documents) The DTD N defining note documents, shown in Figure 3, is strongly
disjoint from the DTD M defining mail documents, shown in Figure 1. However, if we abstract from the
difference between the names Mail and Note and the names Body and Text, then a note is a special kind
of mail. Indeed, it is easy to see that for any equivalence relation R containing the pairs (Mail, Note) and
(Body, Text), we have that N vR M .

As already mentioned strong inclusion and structural inclusion are just special cases of R-inclusion
(similarly for equivalence and disjointness). In fact, if we choose for R the equivalence relation in which
all equivalence classes are singletons, we obtain strong inclusion (equivalence, disjointness). On the other
hand, if R contains a single equivalence class constituted by the whole set E, we obtain structural inclusion
(equivalence, disjointness). Therefore in the following without loss of generality we consider R-inclusion,
R-equivalence, and R-disjointness only.

3 The Description Logic for Representing DTDs

We introduce the Description Logic DL that will be used in Section 4 to represent DTDs. In Description
Logics (DLs) [33, 19], the domain of interest is modeled by means of individuals, concepts, and roles, denoting
objects of the domain, unary predicates, and binary predicates respectively3. For the purpose of this paper
we do not deal with the possibility of expressing knowledge about individuals, and therefore we conceive a
DL as formed by three components:

• A description language, which specifies how to construct complex concept and role expressions (also
called simply concepts and roles), by starting from a set of atomic symbols and by applying suitable
constructs.

• A knowledge specification mechanism, which specifies how to construct a DL knowledge base, in which
properties of concepts and roles are asserted.

• A set of basic reasoning services provided by the DL.

In the rest of the section we describe the specific form that these three components assume in DL.
3More general Description Logics make also use of relations, which correspond to n-ary predicates [13].
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Concepts C Syntax Semantics

atomic concept A AI ⊆ ∆I

top > ∆I

negation ¬C ∆I \ CI

conjunction C1 u C2 CI1 ∩ CI2
universal quantif. ∀R.C {o | ∀o′ : (o, o′) ∈ RI → o′ ∈ CI}
qual. number restr. (≤ n P .C) {o | ]{o′ | (o, o′) ∈ P I ∧ o′ ∈ CI} ≤ n}
well-founded wf (R) {o0 | ∀o1, o2, . . . (ad infinitum) ∃i ≥ 0 : (oi, oi+1) 6∈ RI}
Roles R Syntax Semantics

atomic role P P I ⊆ ∆I ×∆I

union R1 ∪R2 RI1 ∪RI2
concatenation R1 ◦R2 RI1 ◦RI2
refl. trans. closure R∗ (RI)∗

transitive closure R+ (RI)+

identity id(C) {(o, o) | o ∈ CI}

Table 1: Syntax and semantics of DL concept and role constructs.

3.1 The Description Language of DL
In DLs, starting from a set of atomic concepts and atomic roles, one can build complex concepts and roles
by applying certain constructs. It is the set of allowed constructs that characterizes a specific description
language. The basic concept constructs encountered in DLs include the boolean constructs, denoted “u”,
“t”, and “¬”, and interpreted as the corresponding set operations, and universal and existential quantifi-
cation over roles [39]. For example, the concept Person u ∀child.Male u ∃child.Doctor, denotes the set
of individuals that are instances of the concept Person and are connected through the role child only to
instances of the concept Male and to some instance of the concept Doctor. Additionally, more expressive
DLs include number restrictions, which allow for delimiting the number of times an object is connected to
other objects via a certain role, and constructs on roles, such as intersection, or the possibility to construct
arbitrary regular expressions over atomic roles [6, 38, 17].

In particular, the Description Logic DL, that we use for formalizing DTDs, is a variant of the very
expressive DLs studied in [12, 16, 11, 10, 18]. It includes besides the basic constructs mentioned above, also:

• a very general form of number restrictions, called qualified number restrictions, by means of which
one can limit for an object o the minimum and maximum number of objects that are instances of a
specified concept and that are connected to o via a role;

• the possibility to use roles which are constructed as regular expressions over atomic roles;

• a construct to denote the objects that are the initial point of a sequence of roles which is well-founded.

The full set of constructs of DL is shown in Table 1, where we denote atomic concepts by A, arbitrary
concepts by C, atomic roles by P , and arbitrary roles by R, all possibly with subscripts. We also use the
following abbreviations to increase readability: ⊥ for ¬>, C1tC2 for ¬(¬C1u¬C2), and ∃R.C for ¬∀R.¬C.

In DLs, the formal semantics is specified through the notion of interpretation. An interpretation I is
a pair (∆I , ·I), where ∆I is the interpretation domain and ·I is an interpretation function that assigns to
each concept C a subset CI of ∆I , and to each role R a binary relation RI over ∆I , respecting the specific
conditions imposed by the structure of the concept or role. CI and RI are called the extension of C and R
respectively.

The semantics of the DL constructs, shown in Table 1 is quite standard, except for the construct wf (R),
called well-founded, which is interpreted as those objects that are the initial point of only finite R-chains.
Notice that besides reflexive transitive closure of roles (“∗”), DL includes also the “+” construct for transitive
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closure, which turns out to be necessary for a characterization of DTDs in terms of DLs. Obviously one can
eliminate “+” from any complex role expression by replacing any occurrence of R+ with R ◦ R∗. However,
such a replacement may in the worst case lead to an exponential increase in the size of the role expression.

3.2 Knowledge Bases in DL
A DL knowledge base is a set of assertions of the form:

C1 v C2

where C1 and C2 are arbitrary DL concepts without any restrictions. We use C1 ≡ C2 as an abbreviation
for the pair of assertions C1 v C2 and C2 v C1.

An interpretation I satisfies the assertion C1 v C2 if CI1 ⊆ CI2 . An interpretation is a model of a
knowledge base K if it satisfies all assertions in K. Thus, we adopt descriptive semantics for cyclic knowledge
bases, i.e. knowledge bases in which the concept in the right hand side of an assertion refers (either directly
or indirectly via other assertions) to some concept in the left hand side of the assertion [34, 7, 18].

3.3 Reasoning Services in DL
The basic reasoning service in DL is satisfiability of a concept C in a knowledge base K, denoted K |= C 6≡ ⊥.
It amounts to check whether K admits a model in which the extension of C is nonempty. Other reasoning
services are knowledge base satisfiability, i.e. determining whether a knowledge base admits a model, and
subsumption. Determining subsumption between two concepts C1 and C2 in a knowledge base K, denoted
K |= C1 v C2, amounts to check whether CI1 ⊆ CI2 for every model I of K.

Both knowledge base satisfiability and subsumption can be immediately reduced to concept satisfiability
as follows:

• A knowledge base K is satisfiable if and only if > is satisfiable in K.

• A concept C1 is subsumed by a concept C2 in a knowledge base K if and only if C1 u ¬C2 is not
satisfiable in K.

Hence it is sufficient to consider concept satisfiability only.

Theorem 10 Concept satisfiability in DL is an EXPTIME-complete problem.

Proof Here we give only a sketch of the proof. The complete proof can be found in [11]. The proof exploits
a correspondence between DLs and Propositional Dynamic Logics (PDLs) [22] established for the first time
in [38] and extended successively to more expressive DLs and PDLs in [17, 12, 11]. In order to decide
concept satisfiability in DL we polynomially reduce it to satisfiability in repeat-adpdl. Repeat Automata
Deterministic Propositional Dynamic Logic (repeat-adpdl) [40, 41] is a variant of PDL in which all atomic
programs (which correspond to atomic roles) are assumed to be deterministic (i.e., they correspond to
globally functional roles), and in which complex programs are represented by means of finite automata over
the language of atomic programs, rather than by regular expressions. Additionally, it contains the “repeat”
construct over programs (that corresponds to the negation of the well-founded construct over roles).

Qualified number restrictions have no counterpart in PDLs, and therefore, we need to get rid of them in
order to exploit the correspondence with PDLs. Following the construction in [17], we define a satisfiability
preserving polynomial transformation of a knowledge base that eliminates qualified number restrictions. We
introduce for each atomic role P , two new atomic roles FP and GP , which are globally functional, and replace
every occurrence of (≤ n P .C) in the knowledge base with:

∀(FP ◦G∗P ◦ (id(C) ◦G+
P )n).¬C

where Rn denotes the concatenation of R repeated n times.
After this transformation the only roles that appear in the knowledge base are functional, and we are

ready to establish a correspondence with repeat-adpdl. In order to deal with the “+” operator for transitive
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closure, we exploit the fact that the regular language over atomic roles described by a complex role expression
R, can be encoded by means of a finite (non-deterministic) automaton whose size is polynomial in the size
of R. Hence, we can encode each concept C of DL into a formula of repeat-adpdl whose size is polynomial
in the size of C.

The EXPTIME upper bound follows from decidability in deterministic exponential time of satisfiability
in repeat-adpdl [40, 20].

3.4 Representing Inductive Structures in DL
With the rich language of DL one can represent and reason on a variety of inductive data structures, such
as lists and trees. Generally speaking, the unrestricted form of assertions allows for expressing recursive
structures, while the well-founded construct allows for imposing finiteness of paths of a specified form on the
structures. The combination of the two can thus be used to define inductive structures in which both infinite
and cyclic paths are ruled out. This feature will be important for correctly representing XML documents in
DL.

We illustrate the above ideas showing how to represent binary trees. Typically, the class of binary trees
is defined inductively as the smallest set BinTree such that:

• every node with no left-successor and no right-successor (i.e., every node that is a Leaf) is a BinTree;

• every node having left and right successors which are BinTrees is a BinTree.

This inductive definition is captured by the concept BinTree in the following DL knowledge base:

Node v (= 1 info.>)
Leaf ≡ Node u ∀(left ∪ right).⊥

BinTree ≡ Leaf t (Node u ∀(left ∪ right).BinTree u
(≤ 1 left.>) u (≤ 1 right.>) u
wf (left ∪ right))

This knowledge base allows us to represent binary trees in the following sense. In every model of the
knowledge base, if we consider any instance b of BinTree, then the set of objects and links that can be
reached from b by following left and right links form a binary tree. Note that, in this way, a binary tree
is actually identified by its root.

The concept BinTree is characterized by a recursive equation, in which the term BinTree on the left-hand
side occurs also in the right-hand side of the equation. Let us remark the difference between a recursive
equation of this form and an inductive definition: A recursive equation simply states a certain condition to
be satisfied by its solutions, without specifying any selection criteria to choose among all possible solutions.
An inductive definition instead, selects the smallest set satisfying the condition, and hence identifies a unique
solution. The well-foundedness declaration in the right-hand side of the equation characterizing BinTree
accomplishes this selection, making the recursive equation of BinTree equivalent to an inductive definition.

Once binary trees are represented in the above way they can be easily specialized by selecting for example
the kind of information contained in certain nodes, e.g.:

UrlTree v BinTree u ∀(left ∪ right)∗.(¬Leaf t ∃info.URL)
or additional structural constraints, such as a specific maximal depth, e.g.:

DepthTwoTree v BinTree u ∀((left ∪ right) ◦ (left ∪ right)).Leaf

Obviously, recursively defined structures are taken into account like any other concept definition when
reasoning about the knowledge base. Suppose for example that we define UrlTree2 as the smallest set such
that:

• every node that is a Leaf and points to an URL is an UrlTree2;

• every node having left and right successors which are UrlTree2s is an UrlTree2.
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Such structure is captured by the following additional assertion:

UrlTree2 ≡ Leaf u ∃info.URL t (Node u ∀(left ∪ right).UrlTree2 u
(≤ 1 left.>) u (≤ 1 right.>) u
wf (left ∪ right))

One can verify that the knowledge base including all assertions so far correctly implies that UrlTree2 is
logically equivalent to UrlTree.

4 Representing and Reasoning over DTDs in DLs

We describe how to construct a DL knowledge base capable of fully capturing the structural aspects of
DTDs. Without loss of generality we refer to a fixed alphabet E of element types, a fixed alphabet T of
terminals, and a fixed equivalence relation R on the set E of element types.

4.1 Representation of DTDs

Given a DTD D = (P, S0), we define a DL knowledge base K, called characteristic knowledge base of D, as
follows.

The alphabet of K includes the following atomic concepts and roles:

• the atomic concepts Tag and Terminal,

• for each terminal F ∈ T, one atomic concept F ,

• for each element type E ∈ E, one atomic concept StartE and one atomic concept EndE,

• for each element type definition (E → α) ∈ P, one atomic concept ED,

• the atomic roles f and r.

The atomic concepts StartE and EndE represent the tags of an element type E and are independent from
the specific DTD. The atomic concept ED associated to an element type definition contains the information
about the DTD it belongs to and hence is specific to such a DTD. Indeed, when considering different DTDs
D1 and D2, both containing an element type definition for the same element type E, the associated knowledge
bases contain the distinct atomic concepts ED1 and ED2 .

The set of assertions of the knowledge base K is constituted by three parts KT,E, KR, KD, which are
defined as specified below. We observe that in defining K, we will not exploit the full power of qualified
number restrictions in DL. We refer the reader to Section 6 for a discussion on how qualified number
restrictions can be used for capturing additional interesting characteristics of XML documents.

KT,E: Encoding of general structural properties Our aim is that KT,E captures the general structural
properties of document instances. In particular, we want to enforce that every model of KT,E represents a
document instance d by means of a tree. Intuitively, the root of the tree represents the root element of d,
and is connected by means of the roles f and r (standing for “first” and “rest” respectively) to the objects
representing the tags associated to the root element and to those representing the components of d. More
specifically, for a document instance d with h components, the start tag is represented by the f-filler of the
root, the first component by the (r◦f)-filler, the second component by the (r◦r◦f)-filler, the last component
by the rh ◦ f-filler, for some h > 0, and the end tag by the rh+1-filler. Document instances are by definition
finite, and hence have a finite nesting of components. Since an infinite model of KT,E or a model containing
cycles would correspond to a document instance with infinite nesting, such models have to be ruled out.
Therefore, we need to impose finiteness and acyclicity of all chains of objects connected by f ∪ r. This can
be done by means of the well-foundedness construct.

Figure 4 illustrates the structure of the tree representing a document instance of the form
<E><E1>· · ·</E1>· · ·<Eh>· · ·</Eh></E>, according to the criteria specified above.
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Figure 4: Tree representing the document <E><E1>· · ·</E1>· · ·<Eh>· · ·</Eh></E>

Taking into account the above considerations, we can define KT,E to be constituted by the following
assertions:

> ≡ (≤ 1 f.>) u (≤ 1 r.>) u wf (f ∪ r)
Tag v ∀(f ∪ r).⊥

Terminal v ∀(f ∪ r).⊥ u ¬Tag
F v Terminal for each terminal F ∈ T

F1 v ¬F2 for each pair of terminals F1, F2 ∈ T such that F1 6= F2

StartE v Tag for each element type E ∈ E

EndE v Tag for each element type E ∈ E

Observe that KT,E reflects the modeling of binary trees in DL as illustrated in Section 3.4, with the
further requirement that in all models of KT,E every object represents a binary tree. Indeed, the first
assertion ensures us that in every model of KT,E, every object is the root a tree in which every node has at
most one f successor and one r successor. The second and the third assertions impose that every instance
of Tag and Terminal are leaves of the tree, and that Tag and Terminal are disjoint. Finally, the other
assertions specify that every instance of F is also an instance of Terminal, that two different terminals have
disjoint instances, and that StartE and EndE are subsets of Tag, for each E ∈ E.

KR: Encoding of the equivalence relation R Our aim is that KR fully captures the equivalence
relation R. Therefore, KR should impose the disjointness of the concepts representing tags of element types
belonging to different equivalence classes, and the equivalence of all the concepts representing tags of element
types in the same equivalence class. Let {{E1

1 , . . . , E1
n1
}, . . . , {Em

1 , . . . , Em
nm
}} be the set of equivalence classes

determined by R. From the above observation it is easy to see that we reach our goal by defining KR to be
constituted by the assertions:

StartEi
1 v ¬StartEj

1

EndEi
1 v ¬EndEj

1

for i, j ∈ {1, . . . ,m} and i 6= j

StartEj
i ≡ StartEj

i+1

EndEj
i ≡ EndEj

i+1

for i ∈ {1, . . . , nj−1} and j ∈ {1, . . . , m}

In this way, when reasoning, the differences between the various tags associated to equivalent element
types are ignored, coherently with the notion of R-inclusion.

KD: Encoding of the DTD The goal here is to define KD in such a way that it encodes the knowledge
about the various element type definitions in D = (P, R). In order to do so, for every E in D, KD must
impose suitable conditions on ED, so that in every model of K, the instances of ED represent the parts of
document instances coherent with the definition of E in D.
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MailM ≡ ∃f.StartMail u ∃(r ◦ id(∃f.FromM ) ◦ r ◦ id(∃f.ToM ) ◦ r
◦ ((id(∃f.SubjectM ) ◦ r) ∪ id(>)) ◦ id(∃f.BodyM ) ◦ r).EndMail

FromM ≡ ∃f.StartFrom u ∃(r ◦ id(∃f.AddressM ) ◦ r).EndFrom
ToM ≡ ∃f.StartTo u ∃(r ◦ id(∃f.AddressM ) ◦ r ◦ (id(∃f.AddressM ) ◦ r)∗).EndTo

SubjectM ≡ ∃f.StartSubject u ∃(r ◦ id(∃f.#PCDATA) ◦ r).EndSubject
BodyM ≡ ∃f.StartBody u ∃(r ◦ id(∃f.#PCDATA) ◦ r).EndBody

AddressM ≡ ∃f.StartAddress u ∃(r ◦ id(∃f.#PCDATA) ◦ r).EndAddress

Figure 5: Characteristic knowledge base derived from the DTD M (specific part only)

As we said when commenting the definition of KT,E, the first component (the f-filler) of every instance
of ED is its start tag, whereas the last component (the rh-filler) is its end tag. The remaining components
(i.e., the (rk ◦f)-fillers, with k < h) are determined by the form of the element type definition (E → α) ∈ P,
and in particular by the form of α. In order to represent α, we use a complex role τ(α), defined inductively
as follows:

τ(empty) = id(>)
τ(S) = id(∃f.ac(D, S)) ◦ r

τ(α1|α2) = τ(α1) ∪ τ(α2)
τ(α1, α2) = τ(α1) ◦ τ(α2)

τ(α∗) = τ(α)∗

τ(α+) = τ(α)+

τ(α?) = τ(α) ∪ id(>)

where ac(·, ·) is a mapping that associates to each pair constituted by the DTD D and a symbol S an atomic
concept as follows:

ac(D, S) =
{

ED if S = E for an element type E ∈ E
F if S = F for a terminal F ∈ T

Indeed, τ(α) reflects the structure imposed by α on the parts of a document instance that are defined by
E → α, and can be explained in terms of an encoding of the tree representing the document instance into
a binary tree. It is worth noticing that τ exploits the analogy between the constructs used in expressing
content models in XML, and the constructs used to form complex roles in DL. For example, if α has the
form α1, α2, then the corresponding complex role is r1 ◦ r2, where in turn, r1 and r2 are the complex roles
corresponding to α1 and α2, respectively.

From all the above observations, we can conclude that, for each element type definition (E → α) ∈ P,
KD contains the assertion:

ED ≡ ∃f.StartE u ∃(r ◦ τ(α)).EndE

Example 11 (Mail documents) Figure 5 shows the characteristic knowledge base K for the DTD M
described in Figure 1. The general part has been omitted.

The next lemma states a fundamental property of a characteristic knowledge base, which will be used in
the following. Let us call “basic” all atomic concepts and roles except for the atomic concepts ED. Then
in each model of K, the extension of every atomic concept ED is completely determined by the extension of
basic concepts and roles. Formally:

Lemma 12 Let D be a DTD, K be its characteristic knowledge base, and I and I ′ be two models of K
that have the same domain and agree on the interpretation of the basic atomic concepts and roles. Then I
and I ′ agree also on the interpretation of ED, for each element type E defined in D.

Proof By contradiction. Let I and I ′ be two models of K that have the same domain agree on the
interpretation of f, r and all atomic concepts except for ED. We remind the reader that, for each ED, K
includes the axiom ED ≡ ∃f.StartEu∃(r◦τ(α)).EndE. Let o be an object such that o ∈ EI

D but o 6∈ EI′
D .
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We show that we get a contradiction, by induction on the number of f-steps on the longest r ◦ (f∪ r)∗-path
from o to a leaf of the tree in I, which by the well-foundedness constraint on f ∪ r must be finite.

Base case. There are no f-steps in the path. Then since o ∈ EI
D = (∃f.StartEu∃(r◦τ(α)).EndE)I , and

since α generates the empty string (no f-steps are allowed), it follows that o ∈ (∃f.StartE u ∃r.EndE)I .
Since I and I ′ agree on f, r, StartE, and EndE, it follows that o ∈ (∃f.StartE u ∃r.EndE)I

′
and hence

o ∈ (∃f.StartE u ∃(r ◦ τ(α)).EndE)I
′
. Contradiction.

Inductive case. There are n + 1 f-steps in the path. Let o1, . . . , ok be the objects along the r ◦ r∗-path
satisfying ∃(r ◦ τ(α)).EndE from o, and let o′i be the f-successor of oi, for i ∈ {1, . . . , k}. By induction
hypothesis, and since I and I ′ agree on the interpretation of each F ∈ T, we have that I and I ′ agree on
the interpretation of ac(D, Sj) in oj , for every symbol Sj ∈ T ∪ E. This implies that they must agree also
on the interpretation of ED in o. Contradiction.

The above lemma ensures us that, given a model I of K, it is possible to determine whether an object
o is an instance of ED by taking into account only the structure of the (f ∪ r)∗ connected component of I
containing o. Observe that, in establishing this property, the well-foundedness construct plays a prominent
role, since it ensures that there is no infinite (f ∪ r)∗-path starting at o.

4.2 Conformance

The way in which we have defined K allows us to demonstrate that each R-document instance d ∈ docs (over
T and E) directly corresponds to a model of KT,E and KR. Indeed, we can define a one-to-one mapping β
from R-document instances to models of KT,E and KR.

Given a document instance d, we define β(d) by induction on the structure of d as follows:

• If d is a terminal F ∈ T, then β(d) = (∆β(d), ·β(d)) is defined as follows: ∆β(d) = F β(d) =
Terminalβ(d) = {o}, and the extension of the other concepts and of the roles is empty. We say
that o is the root of β(d).

• If d is a sequence of the form <E> d1 · · · dk </E>, where E ∈ E is an element type, <E> and </E> are
its start and end tags, and d1, . . . , dk ∈ docsE,T, then β(d) = (∆β(d), ·β(d)) is obtained as follows4:

∆β(d) = {o, ob, o1, . . . , ok, oe} ]
⊎

1≤i≤k ∆β(di)

(we say that o is the root of β(d))

StartE′β(d)

EndE′β(d)

=
=
{ob} ]

⊎
1≤i≤k StartE

′β(di)

{oe} ]
⊎

1≤i≤k EndE
′β(di)

for each element type E′ ∈ [E]R

StartE′β(d)

EndE′β(d)

=
=

⊎
1≤i≤k StartE

′β(di)⊎
1≤i≤k EndE

′β(di)
for each element type E′ ∈ E \ [E]R

Tagβ(d) = {ob, oe} ]
⊎

1≤i≤k Tag
β(di)

rβ(d) = {(o, o1), (o1, o2), . . . , (ok−1, ok), (ok, oe)} ]
⊎

1≤i≤k r
β(di)

fβ(d) = {(o, ob), (o1, o
′
1), . . . , (ok, o′k)} ]⊎

1≤i≤k f
β(di)

where o′i is the root of β(di), for i ∈ {1, . . . , k}

Example 13 (Mail documents) Figure 6 shows the result of applying β to the document instance in
Figure 2. For each element type E, the nodes labeled <E> and </E> In the figure, are instances of StartE
and EndE respectively.

Lemma 14 Let D = (P, R) be a DTD, d be a document instance, β(d) be as specified above, o be the root
of β(d), and S be a symbol in T∪E. Then there is a unique way to extend β(d) to a model I of K, and for
each S ∈ T ∪E, d ∈ docsR(P, S) if and only if o ∈ ac(P, S)I .

4The symbol ] denotes disjoint union.
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Figure 6: The result of applying β to the document instance in Figure 2

Proof One can easily verify by construction that β(d) is a model of KT,E ∪ KR. Moreover, Lemma 12
ensures us that, given a DTD D and a document instance d, there is a unique way to extend β(d) to a model
I of K = KT,E ∪ KR ∪ KD. It remains to show that for each S ∈ T ∪ E, d ∈ docsR(P, S) if and only if
o ∈ ac(P, S)I . We proceed by induction on the structure of d.

Base case. If d is a terminal F ∈ T, then the thesis holds trivially.
Inductive case. If d is a sequence of the form <E> d1 · · · dk </E>, then β(d) is constructed from

β(d1), . . . , β(dk) as specified above. In particular, let o′i be the root of β(di), for i ∈ {1, . . . , k}, and
let (o, ob) ∈ fI . If S is a terminal in T then d 6∈ docsR(P, S), and since o has ob as f-successor,
o 6∈ (∀f.⊥)I ⊇ TerminalI ⊇ SI , and we are done. If S is an element type in E, let S → α ∈ P
be the corresponding element type definition. Since o ∈ (∃f.StartE)I , then o ∈ (∃f.StartS)I only if
S ∈ [E]R. Hence o ∈ SID = (∃f.StartS u ∃(r ◦ τ(α)).EndS)I if and only if S ∈ [E]R and there exists a
string S1 · · ·Sk generated by α and atomic concepts ac(D, S1), . . . , ac(D, Sk) such that o′i ∈ ac(D, Si). By
induction hypothesis o′i is in the extension of ac(D, Si) if and only if di ∈ docsR(P, Si). Hence, by definition
of docsR(P, S), we get that o ∈ ac(D, S) if and only if d ∈ docsR(P, S).

The following theorem provides the basis for verifying R-conformance by resorting to the translation of
DTDs in DL.

Theorem 15 Checking R-conformance of a document instance to a DTD can be polynomially reduced to
model checking in DL.

Proof To check whether a document instance d R-conforms to a DTD D = (P, R), we construct β(d) and
extend it to an interpretation Id of K as follows. For each E ∈ E, we interpret ED as:

EId

D = (∃f.StartE)Id

Observe that if o is the root of β(d), then o ∈ RId

D , but that Id is not necessarily a model of KD, and hence
of K. The following argument ensures us that the latter is the case exactly if d R-conforms to D.
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By Lemma 14, applied to the root element type R of D, we can conclude that if Id is a model of K
and o ∈ RId , then d ∈ docsR(D). On the other hand, by proceeding by induction on the structure of d,
analogously to the proof of Lemma 14, it can be shown that if d ∈ docsR(D), then Id is a model of K and
o ∈ RId .

The reduction is polynomial since the construction of K takes polynomial time in the size of D, and the
construction of Id takes linear time in the size of d.

Corollary 16 Checking R-conformance of a document instance d to a DTD D can be done in time poly-
nomial in the size of d and D.

Proof By Theorem 15, R-conformance can be polynomially reduced to model checking in DL. Each DL
knowledge base can be translated into a formula of first order logic plus fixpoints (see [2]) which uses at
most three variables and two levels of fixpoint nestings [27]. Since Id can be considered as a first order
structure, the claim follows from the fact that model checking in first order logic plus fixpoint with the above
restrictions has polynomial complexity with respect to the size of the structure and the formula.

Example 17 (Mail documents) Let us consider the structure shown in Figure 6. It is easy to see that, if
we assign every node that is an f-predecessor of a node labeled <E> to the extension of the atomic concept
EM , then we obtain a model of K where the root is in the extension of MailM .

4.3 Inclusion and Disjointness

In order to show how DL can be used to determine R-inclusion and R-disjointness between DTDs, we first
define a mapping γ from models of K to document instances.

Let I = (∆I , ·I) be a model of K and o ∈ ∆I . We define γ(o) by induction on the number of f-steps on
the longest r ◦ (f ∪ r)∗-path from o in I. By the well-foundedness constraint on f ∪ r, such path must be
finite. γ(o) is defined as follows:

• If o ∈ F I for some terminal F ∈ T, then γ(o) = F .

• If for some element type E, there are some integer k ≥ 0 and objects ob, oe, o1, . . . , ok,
o′1, . . . , o

′
k, such that ob ∈ StartEI , oe ∈ EndEI , (o, o1), (o1, o2), . . . , (ok−1, ok), (ok, oe) ∈ rI , and

(o, ob), (o1, o
′
1), . . . , (ok, o′k) ∈ fI , then γ(o) = <E> γ(o′1) · · · γ(o′k) </E>.

• Otherwise γ(o) is undefined.

Lemma 18 Let D = (P, S0) be a DTD, K be its characteristic knowledge base, I = (∆I , ·I) be a model
of K, o ∈ ∆I , and S be a symbol in T ∪ E. Then o ∈ ac(P, S)I if and only if γ(o) is defined and
γ(o) ∈ docsR(P, S).

Proof If γ(o) is undefined or if S is a terminal, then the thesis holds trivially. So let us assume that γ(o)
is defined and that S is an element type. Let S → α ∈ P be the corresponding element type definition. We
proceed by induction on the number of f-steps on the longest r ◦ (f ∪ r)∗-path from o in I.

Base case. There are no f-steps in the path. Then by construction either γ(o) = F for some terminal
F ∈ T, or γ(o) = <E> </E> for some element type E ∈ E. The case where γ(o) = F is easy. In the second
case, o ∈ (∃f.StartE u ∃r.EndE)I . If S ∈ [E]R and α generates the empty string, then o ∈ ac(P, S)I and
also γ(o) ∈ docsR(P, S). Otherwise o 6∈ ac(P, S)I and γ(o) 6∈ docsR(P, S).

Inductive case. There are n + 1 f-steps in the path. Let o1, . . . , ok be the objects along the r ◦ r∗-path
satisfying ∃(r ◦ τ(α)).EndE from o, and let o′j be the f-successor of oj , for j ∈ {1, . . . , h}, where E is the
element type such that γ(o) = <E> γ(o′1) · · · γ(o′k) </E>. If there are symbols S1, . . . , Sk in T ∪E such that
o′j ∈ ac(P, Sj)I , for j ∈ {1, . . . , k}, then by induction hypothesis γ(o′j) ∈ docsR(P, Sj), and if S ∈ [E]R and
α generates the string S1 · · ·Sk, then o ∈ ac(P, S)I and also γ(o) ∈ docsR(P, S). Otherwise o 6∈ ac(P, S)I

and γ(o) 6∈ docsR(P, S).
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We extend the notion of characteristic knowledge base in such a way that it represents a set of DTDs,
rather than a single DTD. Given a set D = {D1, . . . ,Dn} of DTDs over E, T and R, we define the
characteristic knowledge base of D simply as K = KT,E ∪KR ∪KD1 ∪ · · · ∪KDn

. In other words, we include
in K both KT,E and KR, and we add to K the encoding of each Di ∈ D. A model of K represents now a
set of document instances. Observe that Lemma 14 and Lemma 18 extend immediately to the case where
we consider a set of DTDs, rather than a single DTD.

Exploiting Lemma 14 and Lemma 18 we can provide the following characterization of R-inclusion and
R-disjointness between DTDs in terms of satisfiability in DL.

Theorem 19 Let D and D′ be two DTDs, and K = KT,E ∪KR ∪KD ∪KD′ be the knowledge base derived
from T, E, R, {D,D′} as described above. Then

D vR D′ if and only if K |= RD v R′D′ (1)
D ⊗R D′ if and only if K |= RD uR′D′ v ⊥ (2)

Proof Let D = (P, R) and D′ = (P′, R′).
(1) “⇐” By contradiction. Let d be a document instance that conforms to D but does not conform to

D′, let I be the unique model of K that extends β(d), and let o be the root of β(d). Since d ∈ docsR(P, R)
and d 6∈ docsR(P′, R′), by Lemma 14, o ∈ RID and o 6∈ R′ID′ . Contradiction.

“⇒” By contradiction. Let I = (∆I , ·I) be a model of K with o ∈ ∆I such that o ∈ RID and o 6∈ R′ID′ .
Then by Lemma 18 γ(o) is defined, γ(o) ∈ docsR(P, R), and γ(o) 6∈ docsR(P′, R′). Contradiction.

(2) can be proved analogously.

From decidability in deterministic exponential time of logical implication inDL we obtain as an immediate
consequence an EXPTIME upper bound for R-inclusion and R-equivalence between DTDs. This results also
in an exponential improvement over previously known algorithms for checking structural equivalence [42].

Corollary 20 R-inclusion, R-equivalence, and R-disjointness between two DTDs can be verified in deter-
ministic exponential time in the size of the DTDs.

5 Retrieving XML Documents from a Document Base

We now describe how to exploit the reasoning techniques presented in the previous section to evaluate queries
posed to a database of documents. As before we refer to a fixed alphabet E of element types, a fixed alphabet
T of terminals, and a fixed equivalence relation R on the set E of element types. A document base on E,
T, and R represents a set of XML documents, and is defined as follows.

Definition 21 A document base B is a pair B = 〈D, I〉, where

• D is a set of DTDs, with the assumption that for each pair D1,D2 ∈ D, it is known whether D1 vR D2,
and whether D1 ⊗R D2;

• I is a set of document instances, with the assumption that for each d ∈ I there is at least one D ∈ D
such that d conforms to D, and for each pair d ∈ I, D ∈ D, it is known whether d conforms to D.

A query posed to a document base is simply a document type definition, used to retrieve all document
instances in the document base that satisfy such definition.

Definition 22 A query Q is a DTD, and the evaluation of Q over a document base B returns as an answer
the set Q(B) of all document instances d ∈ B such that d R-conforms to Q.

The goal of this section is to present an algorithm for computing the answer Q(B) to a query Q posed to a
document base B = 〈D, I〉, which exploits the possibility of reasoning over DTDs. The algorithm maintains
two sets S and J of DTDs and document instances, and computes a set A(B, Q) of document instances by
proceeding as follows:
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1. Let S be equal to D, and let J be equal to I.

2. While S is not empty, repeatedly select a DTD D from S such that there is no D′ ∈ S with D vR D′,
and do the following:

(a) If D ≡R Q, then let A(B, Q) be all the document instances d in I such that d conforms to D,
and stop.

(b) If D vR Q, then

(b.1) move from J to A(B, Q) all document instances that conform to D,
(b.2) remove from S every DTD D′ such that D′ vR D,
(b.3) continue with the next iteration of the while-loop.

(c) If Q vR D, then

(c.1) remove D from S,
(c.2) for every DTD D′ in S such that D′ ⊗R D, remove D′ from S and remove from J every

document instance that conforms to D′,
(c.3) continue with the next iteration of the while-loop.

(d) If D ⊗R Q, then

(d.1) remove from S every DTD D′ such that D′ vR D,
(d.2) remove from J every document instance that conforms to D′,
(d.3) continue with the next iteration of the while-loop.

(e) Otherwise, remove D from S, and continue.

3. Add to A(B, Q) every document instance d in J that conforms to Q.

The correctness of the above algorithm is shown in the next theorem.

Theorem 23 Let B = 〈D, I〉 be a document base, and Q be a query. Then the set A(B, Q) computed by
the algorithm above is equal to Q(B).

Proof Since Step 3 considers all document instances whose conformance to Q could not be determined by
looking only at the DTDs in D, it is sufficient to show that Step 2 of the algorithm does not remove from
A(B, Q) any document instance that contributes to Q(B).

Step 2.a is obvious: if D is R-equivalent to Q, then the answer to Q is the set of document instances in
I that conform to D.

Step 2.b deals with the case where D is R-included in Q. In such a case, the set of document instances
conforming to D takes part to the answer to the query. Moreover, since such a set comprises all documents
conforming to the DTDs that are R-included in D, these DTDs need not to be considered anymore and are
discarded.

Step 2.c considers the case where Q is R-included in D. Since the document instances satisfying Q are
among those that conform to D, the algorithm discards all document instances conforming to some DTD
that is R-disjoint from D.

Step 2.d takes care of the case where Q is R-disjoint from D, and therefore, discards all DTDs that are
R-included in D, and excludes from the answer all document instances that conform to D.

Observe that the above method, can be seen as an adaptation of the semantic indexing technique devel-
oped in DLs [43], where DTDs act as semantic indexes on XML documents in the document base. In this
way they help in improving performance of query evaluation with respect to the brute force approach of
evaluating document instances one by one. In other words, reasoning on DTDs allows for a more effective
query evaluation process. Obviously, since comparing DTDs is costly, the method pays off when the size of
DTDs is small (e.g. logarithmic) with respect to the size of the document instances, which is usually the
case.
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6 Discussion

We have shown how to use the Description Logic DL to represent and reason on the structural aspects of
XML documents. We have also shown how to use DL reasoning to improve the efficiency of query answering
over document bases.

By exploiting the constructs of DL, we are also able to integrate into the structure of documents aspects
related to the semantics of the information contained in them. Although for the sake of simplicity we did
not include these aspects in the formal development of this paper, we would like to briefly mention how they
can be taken into account in our framework.

• DTDs in XML may include attributes describing properties of DTD elements. An attribute for a DTD
D has a name, a value type, and is associated with an element type of D. It is easy to see that
such attributes can be modeled in DL by adding one role for each attribute, and by including in the
knowledge base representing the DTD suitable assertions on such roles. In particular, qualified number
restrictions can be used to impose constraints on the number of values that a certain element type may
have for a given attribute.

• Documents may contain links to other documents. In our framework, links can be easily represented
by means of a special concept with suitable roles for the name of the link and the associated anchor.
Observe that, since document links can form cycles, documents with links can be considered as graphs,
rather than trees. However, the roles used to represent links are different from those used to represent
document structures (i.e., f and r), and therefore the resulting knowledge base can correctly model
the situation where finite tree substructures are embedded in arbitrary graphs.

• With respect to the above point, suitable assertions can be used to constrain the anchor to point to a
document of a specific DTD, or to limit the number of links pointing to documents of a certain type.
To impose the latter type of condition, we again resort to qualified number restrictions.

• If part of a document (corresponding to a terminal symbol F in the DTD) includes a special structure
(for example, a list of records, or a table with information about, say, departments and employees),
this can be represented by adding suitable properties to the concept corresponding to F .

• The idea of capturing more semantics related to the tags of documents can be pursued in DL by
introducing new concepts and roles and using it for this purpose.

We note that the framework presented in this paper for representing and reasoning on structured docu-
ments provides a notable example of handling objects composed of different parts. The part-whole relation
is seen as having a special importance in several applications [15, 5, 29]. The Description Logic DL, by
means of the reflexive-transitive closure and the well-foundedness constructs, is able to capture fundamental
aspects of the part-whole relation [29, 4, 37] as shown in [12].

Recently, there has been a strong interest in the Database community on the development of new data
models for semi-structured data. The ability to represent data whose structure is less rigid and strict than in
conventional databases is indeed considered a crucial aspect in modern approaches to data modeling, and is
important in many application areas, such as biological databases, digital libraries, and data integration [1,
9, 15, 32, 35]. Following [1], semi-structured data can be defined as data that is neither raw, nor strictly
typed as in conventional database systems. OEM (Object Exchange Model) [3], bdfs (Basic Data model
For Semi-structured data) [9], and its extension presented in [14] are recent proposals of models for semi-
structured data. They represent data as graphs with labeled edges, where information on both the values
and the schema of data are kept. The formalism presented in this paper can be seen as a formalism for
representing semi-structured data. Indeed, if we associate to each element E of a DTD D one node, and
we consider the content model associated to E as the specification of the allowable children of the node,
we obtain a method by which a DTD can be seen as a graph G, in such a way that the graphs conforming
to G correspond to the document instances conforming to D. Notably, the results presented in this paper
provide effective procedures for reasoning about semi-structured data schemas, a feature that is missing, for
example, in OEM. Further research is needed to compare the expressive power of our formalism with respect
to the above mentioned data models.
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7 Conclusions

Several recent papers dealing with the problem of retrieving information from a document database such as
the World Wide Web argue that the current techniques for representing and reasoning on document struc-
tures should be improved. We have provided a view of DTDs as concepts of the expressive Description Logic
DL, and we have demonstrated that this approach is indeed very effective for both faithfully representing
document structures, and answering some open questions regarding DTD equivalence checking. In partic-
ular, we have proposed a method for checking structural equivalence of DTDs in worst case deterministic
exponential time, in contrast to the known algorithms which are double exponential. Also, we have shown
that conformance in our setting can be done in polynomial time, and query answering can be done efficiently,
by taking advantage of the reasoning methods associated to the DL.

Two further research directions are worth pursuing. On the one hand, further aspects of DTDs could be
captured in order to represent other properties of documents such as exceptions (as described in [42]). On
the other hand, the deductive power of DL allows one to study new types of reasoning on DTDs, such as
further forms of parameterized equivalence (e.g. abstracting from the definition of a specified element) and
document classification (infer which is the DTD that best matches a given marked document among a set
of candidates).
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