
Reasoning in Expressive Description Logics with Fixpoints based on
Automata on Infinite Trees

In Proceedings of the16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99)

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica

Universit̀a di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

lastname@dis.uniroma1.it
http://www.dis.uniroma1.it/∼lastname

Abstract
In the last years, the investigation on Description
Logics (DLs) has been driven by the goal of apply-
ing them in several areas, such as, software engi-
neering, information systems, databases, informa-
tion integration, and intelligent access to the web.
The modeling requirements arising in the above
areas have stimulated the need for very rich lan-
guages, including fixpoint constructs to represent
recursive structures. We study a DL comprising the
most general form of fixpoint constructs on con-
cepts, all classical concept forming constructs, plus
inverse roles,n-ary relations, qualified number re-
strictions, and inclusion assertions. We establish
the EXPTIME decidability of such logic by pre-
senting a decision procedure based on a reduction
to nonemptiness of alternating automata on infinite
trees. We observe that this is the first decidability
result for a logic combining inverse roles, number
restrictions, and general fixpoints.

1 Introduction
Description Logics (DLs) allow one to represent a domain of
interest in terms ofconceptsandroles, where concepts model
classes of individuals, and roles model relationships between
classes[Woods and Schmolze, 1992; Doniniet al., 1996;
Borgida and Patel-Schneider, 1994]. A knowledge base ex-
pressed in a DL is constituted by inclusion assertions that
state the properties of concepts and roles. Various reason-
ing tasks can be carried out on a knowledge base. The most
fundamental one consists in checking whether a certain asser-
tion is logically implied by a knowledge base. A DL is char-
acterized by three aspects: the language used to form com-
plex concepts and roles, the kind of assertions that are used
to express properties of concepts and roles, and the inference
mechanisms provided for reasoning on the knowledge bases
expressible in the system.

In the last years, the investigation on DLs has been driven
by the goal of applying them in several areas, such as plan-
ning [Weida and Litman, 1992], action representation[Ar-
tale and Franconi, 1994], software engineering[Devanbu and
Jones, 1997], information systems[Catarci and Lenzerini,
1993], databases[Borgida, 1995; Bergamaschi and Sartori,
1992; Shethet al., 1993], information integration[Calvanese

et al., 1998c], and intelligent access to the web[Levy et al.,
1996; Blancoet al., 1994]. The modeling requirements aris-
ing in the above areas have stimulated the need for incorpo-
rating increasingly expressive representation mechanisms:
• The goal of capturing the semantics of database mod-

els and reasoning about data schemas has stressed the
importance of number restrictions,n-ary relations, and
cyclic assertions in the knowledge base[Calvaneseet
al., 1994].

• Information integration systems require inclusion asser-
tions not only on concepts, but also on relations[Ullman,
1997].

• Semi-structured data, used in applications such as digital
libraries, internet information systems, etc., require the
ability to represent data whose structure is not rigid and
strictly typed as in conventional database systems. Mod-
els for semi-structured data represent data as graphs with
labeled edges, and adopt flexible typing schemes in or-
der to classify data[Buneman, 1997]. A special case of
such models is XML[Bray et al., 1998], which is be-
coming the standard for exchanging data on the web. In
general, correctly modeling such typing schemes calls
for the use of fixpoints in the representation formalism
[Calvaneseet al., 1998b].

• UML [Boochet al., 1998] is nowadays the standard lan-
guage for the analysis phase of software and information
system development. CASE tools that perform auto-
mated reasoning on UML schemas (for example, to test
consistency or redundancy) would be of great interest.
Fully capturing UML schemas in DLs requires inverse
roles,n-ary relations, number restrictions, and general
fixpoints on concepts for modeling recursive structures
(both inductive and coinductive), such as lists, trees,
streams, etc..

DLs that capture all requirements above except fixpoints
are known (see e.g.[Calvaneseet al., 1998c]). However,
fully capturing fixpoints in DLs has been an open problem
for a long time. Fixpoints incorporated directly in the seman-
tics have been first studied in[Nebel, 1991; Baader, 1996]
for simple DLs. DLs with regular expressions, which can
be seen as a form of fixpoints, have been studied in[Baader,
1991], and exploiting the correspondence with Propositional
Dynamic Logics in[Schild, 1991; De Giacomo and Lenz-
erini, 1994]. In [Calvaneseet al., 1995] another form of

fixpoints, capturing well-foundedness, has been considered.
While such logics got increasingly expressive, they all in-
clude fixpoint of a limited form only. Fixpoints on concepts in
their full generality have been investigated in[Schild, 1994;
De Giacomo and Lenzerini, 1997] developing a correspon-
dence with modalµ-calculus[Kozen, 1983]. However these
logics lack inverse roles (and number restrictions on them)
which are essential to deal withn-ary relations.

The work presented in this paper closes the gap between
the two lines of research, presenting a logic with general fix-
points on concepts that includes all the constructs mentioned
above. Specifically, we consider a DL, calledDLRµ, that
includes:

• a very rich language, comprising all classical concept
forming constructs, plus inverse roles,n-ary relations,
and the most general form of number restrictions;

• the most general form of inclusion assertions, without
any limitations on the presence of cycles;

• the most general form of fixpoint on concepts.

We characterize reasoning in such a DL as EXPTIME-
complete1, by presenting a decision procedure based on re-
ducing inference to nonemptiness of two-way alternating au-
tomata on infinite trees[Vardi, 1998]. We observe that this
is the first decidability result for a logic combining inverse
roles, number restrictions, and general fixpoints.

2 The Description LogicDLRµ

Traditionally, description logics (DLs) allow one to represent
a domain of interest in terms of concepts and roles, which
model classes of individuals and binary relationships between
classes, respectively. More recently DLs comprising relations
of arbitrary arity have been introduced, e.g.,DLR [Calvanese
et al., 1998c]. We present the DLDLRµ which extends
DLR by least and greatest fixpoint constructs.

We make use of the standard first-order notions of scope,
bound and free occurrences of variables, closed formulae,
etc., treatingµ andν as quantifiers.

Concepts and relations (of arity between 2 andnmax) are
built according to the following syntax:

R ::= ⊤n | P | ($i/n:C) | ¬R | R1 ⊓ R2

C ::= ⊤1 | A | X | ¬C | C1 ⊓ C2 |

∃[$i]R | (≤ k [$i]R) | µX.C

whereP andA denoteatomic relationsandatomic concepts
respectively,R andC denote arbitraryrelationsandconcepts,
i denotes components of relations, i.e., an integer between 1
andnmax, n denotes the arity of a relation, i.e., an integer
between 2 andnmax, k denotes a nonnegative integer,⊤1 de-
notes the top concept,⊤n, for n = 2, . . . , nmax, denotes the
top relation of arityn, X denotes a concept variable, and the
restriction is made that every free occurrence ofX in µX.C
is in the scope of an even number of negations ((≤ k [$i]R)
counts as one negation).

Concepts and relations must bewell-typed, which means
that (i) only relations of the same arityn can be combined to

1The same computational complexity of reasoning with inclu-
sion assertions in the basic DLALC.

(⊤n)Iρ = ⊤I
n ⊆ (∆I)n (¬R)Iρ = ⊤I

n \ RI
ρ

P I
ρ = P I ⊆ ⊤I

n (R1 ⊓ R2)
I
ρ = (R1)

I
ρ ∩ (R2)

I
ρ

($i/n: C)Iρ = {(d1, . . . , dn) ∈ ⊤I
n | di ∈ CI

ρ }

(⊤1)
I
ρ = ∆I XI

ρ = ρ(X) ⊆ ∆I

AI
ρ = AI ⊆ ∆I (¬C)Iρ = ∆I \ CI

ρ

(C1 ⊓ C2)
I
ρ = (C1)

I
ρ ∩ (C2)

I
ρ

(∃[$i]R)Iρ = {d | ∃(d1, . . . , dn) ∈ RI
ρ .di = d}

(≤ k [$i]R)Iρ = {d | #{(d1, . . . , dn) ∈ RI
ρ | di = d} ≤ k}

(µX.C)Iρ =
⋂
{E ⊆ ∆I | CI

ρ[X/E] ⊆ E}

P , R, R1, andR2 have arityn

Figure 1: Semantic rules forDLRµ

form expressions of typeR1 ⊓R2 (which inherit the arityn),
and (ii) i ≤ n wheneveri denotes a component of a relation
of arity n.

We make use of the standard abbreviations, including
νX.C for ¬µX.¬C[X/¬X], whereC[X/C ′] denotes the
concept obtained fromC by substituting all free occurrences
of X with C ′. We useλ to denote eitherµ or ν.

An interpretationI = (∆I , ·I) consists of aninterpre-
tation domain∆I , and aninterpretation function·I , which
maps every atomic concept to a subset of∆I , and every
atomic relation of arityn to a subset of(∆I)n. The presence
of free variables does not allow us to extend·I directly to ev-
ery concept and relation. For this reason we introduce valua-
tions. Avaluationρ onI is a mapping from concept variables
to subsets of∆I . Given a valuationρ, we denote byρ[X/E]
the valuation identical toρ except forρ[X/E](X) = E .

Let I be an interpretation andρ a valuation onI. We as-
sign meaning to concepts and relations of the logic by associ-
ating toI andρ anextension function·Iρ , mapping concepts
to subsets of∆I and relations of arityn to subsets of(∆I)n,
as shown in Figure 1. Observe that the semantics assigned to
νX.C is

(νX.C)Iρ =
⋃

{E ⊆ ∆I | E ⊆ CI
ρ[X/E]}

The expressionCI
ρ[X/E] can be seen as an operator from sub-

setsE of ∆I to subsets of∆I , and, by the syntactic restric-
tion enforced on variables, such an operator is guaranteed to
be monotonic wrt⊆. The constructsµX.C andνX.C de-
note respectively theleast fixpointand thegreatest fixpoint
of the operator (see[De Giacomo and Lenzerini, 1997] for
a discussion on the use of fixpoints in DLs). The extension
of closed concepts and relations is independent of the valu-
ation, and therefore for closed concepts and relations we do
not consider the valuation explicitly. A closed concept or re-
lation L is satisfiableif there exists an interpretationI such
thatLI 6= ∅.

A DLRµ knowledge baseis a finite set ofassertionsof
the formL1 ⊑ L2 whereL1 andL2 are either two closed
concepts ofDLRµ or two closed relations of the same arity.
We useL1 ≡ L2 as an abbreviation for the assertionsL1 ⊑
L2 andL2 ⊑ L1. An interpretationI satisfies an assertion
L1 ⊑ L2, if LI

1 ⊆ LI
2 . I is a modelof a knowledge base

N=Dept
L=CONTROLS

Tree

DeptTree Dept

Company

MDept

Money

SOLD

N ,L

Figure 2: An UML diagram

K, if it satisfies all assertions inK. An assertionL1 ⊑ L2

is logically impliedby a knowledge baseK if LI
1 ⊆ LI

2 for
every modelI of K.

Example 2.1 Figure 2 shows an UML diagram which is part
of a Telecom Italia application monitoring departments. De-
partments other than Main Departments are controlled by
other departments, in a purely hierarchical fashion (see the
use of the conceptTree). Moreover, Departments can be
sold to companies for a certain amount of money. There
are further constraints in the application (not shown in the
diagram): First, if a Main Department is sold, then all De-
partments directly or indirectly controlled by it are also sold.
Second, if a Department is sold, then its controlling Main De-
partment is also sold.

We provide the formalization inDLRµ of the UML dia-
gram in Figure 2.Tree[N,L] represents a concept param-
eterized onN andL, to be used as a template, according to
the following inductive definition of tree: (i) an empty tree
is a tree; (ii) a node with at most one predecessor, at least
one successor, and such that all successors are trees, is a tree;
(iii) nothing else is a tree.Tree[Dept,CONTROLS] repre-
sents the concept obtained by syntactically substitutingDept
andCONTROLS for the parametersN andL in Tree[N,L].

Tree[N, L]
def
= µX.(EmptyTree ⊔

(N ⊓ (≤ 1 [$2]L) ⊓ ∃[$1]L ⊓
¬∃[$1](L ⊓ ($2/2:¬X))))

DeptTree ≡ Tree[Dept,CONTROLS]
SOLD ⊑ ($1:Dept) ⊓ ($2:Company) ⊓ ($3:Money)

CONTROLS ⊑ ($1:Dept) ⊓ ($2:Dept)
MDept ⊑ Dept ⊓ ¬∃[$2]CONTROLS

The additional constraints mentioned above are formalizedas
follows:

MDept ⊓ ∃[$1]SOLD ⊑ νX.(∃[$1]SOLD ⊓
¬∃[$1](CONTROLS ⊓ ($2:¬X)))

Dept ⊓ ∃[$1]SOLD ⊑ µX.((MDept ⊓ ∃[$1]SOLD) ⊔
∃[$2](CONTROLS ⊓ ($1: X)))

3 The DLsµALCQI and µALCI f

Below we also consider the DLµALCQI, which extends
µALCQ, studied in[De Giacomo and Lenzerini, 1997], by
the inverse operator on roles. Concepts inµALCQI are built
as follows (R is an atomic or inverse atomic role):

C ::= A | X | ¬C | C1 ⊓ C2 | ∃R.C | (≤ k R.C) | µX.C

α(⊤n) = A⊤n

α(P) = AP

α((i/n: C)) = A⊤n
⊓ ∀Fi.α(C)

α(¬R) = A⊤n
⊓ ¬α(R)

α(R1 ⊓ R2) = α(R1) ⊓ α(R2)

α(⊤1) = A⊤1

α(A) = A
α(X)= X

α(¬C)= A⊤1
⊓ ¬α(C)

α(C1 ⊓ C2) = α(C1) ⊓ α(C2)

α(∃[$i]R) = ∃F−

i .α(R)
α((≤ k [$i]R)) = (≤ k F−

i .α(R))
α(µX.C) = µX.α(C)

α(L1 ⊑ L2) = α(L1) ⊑ α(L2)

Figure 3: Mappingα(·) fromDLRµ to µALCQI

µALCQI can be viewed as a syntactic variant ofmodalµ-
calculus[Kozen, 1983] extended both withgraded modalities
(see e.g.,[Van der Hoek and De Rijke, 1995]) and withback-
ward modalities[Vardi, 1985].

We observe thatµALCQI can also be considered as a sub-
language ofDLRµ by restricting relations to be binary and
allowing their use only according to the following abbrevia-
tions:

∃P .C for ∃[$1](P ⊓ ($2/2: C))
∃P−.C for ∃[$2](P ⊓ ($1/2: C))

(≤ k P .C) for (≤ k [$1](P ⊓ ($2/2: C)))
(≤ k P−.C) for (≤ k [$2](P ⊓ ($1/2: C)))

Finally, we callµALCIf the restriction ofµALCQI ob-
tained by forcing all atomic andinverseroles to be functional.

4 EncodingDLRµ into µALCI f

Next we turn to reasoning inDLRµ. In particular, we present
a technique to decide logical implication inDLRµ. In this
section we show how to encodeDLRµ into µALCQI and
then into µALCIf . In Section 5 we study reasoning in
µALCIf by adopting automata theoretic techniques.

Since we can define an atomic relation to be equivalent to
any complex relation, we assume wlog that all qualified num-
ber restrictions are of the form(≤ k [$i]P), whereP is an
atomic relation. We also use the standard abbreviations.

To reduce logical implication inDLRµ to logical impli-
cation inµALCQI we extend the technique in[Calvanese
et al., 1998a]. We make use of the mappingα(·) defined in
Figure 3, and define theµALCQI knowledge baseα(K) by
applyingα to all assertions inK and adding:

⊤ ⊑ A⊤1
⊔ · · · ⊔ A⊤nmax

⊤ ⊑ (≤ 1Fi.⊤) for eachi ∈ {1, . . . , nmax}
∀Fi.⊥ ⊑ ∀Fi+1.⊥ for eachi ∈ {1, . . . , nmax}
A⊤n

≡ ∃F1.A⊤1
⊓ · · · ⊓ ∃Fn.A⊤1

⊓ ∀Fn+1.⊥
for eachn ∈ {2, . . . , nmax}

AP ⊑ A⊤n
for each atomic relationP of arity n

A ⊑ A⊤1
for each atomic conceptA

Intuitively, α(K) makes use ofreificationof n-ary relations,
i.e. a tuple in a model ofK is represented in a model ofα(K)
by an individual having one functional roleFi for each tuple
component$i.

Although atomic roles inα(K) are functional their inverses
are not. Next we further transformα(K) to get aµALCIf

β(⊤) = ⊤
β(A) = A
β(X) = X

β(∃F−

i .C) = ∃fi.∃g∗

i .β(C)
β(∃Fi.C) = ∃f−

i .∃(g−

i)∗.β(C)
β((≤ 1 Fi.⊤)) = ⊤

β((≤ k F−

i .A)) = ∀fi.∀g∗

i .(¬β(A) ⊔ ∀g+
i .¬β(A) ⊔

∀g+
i .(· · · (¬β(A) ⊔ ∀g+

i .¬β(A)) · · ·))

β(C1 ⊑ C2) = β(C1) ⊑ β(C2)

β(¬C) = ¬β(C)
β(C1 ⊓ C2) = β(C1) ⊓ β(C2)

β(µX.C) = µX.β(C)

where in the second last equation the number of nested con-
cepts of the form¬β(A) ⊔ ∀g+

i .C is k, and the following ab-
breviations are used:∀g∗

i .C for νX.(C ⊓ ∀gi.X), ∀g+
i .C for

∀gi.∀g∗

i .C, ∃g∗

i .C for µX.(C ⊔ ∃gi.X), and ∃(g−

i)∗.C for
µX.(C ⊔ ∃g−

i .X).

Figure 4: Mappingβ(·) from µALCQI to µALCIf

knowledge baseβ(α(K)) (in which also all inverse roles are
functional). Intuitively, following[De Giacomo and Lenz-
erini, 1995], we represent the roleF−

i , i = 1, . . . , nmax, by
the rolefi ◦ g∗i , wherefi, gi are new functional roles andg∗i
is the reflexive-transitive closure ofgi. Now qualified num-
ber restrictions can be encoded as constraints on the chain
fi ◦ g∗i . Formally, we make use of the mappingβ(·) defined
in Figure 4.

We defineβ(α(K)) as theµALCIf knowledge base ob-
tained by applyingβ to all assertions inα(K) and adding the
assertion⊤ ⊑ ¬(∃f−

i .⊤ ⊓ ∃g−i .⊤).

Theorem 4.1 Given a DLRµ knowledge baseK and a
DLRµ assertionL1 ⊑ L2,

K |= L1 ⊑ L2 iff β(α(K)) |= β(α(L1 ⊑ L2)).

Since the mappingsα and β are polynomial we get the
following result.

Theorem 4.2 Logical implication inDLRµ can be polyno-
mially reduced to logical implication inµALCIf .2

Finally we observe, that sinceµALCIf has theconnected-
model property, we can internalize assertions and polyno-
mially reduce logical implication to concept satisfiability.
Namely,K |= C1 ⊑ C2 iff

C1 ⊓ ¬C2 ⊓ νX.(CK ⊓ (⊓q
i=1(∀Pi.X ⊓ ∀P−

i .X)))

is unsatisfiable, whereCK = ⊓[C⊑C′∈K](¬C ⊔ C ′) and
P1, . . . , Pq are the atomic roles inK, C1 andC2. Therefore,
in the following we concentrate on concept satisfiability in
µALCIf .

5 Automata Techniques forµALCI f

We now study concept satisfiability inµALCIf following
the techniques based ontwo-way alternating automata on
infinite trees(TWAA) introduced in[Vardi, 1998]. Indeed,
Vardi used TWAAs to derive a decision procedure for modal
µ-calculus with backward modalities. Here we exploit them

2Under the usual assumption that numbers in number restrictions
are coded in unary.

to derive a reasoning procedure forµALCIf , which corre-
sponds to a modalµ-calculus with backward modalities in
which both forward and backward modalities are functional.

5.1 Automata on Infinite Trees
Infinite trees are represented as prefix closed (infinite) sets of
words overIN (the set of positive natural numbers). Formally,
aninfinite treeis a set of wordsT ⊆ IN∗, such that ifx·c ∈ T ,
wherex ∈ IN∗ andc ∈ IN, then alsox ∈ T . The tree isfull
if also x·c′ ∈ T for all 0 < c′ < c. The elements ofT are
callednodes, the empty wordε is theroot of T , and for every
x ∈ T , the nodesx·c, with c ∈ IN, are thesuccessorsof
x. By convention we takex·0 = x, andx·i·−1 = x. The
branching degreed(x) denotes the number of successors of
x. If d(x) = k for all nodesx, then we say that the tree isk-
ary. An infinite pathP of T is a prefix-closed setP ⊆ T such
that for everyi ≥ 0 there exists a unique nodex ∈ P with
|x| = i. A labeled treeover an alphabetΣ is a pair〈T, V 〉
whereT is a tree andV : T → Σ.

Alternating automata on infinite trees are a generalization
of nondeterministic automata on infinite trees, introduced
in [Muller and Schupp, 1987]. They allow for an elegant re-
duction of decision problems for temporal and program log-
ics [Emerson and Jutla, 1991; Bernholtzet al., 1994]. Let
B+(I) be the set of positive boolean formulas overI, includ-
ing alsotrue and false. For a setJ ⊆ I and a formula
ϕ ∈ B+(I), we say thatJ satisfiesϕ iff assigningtrue to
the elements inJ andfalse to those inI \ J makesϕ true.
Let [k] = {−1, 0, 1, . . . , k}. A two-way alternating automa-
ton over infinitek-ary trees is a tupleA = 〈Σ, Q, δ, q0, F 〉,
where Σ is the input alphabet,Q is a finite set of states,
δ : Q × Σ → B+([k] × Q) is the transition function,q0 ∈ Q
is the initial state, andF specifies the acceptance condition.

The transition function maps a stateq ∈ Q and an input
letterσ ∈ Σ to a positive boolean formula over[k] × Q. In-
tuitively, if δ(q, σ) = ϕ, then each pair(c, q′) appearing in
ϕ corresponds to a new copy of the automaton going to the
direction suggested byc and starting in stateq′. For example,
if k = 2 andδ(q1, σ) = (1, q2)∧ (1, q3)∨ (−1, q1)∧ (0, q3),
when the automaton is in the stateq1 and is reading the node
x labeled by the letterσ, it proceeds either by sending off two
copies, in the statesq2 andq3 respectively, to the first succes-
sor ofx (i.e.,x·1), or by sending off one copy in the stateq1

to the predecessor ofx (i.e.,x·−1) and one copy in the state
q3 to x itself (i.e.,x·0).

A run of a TWAA A over a labeled tree〈T, V 〉 is a labeled
tree〈Tr, r〉 in which every node is labeled by an element of
T × Q. A node inTr labeled by〈x, q〉 describes a copy of
A that is in the stateq and reads the nodex of T . The labels
of adjacent nodes have to satisfy the transition function ofA.
Formally, a run〈Tr, r〉 is aT × Q-labeled tree satisfying:

1. ε ∈ Tr andr(ε) = 〈ε, q0〉.

2. Let y ∈ Tr, with r(y) = 〈x, q〉 and δ(q, V (x)) =
ϕ. Then there is a (possibly empty) setS =
{〈c1, q1〉, . . . , 〈cn, qn〉} ⊆ [k] × Q such that:

• S satisfiesϕ and
• for all 1 ≤ i ≤ n, we have thaty·i ∈ Tr, x·ci is

defined, andr(y·i) = 〈x·ci, qi〉.

A run 〈Tr, r〉 is acceptingif all its infinite paths satisfy
the acceptance condition. Given an infinite pathP ⊆ Tr, let
inf (P) ⊆ Q be the set of states that appear infinitely often in
P (as second components of node labels). We consider here
parity acceptance conditions. A parity condition over a state
setQ is a finite sequenceF = (G1, . . . , Gm) with G1 ⊆
G2 ⊆ · · · ⊆ Gm = Q, and a pathP satisfiesF if there is an
eveni for which inf (P) ∩ Gi 6= ∅ andinf (P) ∩ Gi−1 = ∅.

5.2 Reasoning inµALCI f

First we observe thatµALCIf has thetree model property,
which states that if aµALCIf conceptC is satisfiable then
it is satisfied in an interpretation which has the structure of
an infinite tree of bounded degree. In particular, the degree
is bounded by2 · n, wheren is the number of atomic roles
appearing inC. The tree model property can be shown fol-
lowing the lines of the proof in[Vardi, 1998] for the modalµ-
calculus with backward modalities. Next we define a TWAA
that accepts exactly the trees that are models of a concept.

The closurecl(C) of aµALCIf conceptC (which extends
the one in[Kozen, 1983] for the modalµ-calculus) is defined
as the smallest setcl(C) of closed concepts that satisfies:

C ∈ cl(C)
C′ ∈ cl(C) implies¬C′ ∈ cl(C) (we identify¬¬C andC)
C1 ⊓ C2, C1 ⊔ C2 ∈ cl(C) impliesC1 ∈ cl(C) andC2 ∈ cl(C)
∃R.C′, ∀R.C′ ∈ cl(C) impliesC′ ∈ cl(C)
λX.C′ ∈ cl(C) impliesC′[X/λX.C′] ∈ cl(C)

Note that the cardinality ofcl(C) is linear in the length ofC.

LetC be theµALCIf concept we want to check for satisfi-
ability, which wlog we assume to be in negation normal form.
Let A be the set of atomic concepts, andP = {P1, . . . , Pn}
the set of atomic roles appearing inC. We construct from
C a TWAA AC which checks thatC is satisfied at the root
of the input tree. For technical reasons it is useful to con-
sider trees where all nodes have the same branching degree
2n. To this end we introduce dummy nodes in the tree. We
use the symbolsAg and¬Ag to distinguish nodes that corre-
spond to elements of the model from those that do not. We
also represent in the nodes of the tree the information about
the labeling of the edges by introducing for each rolePi four
symbolsAi, ¬Ai, A−

i , and¬A−
i . Intuitively, Ai labelsx·i if

(x, x·i) ∈ P I
i and¬Ai labelsx·i if not. Similarly A−

i labels
x·i if (x·i, x) ∈ P I

i and¬A−
i labelsx·i if not.

Since all roles (both direct and inverse) are deterministic,
we can assume that for each nodex, eachPi and eachP−

i
successor appears in a fixed position. In particular,x·i is
labeled withAi and x·(i+n) is labeled withA−

i . Let det
and ini be two new symbols, andAaux = {Ag,¬Ag} ∪⋃n

i=1{Ai,¬Ai, A
−
i ,¬A−

i } ∪ {det}.

The automatonAC = 〈Σ, S, δ, ini , F 〉, where Σ =
2A∪Aaux , S = cl(C) ∪ Aaux ∪ {ini , det}, the acceptance
conditionF is as in[Vardi, 1998] and the transition function
δ is defined as follows. For allσ ∈ Σ: for all A ∈ A ∪ Aaux

we haveδ(A, σ) = true if A ∈ σ, δ(A, σ) = false if A 6∈ σ,

δ(¬A, σ) = true if A 6∈ σ, δ(¬A, σ) = false if A ∈ σ, and

δ(C1 ⊓ C2, σ)=(0, C1) ∧ (0, C2)

δ(C1 ⊔ C2, σ)=(0, C1) ∨ (0, C2)

δ(λX.C1, σ)=(0, C[X/λX.C1])

δ(∃Pi.C1, σ)=((−1, C1) ∧ (0, A−

i)) ∨ ((i, Ag) ∧ (i, C1))

δ(∃P−

i .C1, σ)=((−1, C1) ∧ (0, Ai)) ∨ ((i+n, Ag) ∧ (i+n, C1))

δ(∀Pi.C1, σ)=((−1, C1) ∨ (0,¬A−

i)) ∧ ((i,¬Ag) ∨ (i, C1))

δ(∀P−

i .C1, σ)=((−1, C1) ∨ (0,¬Ai)) ∧ ((i+n,¬Ag) ∨ (i+n, C1)

δ(det , σ)=
∧2n

i=1
(i, det) ∧∧n

i=1
((i,¬Ag) ∨ (i, Ai) ∧ (i+n,¬Ag) ∨ (i+n, A−

i)) ∧∧n

i=1
((0,¬Ai) ∨ (n+i,¬Ag) ∧ (0,¬A−

i) ∨ (i,¬Ag))

δ(ini , σ)=(0, det) ∧ (0, C)

Intuitively, the automaton starts in the initial stateini and
spawns two copies of itself: one verifies that the tree has the
right structure wrt functionality, and one checksC on such
structure.

Theorem 5.1 A µALCIf conceptC is satisfiable iff the set
of trees accepted byAC in not empty.

Since nonemptiness of TWAA can be decided in EXP-
TIME [Vardi, 1998] we get the following upper bound.

Corollary 5.2 Concept satisfiability inµALCIf can be de-
cided in EXPTIME.

Since the reduction in the previous section is polynomial,
we get a worst case deterministic exponential time decision
procedure for logical implication inDLRµ. Moreover, since
logical implication inDLRµ is EXPTIME-hard (it is so al-
ready forALC) we get the following tight complexity bound.

Theorem 5.3 Logical implication inDLRµ is EXPTIME-
complete.

6 Conclusions
By addressing general fixpoints on concepts, in addition to
more standard constructs, DLs finally meet the modeling re-
quirements of advanced applications. The EXPTIME reason-
ing procedure forDLRµ is the first decidability result for a
logic combining inverse roles, number restrictions, and gen-
eral fixpoints. In particular, since modalµ-calculus extended
both with graded and backward modalities corresponds to
µALCQI, the result here applies to such logic as well.

We observe that reasoning in the presence of extensional
information (ABox) remains an open problem forDLRµ.

References
[Artale and Franconi, 1994] A. Artale and E. Franconi. A

computational account for a description logic of time and
action. InKR-94, pages 3–14, 1994.

[Baader, 1991] F. Baader. Augmenting concept languages by
transitive closure of roles: An alternative to terminological
cycles. InIJCAI-91, 1991.

[Baader, 1996] F. Baader. Using automata theory for char-
acterizing the semantics of terminological cycles.Ann. of
Math. and AI, 18:175–219, 1996.

[Bergamaschi and Sartori, 1992] S. Bergamaschi and C. Sar-
tori. On taxonomic reasoning in conceptual design.ACM
TODS, 17(3):385–422, 1992.

[Bernholtzet al., 1994] O. Bernholtz, M. Y. Vardi, and
P. Wolper. An automata-theoretic approach to branching-
time model checking. InCAV-94, LNCS 818, pages 142–
155, 1994.

[Blancoet al., 1994] J. L. Blanco, A. Illarramendi, and
A. Goñi. Building a federated relational database system:
An approach using a knowledge-based system.J. of In-
telligent and Cooperative Information Systems, 3(4):415–
455, 1994.

[Boochet al., 1998] G. Booch, J. Rumbaugh, and I. Jacob-
son. Unified Modeling Language User Guide. Addison
Wesley, 1998.

[Borgida and Patel-Schneider, 1994] A. Borgida and P. F.
Patel-Schneider. A semantics and complete algorithm for
subsumption in the CLASSIC description logic.JAIR,
1:277–308, 1994.

[Borgida, 1995] A. Borgida. Description logics in data man-
agement.IEEE Trans. on Knowledge and Data Engineer-
ing, 7(5):671–682, 1995.

[Brayet al., 1998] T. Bray, J. Paoli, and C. M. Sperberg-
McQueen. Extensible Markup Language (XML) 1.0 –
W3C Recommendation, 1998.

[Buneman, 1997] P. Buneman. Semistructured data. In
PODS-97, pages 117–121, 1997.

[Calvaneseet al., 1994] D. Calvanese, M. Lenzerini, and
D. Nardi. A unified framework for class based representa-
tion formalisms. InKR-94, pages 109–120, 1994.

[Calvaneseet al., 1995] D. Calvanese, G. De Giacomo, and
M. Lenzerini. Structured objects: Modeling and reason-
ing. In DOOD-95, LNCS 1013, pages 229–246, 1995.

[Calvaneseet al., 1998a] D. Calvanese, G. De Giacomo, and
M. Lenzerini. On the decidability of query containment
under constraints. InPODS-98, pages 149–158, 1998.

[Calvaneseet al., 1998b] D. Calvanese, G. De Giacomo, and
M. Lenzerini. What can knowledge representation do for
semi-structured data? InAAAI-98, pages 205–210, 1998.

[Calvaneseet al., 1998c] D. Calvanese, G. De Giacomo,
M. Lenzerini, D. Nardi, and R. Rosati. Description logic
framework for information integration. InKR-98, pages
2–13, 1998.

[Catarci and Lenzerini, 1993] T. Catarci and M. Lenzerini.
Representing and using interschema knowledge in coop-
erative information systems.J. of Intelligent and Cooper-
ative Information Systems, 2(4):375–398, 1993.

[De Giacomo and Lenzerini, 1994] G. De Giacomo and
M. Lenzerini. Boosting the correspondence between de-
scription logics and propositional dynamic logics. In
AAAI-94, pages 205–212, 1994.

[De Giacomo and Lenzerini, 1995] G. De Giacomo and
M. Lenzerini. What’s in an aggregate: Foundations for
description logics with tuples and sets. InIJCAI-95, pages
801–807, 1995.

[De Giacomo and Lenzerini, 1997] G. De Giacomo and
M. Lenzerini. A uniform framework for concept defini-
tions in description logics.JAIR, 6:87–110, 1997.

[Devanbu and Jones, 1997] P. Devanbu and M. A. Jones. The
use of description logics in KBSE systems.ACM Trans.
on Software Engineering and Methodology, 6(2):141–172,
1997.

[Donini et al., 1996] F. M. Donini, M. Lenzerini, D. Nardi,
and A. Schaerf. Reasoning in description logics. InPrinci-
ples of Knowledge Representation, pages 193–238. 1996.

[Emerson and Jutla, 1991] E. A. Emerson and C. S. Jutla.
Tree automata, mu-calculus and determinacy. InFOCS-
91, pages 368–377, 1991.

[Kozen, 1983] D. Kozen. Results on the propositionalµ-
calculus.Theor. Comp. Sci., 27:333–354, 1983.

[Levy et al., 1996] A. Y. Levy, A. Rajaraman, and J. J. Or-
dille. Query answering algorithms for information agents.
In AAAI-96, pages 40–47, 1996.

[Muller and Schupp, 1987] D. E. Muller and P. E. Schupp.
Alternating automata on infinite trees.Theor. Comp. Sci.,
54:267–276, 1987.

[Nebel, 1991] B. Nebel. Terminological cycles: Semantics
and computational properties. InPrinciples of Semantic
Networks, pages 331–361. Morgan Kaufmann, 1991.

[Schild, 1991] K. Schild. A correspondence theory for ter-
minological logics: Preliminary report. InIJCAI-91, pages
466–471, 1991.

[Schild, 1994] K. Schild. Terminological cycles and the
propositionalµ-calculus. InKR-94, pages 509–520, 1994.

[Shethet al., 1993] A. P. Sheth, S. K. Gala, and S. B. Na-
vathe. On automatic reasoning for schema integration.J. of
Intelligent and Cooperative Information Systems, 2(1):23–
50, 1993.

[Ullman, 1997] J. D. Ullman. Information integration us-
ing logical views. InICDT-97, LNCS 1186, pages 19–40,
1997.

[Van der Hoek and De Rijke, 1995] W. Van der Hoek and
M. De Rijke. Counting objects.J. of Log. and Comp.,
5(3):325–345, 1995.

[Vardi, 1985] M. Y. Vardi. The taming of converse: Rea-
soning about two-way computations. In LNCS 193, pages
413–424, 1985.

[Vardi, 1998] M. Y. Vardi. Reasoning about the past with
two-way automata. InICALP’98, LNCS 1443, pages 628–
641, 1998.

[Weida and Litman, 1992] R. Weida and D. Litman. Termi-
nological reasoning with constraint networks and an ap-
plication to plan recognition. InKR-92, pages 282–293,
1992.

[Woods and Schmolze, 1992] W. A. Woods and J. G.
Schmolze. The KL-ONE family. InSemantic Networks
in Artificial Intelligence, pages 133–178. Pergamon Press,
1992.

