
Identification Constraints and Functional Dependencies in Description Logics

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{calvanese,degiacomo,lenzerini}@dis.uniroma1.it

Abstract

DLR is an expressive Description Logic (DL) with
n-ary relations, particularly suited for modeling
database schemas. Although DLR has constituted
one of the crucial steps for applying DL technology
to data management, there is one important aspect
of database schemas that DLs, including DLR, do
not capture yet, namely the notion of identification
constraints and functional dependencies. In this pa-
per we introduce a DL which extends DLR and
fully captures the semantics of such constraints,
and we address the problem of reasoning in such a
logic. We show that, verifying knowledge base sat-
isfiability and logical implication in the presence of
identification constraints and nonunary functional
dependencies can be done in EXPTIME, thus with
the same worst-case computational complexity as
for plain DLR. We also show that adding just
unary functional dependencies to DLR leads to un-
decidability.

1 Introduction
In the last years, Description Logics (DLs) have been suc-
cessfully applied to data management [Borgida, 1995; Kirk
et al., 1995; Calvanese et al., 1998b; 1999]. One of the ba-
sic ideas behind applying DLs to data management is that
database schemas can be expressed as DL knowledge bases,
so that DL reasoning techniques can be used in several ways
to reason about the schema. In [Calvanese et al., 1998a;
1998b], a very expressive DL with n-ary relations, called
DLR, is introduced, and it is shown how database schemas
can be captured by this logic. Also, suitable mechanisms for
expressing queries over DLR schemas have been added, and
techniques for reasoning over queries have been designed.
Notably, the investigation on DLR has led to the design of
new DL systems effectively implementing powerful reason-
ing techniques [Horrocks et al., 1999].

Although the above mentioned work has been the crucial
step for applying DL technology to data management, there is
one important aspect of database schemas that DLs, including
DLR, do not capture yet, namely the notion of identification
constraints and functional dependencies. Identification con-
straints (also called keys) are used to state that a certain set

of properties uniquely identifies the instances of a concept.
A functional dependency on a relation is used to impose that
a combination of a given set of attributes functionally deter-
mines another attribute of the relation. It is easy to see that
functional dependencies can be used to model keys of a re-
lation, i.e., attributes that are sufficient to identify tuples of
the relation. Both types of constraints are commonly used in
database design and data management.

The question addressed in this paper is as follows: can we
add identification constraints and non-unary functional de-
pendencies to DLR and still have EXPTIME associated rea-
soning techniques? Somewhat surprisingly, we answer posi-
tively to the question, by illustrating an approach that allows
us to incorporate both types of constraints in DLR. In par-
ticular, we adapt the DLR reasoning algorithm in such a way
that reasoning on a DLR schema with both types of con-
straints and with ABoxes, can be done with the same worst-
case computational complexity as for the case of plain DLR.
Also, the proposed technique can be incorporated into present
DL systems, such as the one described in [Horrocks et al.,
1999]. We also show that adding to DLR unary functional
dependencies leads to undecidability of reasoning. Observe,
however, that the presence of such functional dependencies is
typically considered as an indication of bad schema design in
databases.

Both identification constraints and functional dependen-
cies have been extensively investigated in the database liter-
ature (see [Abiteboul et al., 1995], Chapters 8, 9). However,
database models lack the kinds of constraints expressible in
expressive DLs, and therefore none of the results developed
in the context of databases can be used to solve our problem.

In the last years, there have been some attempts to add
identification constraints to DLs. In [Calvanese et al., 1995],
these constraints are modeled by means of special primitive
concepts in an expressive DL, and it is shown that this mech-
anism allows some inference on keys to be carried on. The
limitation of this approach is that several interesting seman-
tic properties of keys are not represented in the knowledge
base. In [Borgida and Weddell, 1997; Khizder et al., 2001], a
general mechanism is proposed for modeling path functional
dependencies, and a sound and complete inference system
for reasoning on such constraints is presented. Path func-
tional dependencies are sufficiently expressive to model both
identification constraints and functional dependencies. How-

ever, the DLs considered are limited in expressiveness. In
particular, union, negation, number restrictions, general in-
clusion axioms, inverse roles and n-ary relations are not part
of the considered language, and therefore useful properties
of database schemas cannot be represented. The proposal
presented in this paper fully captures the semantics of both
identification constraints and functional dependencies in an
expressive DL with all the above features.

The paper is organized as follows. In Section 2, we re-
call the DL DLR. In Section 3, we illustrate the mechanism
for specifying identification constraints and functional depen-
dencies in DLR knowledge bases. In Section 4, we discuss
the modeling power of the resulting logic, called DLRifd . In
Section 5, we describe how we can extend the DLR reason-
ing technique in order to take the new types of constraints
into account, and in Section 6 we show that minor extensions
of DLRifd leads to undecidability of reasoning. Finally, Sec-
tion 7 concludes the paper.

2 Description Logic DLR
We focus on the Description Logic DLR, which is able to
capture a great variety of data models with many forms of
constraints [Calvanese et al., 1998a; 1999]. The basic ele-
ments of DLR are concepts (unary relations), and n-ary re-
lations.

We assume to deal with a finite set of atomic relations (hav-
ing arity between 2 and nmax) and atomic concepts, denoted
by P and A, respectively. We use R to denote arbitrary re-
lations and C to denote arbitrary concepts, respectively built
according to the following syntax:

R ::= �n | P | (i/n : C) | ¬R | R1 � R2

C ::= �1 | A | ¬C | C1 � C2 | (≤ k [i]R)

where n denotes the arity of the relations P , R, R1, and R2,
i denotes a component of a relation, i.e., an integer between 1
and n, and k denotes a non-negative integer. Observe that
we consider only concepts and relations that are well-typed,
which means that: (i) only relations of the same arity n are
combined to form expressions of type R1�R2 (which inherit
the arity n); (ii) i ≤ n whenever i denotes a component of a
relation of arity n.

We introduce the following abbreviations: ⊥ for ¬�1;
C1�C2 for¬(¬C1�¬C2); C1 ⇒C2 for¬C1�C2; (≥ k [i]R)
for ¬(≤ k−1 [i]R); ∃[i]R for (≥ 1 [i]R); ∀[i]R for ¬∃[i]¬R.
Moreover, we abbreviate (i/n : C) with (i : C) when n is
clear from the context.

A DLR TBox is constituted by a finite set of inclusion as-
sertions, where each assertion has one of the forms:

C1
 C2 R1
 R2

with R1 and R2 of the same arity.
The semantics of DLR is specified as follows. An inter-

pretation I is constituted by an interpretation domain ∆I ,
and an interpretation function ·I that assigns to each con-
cept C a subset CI of ∆I and to each relation R of arity
n a subset RI of (∆I)n such that the conditions in Figure 1
are satisfied. In the figure, t[i] denotes the i-th component
of tuple t. Observe that, the “¬” constructor on relations is

�I
n ⊆ (∆I)n

P I ⊆ �I
n

(i/n : C)I = {t ∈ �I
n | t[i] ∈ CI}

(¬R)I = �I
n \ RI

(R1 � R2)I = RI
1 ∩ RI

2

�I
1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 � C2)I = CI
1 ∩ CI

2

(≤ k [i]R)I = {a ∈ ∆I | �{t ∈ RI | t[i] = a} ≤ k}

Figure 1: Semantic rules for DLR (P , R, R1, and R2 have
arity n, and �σ denotes the cardinality of the set σ)

used to express difference of relations, and not the comple-
ment [Calvanese et al., 1998a]. An interpretation I satisfies
an assertion C1
 C2 (resp., R1
 R2) if CI

1 ⊆ CI
2 (resp.,

RI
1 ⊆ RI

2).
We introduce a generalized form of DLR ABox. We con-

sider an alphabet of new symbols, called Skolem constants
(sk-constants). Intuitively, an sk-constant denotes an indi-
vidual in an interpretation, in such a way that different sk-
constants may denote the same individual.

A generalized DLR ABox (or simply ABox in the follow-
ing) is constituted by a finite set of assertions, called ABox
assertions, of the following types:

C(x) R(x1, . . . , xn) x �= y x = y

where R is a relation of arity n, and x, y, x1, . . . , xn are sk-
constants.

The notion of interpretation is extended so as to assign to
each sk-constant x an individual xI ∈ ∆I . An interpretation
I satisfies

• C(x) if xI ∈ CI ;

• R(x1, . . . , xn) if (xI
1 , . . . , xI

n) ∈ RI ;

• x �= y if xI �= yI ;

• x = y if xI = yI .

If T is a DLR TBox, and A is a DLR ABox of the above
form, then K = T ∪ A is called a DLR knowledge base.
An interpretation is a model of K if it satisfies every assertion
in K. A knowledge base K is satisfiable if it has a model.
An assertion α (either an inclusion, or an ABox assertion) is
logically implied by K if all models of K satisfy α.

Logical implication and knowledge base satisfiability are
mutually reducible to each other. For one direction, K is
unsatisfiable iff K |= �1
 ⊥. For the converse di-
rection, it is possible to show that K |= C1
 C2 iff
K∪{�1
 ∃[1](P � (2 : C1 �¬C2))} is unsatisfiable, where
P is a new binary relation. Similarly, K |= R1
 R2 iff
K ∪ {�1
 ∃[1](P � (2 : ∃[1](C1 � ¬C2)))} is unsatisfiable,
where again P is a new binary relation. Finally, K |= C(α)
iff K ∪ {¬C(α)} is unsatisfiable.

It follows from the results in [Calvanese et al., 1998a],
that checking a DLR knowledge base for satisfiability is
EXPTIME-complete.

3 Identification and Functional Dependency
Assertions

We extend DLR with identification constraints and func-
tional dependencies. The resulting DL, called DLRifd , al-
lows one to express these constraints through new kinds of
assertions in the TBox.

An identification assertion on a concept has the form:

(id C [i1]R1, . . . , [ih]Rh)

where C is a concept, each Rj is a relation, and each ij de-
notes one component of Rj . Intuitively, such an assertion
states that two instances of C cannot agree on the participa-
tion to R1, . . . , Rh via components i1, . . . , ih, respectively.

A functional dependency assertion on a relation has the
form:

(fd R i1, . . . , ih → j)
where R is a relation, h ≥ 2, and i1, . . . , ih, j denote compo-
nents of R. The assertion imposes that two tuples of R that
agree on the components i1, . . . , ih, agree also on the compo-
nent j.

We assign semantics to these assertions by defining when
an interpretation satisfies them. Specifically:

• An interpretation I satisfies the assertion
(id C [i1]R1, . . . , [ih]Rh) if, for all a, b ∈ CI
and for all t1, s1 ∈ RI

1 , . . . , th, sh ∈ RI
h , we have that:

a = t1[i1] = · · · = th[ih],
b = s1[i1] = · · · = sh[ih],
tj [i] = sj [i], for j ∈ {1, . . . , h},

and for i �= ij




implies a = b

• An interpretation I satisfies the assertion
(fd R i1, . . . , ih → j) if, for all t, s ∈ RI , we
have that:

t[i1] = s[i1], . . . , t[ih] = s[ih] implies t[j] = s[j]

A DLRifd knowledge base is a set K = T ∪ A ∪ F of
assertions, where T ∪ A is a DLR knowledge base and F is
a set of identification and functional dependency assertions.

Note that unary functional dependencies (i.e., functional
dependencies with h = 1) are ruled out in DLRifd . We will
come to this in Section 6. Note also that the right hand side
of a functional dependency contains a single element. How-
ever, this is not a limitation, because any functional depen-
dency with more than one element in the right hand side can
always be split into several dependencies of the above form.
Also, to verify whether a functional dependency with more
than one element in the right hand side is logically implied
by a DLRifd knowledge base, it suffices to verify whether
each of the functional dependencies in which it can be split,
is logically implied by the knowledge base.

4 Modeling in DLRifd

DLRifd captures database schemas expressed in several data
models . For example, Entity-Relationship schemas can be
represented already in DLR, by modeling each entity as a
concept, and each relationship as a relation [Calvanese et al.,

1998b; 1999]. Attributes of entities are modeled by means
of binary relations, and single-valued or mandatory attributes
are expressible through the use of number restrictions. At-
tributes of relationships can be modeled in several ways, for
instance through special (n + 1)-ary relations, where n is
the arity of the relationship. Also, integrity constraints such
as is-a, cardinality, existence, and typing constraints are ex-
pressible by means of inclusion assertions. Finally, unary
keys (keys constituted by a single attribute) can be modeled
through number restrictions. Non-unary keys cannot be rep-
resented in DLR, while they are obviously expressible in
DLRifd .

Example 1 Suppose that Person and University are concepts,
EnrolledIn is a binary relation between Person and University,
and StudentCode is an (optional) attribute (modeled as a bi-
nary relation) of Person associating to each student (a person
who is enrolled in a university) a code that is unique in the
context of the university in which she is enrolled. Such a sit-
uation can be represented by the following DLRifd TBox:

EnrolledIn
 (1 : Person) � (2 : University)
StudentCode
 (1 : Person) � (2 : String)

Person
 (≤ 1 [1]StudentCode)
(id Person [1]StudentCode, [1]EnrolledIn)

Note that, the notion of student is modeled by the concept
Person � ∃[1]EnrolledIn and, in the conceptual modeling ter-
minology, this concept is a weak entity, i.e., part of its identi-
fier is external through the relationship EnrolledIn.

We additionally want to model the notion of exam in our
application. An exam is a relationship involving a student, a
course, a professor, and a grade. In an exam, the combination
of student and course functionally determines both the pro-
fessor, and the grade. This can be represented by adding the
following assertions to the TBox:

Exam
 (1 :(Person � ∃[1]EnrolledIn)) �
(2 : Course) � (3 : Person) � (4 : Grade)

(fd Exam 1, 2 → 3) (fd Exam 1, 2 → 4)

Observe that generally, in conceptual data models, if an at-
tribute (or a relationship) L is part of a key for an entity E,
then in the database schema it must be the case that E has
a single and mandatory participation in L, i.e., each instance
of E has exactly one associated value for L [Abiteboul et al.,
1995]. This is not required in DLRifd (but can be asserted
when needed), where one can define an attribute as part of a
key of an entity, even if the attribute is multi-valued or op-
tional.

We have mentioned that unary functional dependencies are
not allowed in DLRifd . However, this limitation does not
prevent one from defining unary keys for relations. Indeed,
the fact that component i is a key for the relation R can al-
ready be expressed in DLR by means of the assertion:

�1
 (≤ 1 [i]R)

The above observation also implies that functional dependen-
cies in the context of binary relations, which are by defini-
tion unary, are expressible in DLRifd . Indeed, such func-
tional dependencies correspond to key constraints, which are

expressible as specified above. For example, the functional
dependency 1 → 2 in the context of the binary relation R can
be expressed by specifying that component 1 is a key for R.
Thus, the only functional dependencies that are not admitted
in DLRifd are unary functional dependencies in the context
of non-binary relations. This is because they lead to unde-
cidability of reasoning, as shown in Section 6. Note also, that
the presence of such functional dependencies is considered as
an indication of bad design in the framework of the relational
data model (see [Abiteboul et al., 1995], Chapter 11). In fact,
a unary functional dependency in the context of an n-ary re-
lation (with n > 2) represents a hidden relationship between
the arguments of the relation, which may cause several mod-
eling problems.

The possibility of defining identification constraints sub-
stantially enriches the modeling power of DLs. In particu-
lar, it is possible to show that, even if only binary relations
are allowed in a DL, then the use of identification constraints
permits simulating the presence of n-ary relations in such a
logic. For example, a relation with arity 3 can be modeled
by means of a concept and 3 binary relations. Number re-
strictions are used to state that every instance of the concept
participates in exactly one instance of the binary relation, and
a suitable identification assertion states that the combination
of the three binary relations form a key for the concept. Ob-
viously, DLRifd further increases the modeling power by al-
lowing the explicit use of n-ary relations, and the possibility
of imposing functional dependencies in the context of rela-
tions.

5 Reasoning on DLRifd

First of all we observe that, when reasoning in DLRifd , iden-
tification assertions of the form (id C [i]R), where R is a
binary relation, are equivalent to DLR assertions �
 (≤
1 [j](R � (i : C))), where j = 2 if i= 1, and j = 1 if i= 2.
Hence, in the following, without loss of generality, we will
not consider such identification assertions.

Next we show that we can reduce logical implication in
DLRifd to knowledge base satisfiability. As already ob-
served in Section 2, logical implication of inclusion and
ABox assertions can be reduced to knowledge base satisfi-
ability. We show that the same can be done also for identifi-
cation and functional dependency assertions.

Given an identification assertion

κ = (id C [i1]R1, . . . , [ih]Rh)

we define the ABox Aκ constituted by the following asser-
tions:

• C(x), C(y), and x �= y, where x and y are new sk-
constants;

• Rj(tj) and Rj(sj), with j ∈ {1, . . . , h}, where tj
and sj are tuples of new sk-constants with tj [ij] = x,
sj [ij] = y, and tj [i] = sj [i] for i �= ij .

Similarly, for a functional dependency assertion

κ = (fd R i1, . . . , ih → j)

we define Aκ constituted by the following assertions:

• R(t), R(s), and t[j] �= s[j], where t and s are tuples of
new sk-constants with t[ij] = s[ij], for j ∈ {1, . . . , h}.

From the semantics of identification and functional depen-
dency assertions it is immediate to see that Aκ provides a
concrete counterexample to κ. Hence it follows that, given a
DLRifd knowledge base K, K |= κ if and only if K ∪ Aκ is
unsatisfiable.

Theorem 2 Logical implication in DLRifd can be reduced
to knowledge base satisfiability.

We now present a reasoning procedure for knowledge base
satisfiability in DLRifd .
DLRifd TBoxes (which in fact are DLR TBoxes since

they do not include identification and functional dependency
assertions) have the tree-model property [Calvanese et al.,
1998a], which is true for most DLs. In particular, if a DLR
TBox admits a model, it also admits a model which has the
structure of a tree, where nodes are either objects or (reified)
tuples, and edges connect tuples to their components. Ob-
serve that in such models identification and functional depen-
dency assertions (which in DLRifd are non-unary) are triv-
ially satisfied, since there cannot be two tuples agreeing on
more than one component. As an immediate consequence we
have that, given a DLRifd TBox T and a set of identification
and functional dependency assertions F , T ∪ F is satisfiable
iff T is so. This implies that, in absence of an ABox, logi-
cal implication of inclusion assertions can be verified without
considering identification and functional dependency asser-
tions at all.

When we add an ABox, then we may still restrict the at-
tention to models that have the structure of a tree, except for
a cluster of objects representing the sk-constants in the ABox
(see again [Calvanese et al., 1998a]1). We call such mod-
els clustered tree models. On such models, identification and
functional dependency assertions are always satisfied, except
possibly for the cluster of sk-constants. Hence we can con-
centrate on verifying such assertions on the objects and tuples
appearing in the ABox only.

Given a DLRifd knowledge base K, we define a saturation
of K as an ABox As constructed as follows:

• for each sk-constant x occurring in K, and for each iden-
tification assertion (id C [i1]R1, . . . , [ih]Rh) in K, As

contains either C(x) or ¬C(x);
• for each tuple t of sk-constants occurring in an assertion

R(t) of K,

– for each identification assertion
(id C [i1]R1, . . . , [ih]Rh) in K, for each Rj

(j ∈ {1, . . . , h}) having the arity of R, As contains
either Rj(t) or ¬Rj(t),

– for each functional dependency assertion
(fd R′ i1, . . . , ih → j) in K, such that R′
has the arity of R, As contains either R′(t) or
¬R′(t);

1In fact, [Calvanese et al., 1998a] makes use of inclusion asser-
tions involving nominals, i.e., concepts having a single instance. It
is immediate to verify that such inclusion assertions correspond to
the kind of generalized ABoxes we adopt here.

• for each pair of sk-constants x and y occurring in K, As

contains either x = y or x �= y.

Note that the size of a saturation is polynomial in the size of
K. Note also that there are many (actually, an exponential
number) of different saturations of K, one for each possible
set of choices in the items above.

On a saturation one can immediately verify whether an
identification or functional dependency assertion of K is vio-
lated. Indeed, for all sk-constants and tuples of sk-constants
appearing in the saturation, membership or non-membership
in the relevant relations and concepts appearing in the asser-
tions that could be violated is explicitly asserted (after sub-
stituting each sk-constant with a representative of its equiv-
alence class according to the equalities). Hence, it suffices
to verify whether the semantic condition of the assertion is
violated, considering relations and concepts appearing in the
assertion as primitives. Once such a check on the identifica-
tion and functional dependencies is done, it remains to verify
whether As is consistent with the other assertions of K.

Theorem 3 A DLRifd knowledge base K = T ∪ A ∪ F is
satisfiable if and only if there exists a saturation As of K that
does not violate the identification and functional dependency
assertions in K and such that the DLR knowledge base T ∪
A ∪ As is satisfiable.

Proof (sketch). “⇐” Assume that there exists a satura-
tion As that does not violate the identification and functional
dependency assertions in K and such that T ∪A∪As is satis-
fiable. Then there exists a clustered tree model of T ∪A∪As,
and such interpretation is also a model of K.

“⇒” Assume that K is satisfiable. Then from a model I of
K one can directly construct a saturation for which I satisfies
all assertions.

The above result provides us with an upper bound for rea-
soning in DLRifd , matching the lower bound holding already
for DLR.

Theorem 4 Satisfiability and logical implication in DLRifd

are EXPTIME-complete.

Proof (sketch). By Theorem 2, logical implication in
DLRifd reduces to knowledge base satisfiability in DLRifd .
By Theorem 3, satisfiability of a DLRifd knowledge base
K = T ∪ A ∪ F reduces to solving a (possibly exponen-
tial) number of tests, where each test involves one saturation
As and consists in directly verifying all identification and
functional dependency assertions in As (a polynomial step)
and checking the satisfiability of the DLR knowledge base
T ∪ A ∪As (an exponential step).

6 Unary functional dependencies in DLRifd

One might wonder whether the method described in the previ-
ous works also for unary functional dependencies. Actually,
this is not the case since unary functional dependencies are
not trivially satisfied in tree structured interpretations. For
example, it may happen that two tuples of a relation R agree
on say component 1 and not component 2, and therefore vio-
late the functional dependency (fd R 1 → 2).

3
3

3
3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

2
2

2
2

2
2

2
2

2
2

2
2

4
4

4
4

4
4

4
4

4
4

4
4

B,D A,C

A,D B,C A,D B,C

B,D

A,C B,D A,C

B.C A,D B,C A,D

B,D A,C B,D

0,0 1,0 2,0 3,0

0,1

0,2

1,1

1,2

2,1

2,2

3,1

3,2

. . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: Grid structure enforced by KT

Indeed, we show that if we allow for unary functional
dependencies, then reasoning in DLRifd becomes undecid-
able. To do so we exhibit a reduction from the unconstrained
quadrant tiling problem [van Emde Boas, 1997], which con-
sists in deciding whether the first quadrant of the integer grid
can be tiled using a finite set of square tile types in such a
way that adjacent tiles respect adjacency conditions. Tiling
problems are well suited to show undecidability of variants
of description and dynamic logics [van Emde Boas, 1997;
Baader and Sattler, 1999]. The crux of the undecidability
proof consists in enforcing that the tiles lie on an integer grid.
Once the grid structure is enforced, it is typically easy to im-
pose the adjacency conditions on the tiles. In our case we
exploit unary functional dependencies to construct the grid.

Formally, a tiling system is a triple T = (D,H,V) where D
is a finite set of elements representing tile types and H and V
are two binary relations over D. The unconstrained quadrant
tiling problem consists in verifying the existence of a tiling
consistent with T , i.e., a mapping τ from IN × IN to D such
that (τ(i, j), τ(i + 1, j)) ∈ H and (τ(i, j), τ(i, j + 1)) ∈ V ,
for i, j ∈ IN. Such a problem is undecidable, more precisely
Π0

0-complete [Berger, 1966; van Emde Boas, 1997].
From a tiling system T = (D,H,V) we construct a

DLRifd knowledge base KT as follows. The basic idea is to
enforce the grid structure shown in Figure 2, where squares
represent tuples of arity 4 and circles represent objects. Each
object depicted using a bold circle and labeled i, j represents
the node (i, j) of the grid. Numbers labeling arrows repre-
sent components of tuples. A pair of letters X,Y inside a
tuple represents the fact that the tuple is an instance of the re-
lations X and Y . In particular we use four relations of arity 4:
A,B,C, and D. The gray box in the figure represents how a
tile would be placed in such a grid.

We enforce the grid structure by means of the following
assertions in KT :

∃[i]�4
 ∃[i](A � C) � ∃[i](A � D) �
∃[i](B � C) � ∃[i](B � D) for i ∈ {1, . . . , 4}

(fd A 2 → 3) (fd B 2 → 3) (fd C 2 → 1) (fd D 1 → 2)
(fd A 4 → 1) (fd B 4 → 1) (fd C 3 → 4) (fd D 4 → 3)

We enforce the adjacency conditions on the tiles of the first
quadrant by using one concept for each tile type in D and
introducing in KT the following assertions: for each Di ∈ D

Di
 ∀[1](B � D⇒(3 :
⊔

(Di,Dj)∈H Dj)) �
∀[3](A � C ⇒(1 :

⊔
(Di,Dj)∈H Dj)) �

∀[1](A � D⇒(3 :
⊔

(Di,Dj)∈V Dj)) �
∀[3](B � C ⇒(1 :

⊔
(Di,Dj)∈V Dj))

Finally, to represent the origin of the tiling we use the con-
cept C0 = (∃[1]�4)�

⊔
Di∈D Di Then the tiling problem as-

sociated to T admits a solution if and only if KT �|= C0
 ⊥.
Indeed, from a tiling consistent with T one obtains immedi-
ately a model of KT with an object satisfying C0. Conversely,
from a model I of KT with CI

0 �= ∅, we can construct a tiling
consistent with T . The first set of assertions impose that a
portion of I has exactly the structure depicted in Figure 2
(observe that not the whole model necessarily has a grid struc-
ture, but only a portion corresponding to the first quadrant).
The second set of assertions impose on such a portion only
that instances of concepts representing tile types respect the
adjacency conditions. As a consequence of such a reduction
we obtain the following result.

Theorem 5 Knowledge base satisfiability (and thus logical
implication) in DLRifd extended with unary functional de-
pendencies is undecidable.

The reduction above can be easily modified to show that, if
we allow for nominals [Tobies, 2000], then even n-ary func-
tional dependencies lead to undecidability. For example, we
may use one nominal o and relations of arity 5 instead of 4.
Then we can force the fifth component of all tuples to be the
object o by means of the assertion �5
 (5 : o) and we can
enforce the grid structure as above, by adding component 5
to the antecedent of the functional dependencies above (thus
getting binary functional dependencies). Observe that, since
all tuples agree on component 5, such binary functional de-
pendencies are actually mimicking the unary dependencies in
the previous reduction.

7 Conclusions
DLRifd extends DLR by fully capturing identification con-
straints on concepts and functional dependencies on relations.
We have shown that reasoning in the presence of such con-
straints remains EXPTIME decidable. We have also shown
that adding to DLR just unary functional dependencies on
non-binary relations, usually considered an indication of bad
design in data modeling, leads to undecidability.

The approach presented in this paper can be extended in
several ways. For example, our technique can be directly ap-
plied to reasoning in DLRreg extended with identification
and functional dependency constraints. Moreover, we are
working on the following extensions: (i) using chaining in
specifying identification constraints, in the spirit of [Borgida
and Weddell, 1997]; (ii) introducing a notion of functional
dependency between properties of concepts; (iii) query con-
tainment and query answering using views in the presence of
identification constraints and functional dependencies.

References
[Abiteboul et al., 1995] S. Abiteboul, R. Hull, and V. Vianu.

Foundations of Databases. Addison Wesley Publ. Co.,
Reading, Massachussetts, 1995.

[Baader and Sattler, 1999] F. Baader and U. Sattler. Expres-
sive number restrictions in description logics. J. of Log.
and Comp., 9(3):319–350, 1999.

[Berger, 1966] R. Berger. The undecidability of the dominoe
problem. Mem. Amer. Math. Soc., 66:1–72, 1966.

[Borgida and Weddell, 1997] A. Borgida and G. E. Weddell.
Adding uniqueness constraints to description logics (pre-
liminary report). In Proc. of DOOD’97, pages 85–102,
1997.

[Borgida, 1995] A. Borgida. Description logics in data man-
agement. IEEE Trans. on Knowledge and Data Engineer-
ing, 7(5):671–682, 1995.

[Calvanese et al., 1995] D. Calvanese, G. De Giacomo, and
M. Lenzerini. Structured objects: Modeling and reason-
ing. In Proc. of DOOD’95, volume 1013 of LNCS, pages
229–246. Springer-Verlag, 1995.

[Calvanese et al., 1998a] D. Calvanese, G. De Giacomo, and
M. Lenzerini. On the decidability of query containment
under constraints. In Proc. of PODS’98, pages 149–158,
1998.

[Calvanese et al., 1998b] D. Calvanese, G. De Giacomo,
M. Lenzerini, D. Nardi, and R. Rosati. Description logic
framework for information integration. In Proc. of KR’98,
pages 2–13, 1998.

[Calvanese et al., 1999] D. Calvanese, M. Lenzerini, and
D. Nardi. Unifying class-based representation formalisms.
J. of Artificial Intelligence Research, 11:199–240, 1999.

[Horrocks et al., 1999] I. Horrocks, U. Sattler, and S. Tobies.
Practical reasoning for expressive description logics. In
Proc. of LPAR’99, number 1705 in LNAI, pages 161–180.
Springer-Verlag, 1999.

[Khizder et al., 2001] V. L. Khizder, D. Toman, and G. E.
Weddell. On decidability and complexity of description
logics with uniqueness constraints. In Proc. of ICDT 2001,
2001.

[Kirk et al., 1995] T. Kirk, A. Y. Levy, Yehoshua Sagiv, and
Divesh Srivastava. The Information Manifold. In Pro-
ceedings of the AAAI 1995 Spring Symp. on Information
Gathering from Heterogeneous, Distributed Enviroments,
pages 85–91, 1995.

[Tobies, 2000] S. Tobies. The complexity of reasoning with
cardinality restrictions and nominals in expressive descrip-
tion logics. J. of Artificial Intelligence Research, 12:199–
217, 2000.

[van Emde Boas, 1997] P. van Emde Boas. The convenience
of tilings. In Complexity, Logic, and Recursion Theory,
volume 187 of Lecture notes in pure and applied mathe-
matics, pages 331–363. Marcel Dekker Inc., 1997.

