
Strutured Objets: Modeling and Reasoning

Appeared in Proc. of DOOD’95

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
{calvanese,degiacomo,lenzerini}@dis.uniroma1.it

Abstract. One distinctive characteristic of object-oriented data models
over traditional database systems is that they provide more expressive
power in schema definition. Nevertheless, the defining power of object-
oriented models is still somewhat limited, mainly because it is commonly
accepted that part of the semantics of the application can be represen-
ted within methods. The research work reported in this paper explores
the possibility of enhancing the power of object-oriented data models in
schema definition, thus offering more possibilities to reason about the
intension of the database and better supporting data management. We
demonstrate our approach by presenting a new data model, called CVL,
that extends the usual object-oriented data models with several aspects,
including view definition, recursive structure modeling, navigation of the
schema through forward and backward traversal of links (attributes and
relations), subsetting of attributes, and cardinality ratio constraints on
links. CVL is equipped with sound, complete, and terminating inference
procedures, that allow various forms of reasoning to be carried out on
the intensional level of the database.

1 Introduction

One distinctive characteristic of object-oriented data models over traditional da-
tabase systems is that they provide more expressive power in schema definition.
Indeed, several modeling constructs of object-oriented data models are borrowed
from the research on semantic data modeling and semantic networks in Arti-
ficial Intelligence, and are intended to overcome well-known limitations of flat
data representation. Nevertheless, the defining power of object-oriented models
is still somewhat limited. Examples of useful representation mechanisms that
are considered important especially for new applications, but are generally not
considered in object-oriented schemas are: recursive class definitions, view defin-
itions, cardinality ratio constraints on attributes, subsetting of attributes, inverse
of attributes, union and complement of classes (see for example [9]). One reason
for limiting the expressivity of schemas is that object-oriented models support
method definitions, and it is generally accepted that some of the semantics of the
application could be very well represented within methods.

The research work reported in this paper explores the possibility of enhancing
the power of object-oriented data models in schema definition. We argue that such
enhancement is interesting from different points of view:

– Capturing more semantics at the schema level allows the designer to declar-
atively represent relevant knowledge about the classes of the application. It
follows that sophisticated types of constraints can be asserted in the schema,
rather than embedding them in methods, with the advantage of devising gen-
eral integrity checking methods to be included in future database systems.

– Expressing more knowledge at the schema level implies more possibilities to
reason about the intension of the database. Such reasoning can be exploited
for deriving useful information for the design of the database, for the use
of the database (for example in type checking), for querying purposes (e.g.,
in query optimization [4, 5]), and for the solution of new problems posed
by cooperative and distributed information systems (for example, schema
comparison and integration [8]).

In this paper, we present a new data model, called CVL (for Class, View,
and Link), specifically designed following the above guidelines. CVL extends the
usual expressive power of object-oriented data models by allowing:

– To specify both necessary and sufficient conditions for an object to belong to
a class; necessary conditions are generally used when defining the classes that
constitute the schema, whereas sufficient conditions help in the specification of
views [1]. With this feature, views are part of the schema, and can be reasoned
upon exactly like any other class. Note that this approach is different from
considering views just as predefined queries.

– To specify complex relations that exist between classes, such as disjointness
of their instances or the fact that one class equals the union of other classes;

– To refer to navigations of the schema while defining classes and views; in par-
ticular, both forward and backward navigations along relations and attributes
are allowed, with the additional possibility of imposing complex conditions
on the objects encountered in the navigations. Note that general navigation
of the schema is possible only if the definition mechanisms supported by the
data model allows one to refer to the inverse of attributes.

– To specify relations that exist between the objects reached following different
links; in particular, to specify that the set of objects reached through an
attribute A is included in the set of objects reached through another attribute
B, thus imposing that A is a subset of B.

– To use (n-ary) relations and to declare keys on them.
– To impose cardinality ratio constraints both for attributes and for the parti-

cipation of objects in relations.
– To model complex, recursive structures, and simultaneously impose several

kinds of constraints on them. This feature allows the designer to define induct-
ive structures such as lists, sequences, trees, DAGs, etc.. Although there are
data models where some of these structures can be used in schema definition,
CVL takes a much more radical approach, in that it provides the designer
with a mechanism for defining his/her own structures, rather than simply
adding ad hoc types.

One of the most important aspect of CVL is that it supports several forms of

reasoning at the schema level. Indeed, the question of enhancing the expressive
power of object-oriented schemas is not addressed in CVL by simply adding
constructs to a basic object-oriented model, but by equipping the model with
reasoning procedures that can make inference on the new constructs. In this sense
CVL can be regarded as a deductive modeling language, but the kind of reasoning
that it supports is fundamentally different from the one usually supported by
deductive databases: CVL allows for intensional reasoning, i.e. reasoning about
the schema, whereas deductive databases provide means for expressing queries
in the form of logical rules and use deduction in the process of query answering.

The paper is organized as follows. In Section 2, we provide syntax and se-
mantics of CVL. In Section 3, we discuss the inference procedure associated with
CVL, and illustrate its use in schema level reasoning. In Section 4, we deal with
the expressivity of CVL, by showing several examples of its modeling capabilities.
Finally, in Section 5, we compare CVL with some well-known data models, and
show that it captures several important features mentioned in recent documents
on the standards for object-oriented models.

2 The CVL data model

In this section we formally define the object-oriented model CVL, by specifying
its syntax and its semantics.

2.1 Syntax

A CVL schema is a collection of class and view definitions over an alphabet B,
where B is partitioned into a set C of class symbols, a set A of attribute symbols
(used in record structures), a set U of role symbols (denoting binary relations
over classes), and a set M of method symbols. We assume that C contains the
distinguished elements Any and Empty1. In the following C, A, U and M range
over elements of C, A, U and M respectively.

As we mentioned before, for defining classes and views we refer to complex
links which are built starting from attributes and roles. An atomic link, for which
we use the symbol l, is either an attribute, a role, or the special symbol ∋ (used
in the context of set structures). A basic link b is constructed according to the
following syntax rule, starting from atomic links:

b ::= l | b1 ∪ b2 | b1 ∩ b2 | b1 \ b2.

Two objects are connected by b1 ∪ b2 if they are linked by b1 or b2, whereas two
objects are connected by b1 ∩ b2 (b1 \ b2) if they are linked by b1 and (but not)
by b2. Finally, a complex link L is obtained from basic links according to:

L ::= b | L1 ∪ L2 | L1 ◦ L2 | L∗ | L− | identity(C).

1 We may also assume that C contains some additional symbols such as Integer,
String, etc., that are interpreted as usual, with the constraint that no definition
of such symbols appears in the schema.

Here, L1 ◦L2 means the concatenation of link L1 with link L2, L∗ the concaten-
ation of link L an arbitrary finite number of times, and L− corresponds to link
L taken in reverse direction. The use of identity(C) is to verify if along a certain
path we have reached an object that is an instance of class C.

The distinction between basic links and complex links, is due to our attention
in achieving expressivity without loosing decidability of reasoning. The unres-
tricted use in CVL of either difference or intersection on complex links would
make the formalism undecidable. This can be easily proved by exploiting known
undecidability results for logics of programs [17] together with the correspondence
between this logics and a restricted version of CVL (see Section 3).

Usually, in object-oriented models every class has an associated type which
specifies the structure of the value associated to an instance of the class. In CVL,
objects are not required to be of only one type. Instead, we allow for polymorphic
entities, which can be viewed as having different structures corresponding to the
different roles they can play in the modeled reality. Therefore we admit rather rich
expressions for defining structural properties. A structure expression, denoted
with the symbol T , is constructed as follows, starting from class symbols:

T ::= C | ¬T | T1 ∧ T2 | T1 ∨ T2 | [A1:T1, . . . , An:Tn] | {T}.

The structure [A1:T1, . . . , An:Tn] represents all tuples which have at least com-
ponents A1, . . . , An having structure T1, . . . , Tn, respectively, while {T} repres-
ents sets of elements having structure T . Additionally, by means of ∧, ∨, and ¬,
we are allowed not only to include intersection and union in structure expressions
(as in [2]), but also to refer to all entities that do not have a certain structure.
Note that often object-oriented models make either explicitly or implicitly the as-
sumption that every object belongs to exactly one most specific class. Under this
assumption, intersection can be eliminated from the schema definition since if an
object is an instance of two classes, the schema contains also a class that special-
izes both and of which the object is an instance of [2]. In contrast, in CVL we
do not want to enforce the “most specific class assumption”, consistently with
most knowledge representation formalisms [4] and semantic data models [19].
Such assumption would also be against the spirit of our notion of polymorphism,
which allows an object to simultaneously have more than one structure (and thus
to belong to different unrelated classes).

Class and view definitions are built out of structure expressions by assert-
ing constraints on the allowed links and by specifying the methods that can
be invoked on the instances of the class. A class definition expresses necessary
conditions for an entity to be an instance of the defined class, whereas a view
definition characterizes exactly (through necessary and sufficient conditions) the
entities belonging to the defined view. Our concept of view bears similarity to
the concept of query class of [22].

Class and view definitions have the following forms (C is the name of the
class or of the view to be defined):

class C view C

structure-declaration structure-declaration

link-declarations link-declarations

method-declarations method-declarations

endclass endview

We now explain the different parts of a class (view) definition.

– A structure-declaration has the form

is a kind of T

and can actually be regarded as both a type declaration in the usual sense,
and an extended ISA declaration introducing (possibly multiple) inheritance.

– link-declarations stands for a possibly empty set of link-declarations, which
can further be distinguished as follows:
• Universal- and existential-link-declarations have the form

all L in T and exists L in T.

The first declaration states that each entity reached through link L from an
instance of C has structure T and the second one states that for each instance
of C there is at least one entity of structure T reachable through link L.
Therefore such link-declarations represent a generalization of existence and
typing declarations for attributes (and roles).
• A well-foundedness-declaration has the form:

well founded L.

It states that by repeatedly following link L starting from any instance of
C, after a finite number of steps one always reaches an entity from which L

cannot be followed anymore. Such a condition allows for example to avoid
such pathological cases as a set that has itself as a member. This aspect will
be discussed in more detail in section 4.
• A cardinality-declaration has the form:

exists (u, v) b in T or exists (u, v) b− in T,

where u is a nonnegative integer and v is a nonnegative integer or the special
value ∞. Such a declaration states for each instance of C the existence of
at least u and most v different entities of structure T reachable through the
basic link b (b−)2. Existence and functional dependencies can be seen as
special cases of this type of constraint.
• A meeting-declaration has the form:

each b1 is b2 or each b−1 is b−2 .

It states that each entity reachable through a link b1 (b−1) from an instance
o of C is also reachable from o through a different link b2 (b−2). Such a
declaration allows for representing inclusions between attributes, and is a
restricted form of role-value map, a type of constraint commonly used in

2 Note that requiring the link to be basic (and not generic) is essential for preserving
the decidability of inference on the schema.

knowledge representation formalisms [26].3

• A key-declaration has the form:

key A1, . . . , Am, A′−

1 , . . . , A′−

m′ , U1, . . . , Un, U ′−

1 , . . . , U ′−

n′ .

It is allowed only in class definitions and states that each entity o in C is
linked to at least one other entity through each link that appears in the
declaration, and moreover the entities reached through these links uniquely
determine o, in the sense that C contains no other entity o′ linked to exactly
the same entities as o (for all links in the declaration).

– method-declarations stands for a possibly empty set of method-declarations,
each having the form:

method M (C1, . . . , Cm) returns (C ′

1, . . . , C
′

n
).

It states that for each instance of C, method M can be invoked, where the
type of the input parameters (besides the invoking object) that are passed
to, output parameters that are returned from the method are as specified in
the declaration.

2.2 Semantics

We specify the formal semantics of a CVL schema through the notion of interpret-

ation I = (OI , ·I), where OI is a nonempty set constituting the universe of the
interpretation and ·I is the interpretation function over the universe. Note that
an interpretation corresponds to the usual notion of database state. Traditional
object-oriented models distinguish between objects (characterized through their
object identifier) and values associated to objects. The structure of an object is
specified through its value which can be either a tuple, a set or an atomic value.
Since an object has a unique value it is forced to have a unique structure. In-
stead, in CVL we have chosen not to distinguish between objects and values, and
we permit assigning different structures to an element of the universe of inter-
pretation. Indeed, we regard OI as a set of polymorphic entities, that is entities
having simultaneously possibly more than one structure, i.e.:

1. The structure of individual : an entity can always be considered as having this
structure, and this allows it to be referenced by other objects of the domain.

2. The structure of tuple: an entity o having this structure can be considered
as a property aggregation, which is formally defined as a partial function
from A to OI with the proviso that o is uniquely determined by the set
of attributes on which it is defined and by their values. In the sequel the
term tuple is used to denote an element of OI that has the structure of
tuple, and we write [A1: o1, . . . , An: on] to denote any tuple t such that, for
each i ∈ {1, . . . , n}, t(Ai) is defined and equal to oi (which is called the Ai-
component of t). Note that the tuple t may have other components as well,
besides the Ai-components.

3 Note that the restricted form of role-value map adopted here does not lead to un-
decidability of inference, which results if this construct is used in its most general
form.

3. The structure of set : an entity o having this structure can be considered as
an instance aggregation, which is formally defined as a finite collection of
entities in OI , with the following provisos: (i) the view of o as a set is unique
(except for the empty set {}), in the sense that there is at most one finite
collection of entities of which o can be considered an aggregation, and (ii)
no other entity o′ is the aggregation of the same collection. In the sequel the
term set is used to denote an element of OI that has the structure of set, and
we write {|o1, . . . , on|} to denote the collection whose members are exactly
o1, . . . , on.

The interpretation function ·I is defined over classes, structure expressions
and links, and assigns them an extension as follows:

– It assigns to ∋ a subset of OI ×OI such that for each {|. . . , o, . . . |}∈ OI , we
have that ({|. . . , o, . . . |}, o) ∈∋I .

– It assigns to every role U a subset of OI ×OI .
– It assigns to every attribute A a subset of OI ×OI such that, for each tuple

[. . . , A: o, . . .] ∈ OI , ([. . . , A: o, . . .], o) ∈ AI , and there is no o′ ∈ OI different
from o such that ([. . . , A: o, . . .], o′) ∈ AI . Note that this implies that every
attribute in a tuple is functional for the tuple.

– It assigns to every basic and complex link a subset of OI × OI such that
the following conditions are satisfied (in the semantics, “\” denotes set differ-
ence, “◦” concatenation of binary relations, and “∗” their reflexive transitive
closure):

(b1 ∪ b2)
I = bI1 ∪ bI2

(b1 ∩ b2)
I = bI1 ∩ bI2

(b1 \ b2)
I = bI1 \ bI2

(L1 ∪ L2)
I = LI

1 ∪ LI

2

(L1 ◦ L2)
I = LI

1 ◦ LI

2

(L∗)I = (LI)∗

(L−)I = {(o, o′) | (o′, o) ∈ LI}
(identity(C))I = {(o, o) ∈ OI ×OI | o ∈ CI}.

– It assigns to every class and to every structure expression a subset of OI

such that the following conditions are satisfied:

AnyI = OI (¬T)I = OI \ T I

EmptyI = ∅ (T1 ∧ T2)
I = T I

1 ∩ T I

2

CI ⊆ OI (T1 ∨ T2)
I = T I

1 ∪ T I

2

[A1:T1, . . . , An:Tn]I = {[A1: o1, . . . , An: on] ∈ OI | o1 ∈ T I

1 , . . . , on ∈ T I

n
}

{T}I = {{|o1, . . . , on|}∈ OI | o1, . . . , on ∈ T I}.

The elements of CI are called instances of C.

In order to characterize which interpretations are legal according to a specified
schema we first define what it means if in an interpretation I an entity o ∈ OI

satisfies a declaration which is part of a class or view definition:

– o satisfies a type-declaration “is a kind of T” if o ∈ T I ;
– o satisfies a universal-link-declaration “all L in T” if for all o′ ∈ OI , (o, o′) ∈

LI implies o′ ∈ T I ;
– o satisfies an existential-link-declaration “exists L in T” if there is o′ ∈ OI

such that (o, o′) ∈ LI and o′ ∈ T I ;

– o satisfies a well-foundedness-declaration “well founded L” if there is no in-
finite chain (o1, o2, . . .) of entities o1, o2, . . . ∈ OI such that o = o1 and
(oi, oi+1) ∈ LI , for i ∈ {1, 2, . . .}.

– o satisfies a cardinality-declaration “exists (u, v) b in T” if there are at least
u and at most v entities o′ ∈ OI such that (o, o′) ∈ bI and o′ ∈ T I ; a similar
definition holds for a cardinality-declaration involving b−;

– o satisfies a meeting-declaration “each b1 is b2” if {o′ | (o, o′) ∈ bI1} ⊆ {o′ |
(o, o′) ∈ bI2 }; a similar definition holds for a meeting-declaration involving b−1
and b−2 .

Finally, a class C satisfies a key-declaration “key L1, . . . , Lm”, if for every

instance o of C in I there are entities o1, . . . , om ∈ OI such that (o, oi) ∈ LI

i
,

for i ∈ {1, . . . ,m}, and there is no other entity o′ 6= o in CI for which these
conditions hold.

Note that the method-declarations do not participate in the set-theoretic se-
mantics of classes and views. For an example on the use of method declarations
in the definition of a schema we refer to Section 4.

An interpretation I satisfies a class definition δ, say for class C, if every in-
stance of C in I satisfies all declarations in δ, and if C satisfies all key-declarations
in δ. I satisfies a view definition δ, say for view C, if the set of entities that satisfy
all declarations in δ is exactly the set of instances of C. In other words, there are
no other entities in OI besides those in CI that satisfy all declarations in δ.

If I satisfies all class and view definitions in a schema S it is called a model of
S. A schema is said to be consistent if it admits a model. A class (view) C is said
to be consistent in S, if there is a model I of S such that CI is nonempty. The
notion of consistency is then extended in a natural way to structure expressions.

3 Reasoning in CVL

One of the main features of CVL is that it supports several forms of reasoning at
the schema level. The basic reasoning task we consider is consistency checking :
given a schema S and a structure expression T , verify if T is consistent in S. This
reasoning task is indeed the basis for the typical kinds of schema level deductions
supported by object-oriented systems. In particular:

– Schema consistency: checking the consistency of a schema S amounts to verify
if Any is consistent in S.

– Class specialization: checking whether a class C is a specialization of a class
C ′ in a schema S amounts to verify if C ∧ ¬C ′ is not consistent in S.

– Computing the class lattice of the schema, or more generally the lattice of all
structure expressions: this can be performed once for all by verifying spe-
cialization between all pairs of classes (structure expressions) in the schema.
Observe that such lattice can be maintained in an incremental manner.

All these inferences can be profitably exploited in both schema design and ana-
lysis (e.g. in schema integration). In a more general setting, where suitable con-
structs (e.g. programming language constructs) are coupled to the data model

PP

P

F

mf
c

sp

sp

o1

o4

o3o2

Fig. 1. Instantiation of a schema/Labeled transition system

for expressing queries and manipulation operations, these reasoning tasks provide
the basis for type checking and type inference. It is outside the scope of this paper
to discuss these aspects in detail, but we present an example in Section 4.

In general, schema level reasoning in object-oriented data models can be
performed by means of relatively simple algorithms (see for example [21]). The
richness of CVL makes reasoning much more difficult with respect to usual data
models. Indeed the question arises if consistency checking in CVL is decidable
at all. One of our main results is a sound, complete, and terminating reasoning
procedure to perform consistency checking. The reasoning procedure works in
worst-case deterministic exponential time in the size of the schema. Notably, we
have shown that such worst-case complexity is inherent to the problem, proving
that consistency checking in CVL is EXPTIME-complete.

Space limitations prevent us from exposing the details of our inference method.
Here we would like to discuss the main idea, which is based on previous work
relating formalisms used in knowledge representation and databases to modal
logics developed for modeling properties of programs [6, 7, 12, 13].

The key point of our method is to take advantage of the strong similarity
that exists between the interpretative structures of object-oriented models and
labeled transition systems used in computer science to describe the behavior of
program schemes. To gain some intuition on this, consider Figure 1, showing an
instantiation of an object-oriented schema, where nodes correspond to objects
labeled by the classes they belong to, and arcs correspond to links. Now, such
instantiation can also be seen as a transition system where nodes correspond
to states labeled with the properties of the state, and arcs correspond to state
transitions. For example, o1 can be seen as a state where the property F holds,
and such that the execution of program f from it results in the state o2, where
P holds and F does not. Notice that the cycle involving o2 and o3 corresponds
to a nonterminating computation.

The similarity between the interpretative structures in object-oriented models
and labeled transition systems reflects in a similarity between object-oriented
models and modal logics of programs, which are formalisms specifically designed
for reasoning about program schemes, and which are interpreted in terms of
labeled transition systems (see [20, 23] for surveys).

Such a similarity allows us to exploit the sophisticated tools available for reas-
oning on logics of programs, in deriving reasoning procedures for CVL. However,
the high expressivity of CVL, and in particular the combination of cardinality

class Condominium

is a kind of
{Apartment}∧
[loc: Address, budget: Integer]

key loc

exists (1, 1) manages− in Manager

endclass

view CondominiumManager

is a kind of Manager
exists manages in Condominium

endview

class Address

is a kind of
[city: String, street: String,
num: Integer]

key city, street, num

endclass

class Manager

is a kind of
[ssn: String, loc: Address]

key ssn

exists manages in Any

endclass

Fig. 2. Schema of a condominium

declarations, meeting declarations and the possibility to force structures to be
well-founded requires to extend the known reasoning techniques in several dir-
ections, which we now briefly sketch. Exploiting techniques developed in [11] we
reduce reasoning on a schema to satisfiability of a formula of an extension of
Converse-PDL, which is a well known modal logic of programs studied in [16].
The extension in obtained from Converse-PDL by including the repeat construct
[24] and local functionality on direct and converse programs [12]. It is known
that Converse-PDL is EXPTIME-complete, and that adding just one of the two
constructs above does not increase the complexity [15, 12]. However, decidab-
ility was not known for the logic including both constructs. By extending the
automata-theoretic techniques developed in [25] we have proved that such logic
is decidable and EXPTIME-complete.

4 Expressivity of CVL

In this section we discuss by means of examples the main distinguished features
of CVL with the goal of illustrating its expressivity.

4.1 Object polymorphism

In CVL, entities can be seen as having different structures simultaneously. In
this way we make a step further with respect to traditional object models, where
the usual distinction between objects (without structure) and their unique value
may constitute a limitation in modeling complex application domains. As an
example, in the schema of Figure 2, the structure of the class Condominium is
specified through a conjunction of the set structure {Apartment} and the record
structure [loc: Address, budget: Integer]. Therefore, the designer is anticipating
that each instance of Condominium will be used both as a set (in this case the

view List

is a kind of
Nil ∨
[first: Any, rest: List]

exists (0, 1) rest− in Any

well founded rest

endview

class Nil

is a kind of Any
all first ∪ rest in Empty

endclass

class ListOfPersons

is a kind of List
all rest∗ ◦ first in Person

endclass

class ListOfTwoPersons

is a kind of ListOfPersons
exists rest ◦ rest in Any

all rest ◦ rest ◦ rest in Empty

endclass

Fig. 3. Schema defining lists

set of apartments forming the condominium) and as a record structure collecting
the relevant attributes of the condominium (in this case where the condominium
is located and its budget). Moreover, each instance of condominium can also be
regarded as an individual that can be referred to by other objects through roles
(in this case manages).

4.2 Well founded structures

In CVL, the designer can define a large variety of recursive structures, such as
lists, binary trees, trees, DAGs, streams, arrays, depending on the application
need. For example, the schema in Figure 3 shows the definitions of several variants
of lists. Typically, the class of lists is defined inductively as the smallest set List

such that:

– Nil is a List, and
– every pair whose first element is any object, and whose second element is a

List, is a List.

This inductive definition is captured in our model by the view List. This view is
defined recursively, in the sense that the term List we are defining occurs in the
body of the definition. In general, a recursive definition should not be confused
with an inductive one: an inductive definition selects the smallest set satisfying
a certain condition, while a recursive one simply states the condition without
specifying any selection criteria to choose among all possible sets satisfying it.
In fact, the well-foundedness-declaration accomplishes this selection, making our
recursive definition of List inductive. Observe also the use of the cardinality
declaration which forbids that two lists share a common sublist.

Once lists are defined in our model they can be easily specialized selecting for
example the kind of information contained in an element (e.g. ListOfPersons) or
additional structural constraints, as a specific length (e.g. ListOfTwoPersons).

view NestedList

is a kind of
Nil ∨
[first: Atom ∨ NestedList,

rest: NestedList]
exists (0, 1) rest− in Any

well founded first ∪ rest

endview

class Atom

is a kind of ¬Nil
all first ∪ rest in Empty

endclass

Fig. 4. Schema defining nested lists

Notably, recursively defined classes are taken into account like any other class
definition when reasoning about the schema. Suppose for example that we define
NestedList as the smallest set such that:

– Nil is a NestedList, and
– every pair whose first element is either an Atom or a NestedList , and whose

second element is a NestedList, is a NestedList.

Such structure is captured by the definitions in Figure 4. The reasoning method
correctly infers that Atom and List are disjoint and that NestedList is a spe-
cialization of List.

We argue that the ability to define recursive structures in our model is an im-
portant enhancement with respect to traditional object-oriented models, where
such structures, if present at all, are ad hoc additions requiring a special treat-
ment by the reasoning procedures [9, 3].

Well-foundedness-declarations also allow us to represent well-founded bin-
ary relations. An interesting example is the definition of the part-of relation,
which has a special importance in modeling certain applications [10]. This re-
lation is characterized by being finite, antisymmetric, irreflexive, and transit-
ive. The first three properties are captured by imposing well-foundedness, while
transitivity is handled by a careful use of the ∗ operator. More precisely, in order
to model the part-of relation in CVL, we can introduce a basic part of role, as-
sert its well-foundedness for the class Any, and then use the link basic part of◦
basic part of∗ as part-of. By the virtue of meeting-declarations, we can also
distinguish between different specializations of the part-of relation.

4.3 Classification

We show an example of computation of the class lattice in which the reasoning
procedure needs to exploit its ability to deal with recursive definitions. Figure 5
shows the definitions of classes and views concerning various kinds of directed
graphs (Graph), including finite directed acyclic graphs (DAG) and finite trees
(Tree). Our reasoning method can be used to compute the corresponding class
lattice shown in Figure 6. Observe that several deductions involved in the com-
putation of the lattice are not trivial at all. For example, in checking whether

class Graph

is a kind of [label: String]
all edge in Graph

endclass

view DAG

is a kind of Graph
well founded edge

endview

view Tree

is a kind of Graph
all edge in Tree

well founded edge

exists (0, 1) edge− in Any

endview

view BinaryGraph

is a kind of Graph
all edge in BinaryGraph

exists (0,2) edge in Any

endview

view BinaryTree

is a kind of Graph
all edge in BinaryTree

well founded edge

exists (0, 1) edge− in Any

exists (0,1) left in Any

exists (0,1) right in Any

each left ∪ right is edge

each edge is left ∪ right

each left is edge \ right
endview

Fig. 5. Schema defining graphs

BinaryTree is a specialization of BinaryGraph, a sophisticated reasoning must
be carried out in order to infer that every instance of BinaryTree satisfies exists
(0,2) edge in Any.

4.4 Methods

We already mentioned that method declarations do not participate in the set-
theoretic semantics of the schema, in the sense that classification and consistency
checking do not depend on them. Reasoning on methods is mostly concerned
with the problem of deciding, given an object that is an instance of a certain
class, and a method invocation for that object, which is the method to be called,
in order to ensure that all parameters are well-typed. In making this choice, one
may take advantage of the capability of reasoning on the schema.

DAG

Tree

Graph

BinaryTree

BinaryGraph

Fig. 6. A lattice of graphs

Consider, for example a schema S containing the following definition, where
a method M is declared for class C:

class C

· · ·
method M (D1, D2) returns (D3)
· · ·

endclass

Suppose now that in specifying manipulations of the corresponding database we
use three objects x in class C, y1 in class D′

1 and y2 in class D′

2, respectively.
Let us analyze the behavior of the type checker in processing the expression

x.M(y1, y2).

If a strong type checking policy is enforced, then this invocation can be bound
to the method defined in class C if and only if D′

1 is a specialization of D1 and
D′

2 is a specialization of D2 in S, and in this case the expression is considered
well-typed. On the other hand, if a weaker type checking policy is adopted, in
order to guarantee well typedness, it is sufficient that both D1 ∧D′

1 and D2 ∧D′

2

are consistent in S. Moreover, in both cases it can be easily inferred that the
type of the expression is in D3. All these inferences can be carried out by relying
on the basic reasoning task introduced in the previous section.

5 Discussion and conclusion

The combination of constructs of the CVL data model makes it powerful enough
to capture most common object-oriented and semantic data models presented
in the literature [19, 18]. In fact, by adding suitable definitions to a schema we
can impose conditions that reflect the assumptions made in the various models,
forcing such a schema to be interpreted exactly in the way required by each model.
We show this on three relevant examples, remarking that our work focuses on
modeling the structural components of a schema.

5.1 CVL versus O2

We have already mentioned that object-oriented models in general, and O2 in
particular distinguish between objects characterized by their object identifier and
values associated to them [3]. This dichotomy can be forced on a CVL schema
as shown in Figure 7, where we assume that C contains two special elements
PureObject and Value, that U = {hasvalue} and that A = {A1, . . . , An},
where A1, . . . , An are all attributes that appear in the O2-schema we want to
represent. The well-foundedness-declaration in Value is crucial for representing
the property that record and set structures in O2 are a priori defined to be finite.

Now, an O2 schema S can be translated into a CVL schema by taking the
definitions in Figure 7, and adding for every class C of type τ appearing in S,
the definition

class Any

is a kind of PureObject ∨ Value

endclass

view PureObject

is a kind of ¬{Any} ∧ ¬[]
exists (1, 1) hasvalue in Any

all hasvalue in Value

endview

view Value

is a kind of
String ∨ Integer ∨ · · · ∨ {Any} ∨ []

well founded A1 ∪ · · · ∪ An∪ ∋
endview

Fig. 7. Tailoring CVL to O2

class C

is a kind of PureObject
all hasvalue in T

endclass,

where T is the structure expression corresponding to the O2-type τ . Note also that
disjoint object assignments (see [3]) can be imposed in CVL by using negation.

5.2 CVL versus Entity-Relationship model

The Entity-Relationship (ER) model is a semantic database model extensively
used in the conceptual phase of database design [14]. The ER model distinguishes
between entity-types (called simply entities in ER), denoting classes of objects,
and relationships, used to model relations between entity-types. The entity-types
are connected to relationships by means of ER-roles. Additionally, ER-attributes
are used to associate further properties to entity-types and relationships. This
setting can be represented in CVL as shown in Figure 8, where roles are used to
represent ER-attributes and attributes to represent ER-roles.

An entity-type E1 having two ER-attributes, and a relationship R connected
through ER-roles A1, A2, and A3 to entity-types E1, E2, and E3, respectively,
are then represented by means of:

class E1

is a kind of EntityType
all U1 in Attr1

all U2 in Attr2

all A−

1
in R

exists (1, 1) A−

1
in Any

key U1, A
−

1

endclass

class R

is a kind of
Relationship ∧ [A1: E1, A2: E2, A3: E3]

all A4 ∪ · · · ∪ Am in Empty

endclass

In our example E1 has an external key constituted by U1 and by the participation
in relation R. Notice that due to the uniqueness of tuples, {A1, A2, A3} is a key
for R.

class Any

is a kind of
¬{Any} ∧
(EntityType ∨ Relationship ∨
Attribute)

all U1 ∪ · · · ∪ Um in Attribute

exists (0, 1) U1 in Any

· · ·
exists (0, 1) Um in Any

endclass

view EntityType

is a kind of ¬[]
all A−

1
∪ · · · ∪ A−

n
in Relationship

endview

view Relationship

is a kind of []
all A1 ∪ · · · ∪ An in EntityType

endview

view Attribute

is a kind of
¬EntityType ∧ ¬Relationship

all A1 ∪ · · · ∪ Am in Empty

all U1 ∪ · · · ∪ Un in Empty

endview

Fig. 8. Tailoring CVL to the Entity-Relationship model

5.3 CVL versus ODMG

ODMG is intended as a standard for object-oriented models and as such it gives
precise directives about the requirements a candidate object-model should pos-
sess [9]. The expressivity of CVL goes far beyond the one required by the current
version of the standard. In fact, most of the functionality that is under consider-
ation for the next release of the ODMG model is already captured by CVL. This
is shown by the following observations, which also serve the purpose of recalling
the distinguishing features of the model we have proposed.

– In ODMG, the types are organized in a hierarchy and properties and oper-
ations for objects are inherited along this hierarchy from supertypes to sub-
types. Multiple inheritance is allowed. The inheritance mechanism present
in CVL through structure-declarations in class definitions is easily seen to
accomplish the same functionality. In fact, much more complex patterns can
be imposed through the unrestricted use of boolean operations in type ex-
pressions.

– ODMG distinguishes between proper objects and so called literals, where lit-
erals are regarded as immutable, whereas objects are created and destroyed.
This distinction can be captured in our setting in a way that is similar to the
one shown for handling objects and values.

– Attributes, which in ODMG relate objects to literals, and relationships, which
relate objects to each other, are modeled in CVL through the use of roles and
tuples. Referring to the traversal of relationships in both directions, which
is permitted in ODMG, can be performed easily in CVL through the use of
inverse links.

– Subtype/supertype relationships between attribute types, which are con-
sidered for future versions of ODMG, can already be modeled through meeting-

declarations.
– ODMG currently supports only binary relationships, but relationships of

arbitrary arity are considered as a possible extension. CVL already allows to
represent such relationships by means of tuples and suitable key-declarations.

– Subtype/supertype relationships between relationship types can be expressed
in CVL through the specialization of classes whose instances are tuples.

– Structured objects such as lists and arrays, which ODMG supports as built
in types, can be modeled in CVL, as has been shown in the previous section.

– ODMG allows the definition of multiple keys, which are captured in CVL by
key-declarations.

– In ODMG, operations supported for a certain type are specified through
their signature, which defines the name of the operation and the type of its
arguments and return values. This corresponds to the method-declarations
in CVL.

5.4 Concluding remarks

The comparison presented in this section shows that CVL indeed provides power-
ful representation mechanisms that can be specialized so as to capture existing
approaches to object-oriented data modeling. It is worth reminding that CVL is
equipped with reasoning procedures that can be exploited in various ways in the
use of the database. In this paper, we have described the basic reasoning method
for consistency checking. Future work on CVL will be devoted to refine such
method in order to devise effective algorithms for schema analysis and design,
schema integration, type checking, type inference, and query optimization, both
in general, and in the specialized frameworks discussed in this section.

Acknowledgements. This work has been partially supported by the ESPRIT Basic

Research Action N.6810 (COMPULOG 2).

References

1. S. Abiteboul and A. Bonner. Objects and views. In J. Clifford and R. King, edit-
ors, Proc. of ACM SIGMOD, pages 238–247, 1991.

2. S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In
Proc. of ACM SIGMOD, pages 159–173, 1989.

3. F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented Database

System – The story of O2. Morgan Kaufmann, 1992.
4. S. Bergamaschi and C. Sartori. On taxonomic reasoning in conceptual design.

ACM Trans. on Database Systems, 17(3):385–422, 1992.
5. M. Buchheit, M. A. Jeusfeld, W. Nutt, and M. Staudt. Subsumption between quer-

ies to Object-Oriented databases. Information Systems, 19(1):33–54, 1994.
6. D. Calvanese and M. Lenzerini. Making object-oriented schemas more expressive.

In Proc. of PODS-94, pages 243–254. ACM Press and Addison Wesley, 1994.
7. D. Calvanese, M. Lenzerini, and D. Nardi. A unified framework for class based

representation formalisms. In J. Doyle, E. Sandewall, and P. Torasso, editors, Proc.

of KR-94, pages 109–120. Morgan Kaufmann, 1994.

8. T. Catarci and M. Lenzerini. Representing and using interschema knowledge in
cooperative information systems. J. of Intelligent and Cooperative Information

Systems, 2(4):375–398, 1993.
9. R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan

Kaufmann, 1994. Release 1.1.
10. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured docu-

ments to novel query facilities. In R. T. Snodgrass and M. Winslett, editors, Proc.

of ACM SIGMOD, pages 313–324, 1994.
11. G. De Giacomo. Decidability of Class-Based Knowledge Representation Formal-

isms and their Application to Medical Terminology Servers. PhD thesis, Dip. di
Inf. e Sist., Univ. di Roma “La Sapienza”, 1995.

12. G. De Giacomo and M. Lenzerini. Boosting the correspondence between descrip-
tion logics and propositional dynamic logics. In Proc. of AAAI-94, pages 205–212.
AAAI Press/The MIT Press, 1994.

13. G. De Giacomo and M. Lenzerini. What’s in an aggregate: Foundations for de-
scription logics with tuples and sets. In Proc. of IJCAI-95, 1995.

14. G. Di Battista and M. Lenzerini. Deductive entity-relationship modeling. IEEE

Trans. on Knowledge and Data Engineering, 5(3):439–450, 1993.
15. E. A. Emerson and C. S. Jutla. On simultaneously determinizing and complement-

ing ω-automata. In Proc. of LICS-89, pages 333–342, 1989.
16. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.

J. of Computer and System Sciences, 18:194–211, 1979.
17. D. Harel. Dynamic logic. In Handbook of Philosophical Logic, volume 2, pages

497–640. D. Reidel, Dordrecht, Holland, 1984.
18. R. Hull. A survey of theoretical research on typed complex database objects. In

J. Paredaens, editor, Databases, pages 193–256. Academic Press, 1988.
19. R. B. Hull and R. King. Semantic database modelling: Survey, applications and

research issues. ACM Computing Surveys, 19(3):201–260, Sept. 1987.
20. D. Kozen and J. Tiuryn. Logics of programs. In J. V. Leeuwen, editor, Handbook

of Theoretical Computer Science – Formal Models and Semantics, pages 789–840.
Elsevier Science Publishers (North-Holland), 1990.

21. C. Lecluse and P. Richard. Modeling complex structures in object-oriented data-
bases. In Proc. of PODS-89, pages 362–369, 1989.

22. M. Staudt, M. Nissen, and M. Jeusfeld. Query by class, rule and concept. J. of

Applied Intelligence, 4(2):133–157, 1994.
23. C. Stirling. Modal and temporal logic. In S. Abramsky, D. M. Gabbay, and

T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, pages 477–
563. Clarendon Press, 1992.

24. R. E. Streett. Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Computation, 54:121–141, 1982.

25. M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. J. of Computer and System Sciences, 32:183–221, 1986.

26. W. A. Woods and J. G. Schmolze. The KL-ONE family. In F. W. Lehmann, ed-
itor, Semantic Networks in Artificial Intelligence, pages 133–178. Pergamon Press,
1992. Published as a special issue of Computers & Mathematics with Applications,
Volume 23, Number 2–9.

This article was processed using the LATEX macro package with LLNCS style

