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Abstract

Answering queries using views amounts to com-
puting the answer to a query having informa-
tion only on the extension of a set of views.
This problem is relevant in several fields, such
as information integration, data warehousing,
query optimization, etc. In this paper we ad-
dress the problem of query answering using
views for nonrecursive datalog queries embed-
ded in a Description Logics (equipped with n-
ary relations) knowledge base. We present the
following results. Query answering using views
is decidable in all cases. Specifically, if the set of
all objects in the knowledge base coincides with
the set of objects stored in the views (closed do-
main assumption), the problem is coNP com-
plete, whereas if the knowledge base may con-
tain additional objects (open domain assump-
tion) it is solvable in double exponential time.

1 Introduction

Answering queries using views amounts to comput-
ing the answer to a query having information only
on the extension of a set of views. This problem
is relevant in several fields, such as information inte-
gration [Ullman1997], data warehousing [Widom1995],
query optimization [Chaudhuri et al.1995], etc. Data in-
tegration is perhaps the obvious setting where query an-
swering using views is important: a typical integration
process results in a set of precomputed views, and the
query evaluation mechanism can only rely on such views
in order to derive correct answers to queries.

In this paper we address the problem of query an-
swering using views for nonrecursive datalog queries em-
bedded in a Description Logics (equipped with n-ary
relations) knowledge base. Our goal is to study the
computational complexity of the problem, under differ-
ent assumptions, namely, closed and open domain, and
sound, complete, and exact information on view exten-
sions. Such assumptions have been used in data inte-
gration with the following meaning. The closed domain
assumption states that the set of all objects in the knowl-
edge base coincides with the set of objects stored in the

views. On the contrary, the open domain assumption
leaves the possibility open that other objects besides
those stored in the views exist in the knowledge base.
With regard to the assumptions on views, a sound view
corresponds to an information source which is known
to produce only, but not necessarily all, the answers to
the associated query. A complete view models a source
which is known to produce all answers to the associated
query, and maybe more. Finally, an exact view is known
to produce exactly the answers to the associated query.

In this paper we consider a framework where we have a
knowledge base formulated in an expressive Description
Logic [Calvanese et al.1998a], and a set of views defined
as non-recursive datalog programs, and we want to an-
swer a query, again expressed as a non-recursive datalog
program. Moreover, the framework allows the specifica-
tion of which assumption to adopt for the domain, and
of which one to adopt for each of the available views.

We present the following results for the described set-
ting: Query answering using views is decidable in all
cases. Moreover, under the closed domain assumption,
the problem is coNP complete, whereas under the open
domain assumption it is solvable in double exponential
time.

Our investigation is similar in spirit to the
one presented in [Abiteboul and Duschka1998,
Calvanese et al.1999a], where the decidability and
the complexity of the problem is studied when the
views and the queries are expressed in terms of various
languages (conjunctive queries, datalog, first-order
queries, regular path queries, etc.). It is worth noticing
that ABox reasoning in DLs [Donini et al.1994] can be
considered as a special form of query answering using
views, in particular for the case where all views are
assumed to be sound.

2 The Description Logic DLR

We use the DL DLR [Calvanese et al.1998a] to spec-
ify knowledge bases and queries. The basic elements of
DLR are concepts (unary relations), and n-ary relations.
We assume to deal with a finite set of atomic relations,
atomic concepts, and constants, denoted by P , A and
a, respectively. We use R to denote arbitrary relations
(of given arity between 2 and nmax), and C to denote



arbitrary concepts, respectively built according to the
following syntax:

R ::= ⊤n | P | $i/n : C | ¬R | R1 ⊓R2

C ::= ⊤1 | A | ¬C | C1 ⊓ C2 |

∃[$i]R | (≤ k [$i]R)

where i and j denote components of relations, i.e., inte-
gers between 1 and nmax, n denotes the arity of a rela-
tion, i.e., an integer between 2 and nmax, and k denotes
a nonnegative integer. Observe that, the “¬” construc-
tor on relations is used to express difference of relations,
and not the complement [Calvanese et al.1998a].

We consider only concepts and relations that are well-
typed, which means that (i) only relations of the same
arity n are combined to form expressions of type R1⊓R2

(which inherit the arity n), and (ii) i ≤ n whenever i
denotes a component of a relation of arity n.

A DLR knowledge base (KB) is constituted by a finite
set of assertions, where each assertion has one of the
forms:

R1 ⊑ R2, C1 ⊑ C2, C(a), R(a1, . . . , an)

where R1 and R2 are of the same arity, and R has arity
n.

The semantics of DLR is specified as follows. An in-
terpretation I of a KB is constituted by an interpreta-
tion domain ∆I , and an interpretation function ·I that
assigns to each constant an element of ∆I under the
unique name assumption, to each concept C a subset
CI of ∆I , and to each relation R of arity n a subset
RI of (∆I)n. We assume that ∆I is a subset of a fixed
infinitely countable domain ∆. To simplify the notation
we do not distinguish between constants and their inter-
pretations.

An interpretation I satisfies an assertion R1 ⊑ R2

(resp. C1 ⊑ C2) if RI

1
is included in RI

2
(resp. CI

1
is

included in CI

2
), and satisfies an assertion C(a) (resp.,

R(a1, . . . , an)) if a ∈ CI (resp., (a1, . . . , an) ∈ RI). An
interpretation that satisfies all assertions in a KB K is
called a model of K.

A query q is a non-recursive datalog query, written in
the form:

Q(~x) ← body
1
(~x, ~y1,~c1) ∨ · · · ∨ bodym(~x, ~ym,~cm)

where each body i(~x, ~yi,~ci) is a conjunction of atoms, and
~x, ~yi (resp. ~ci) are all the variables (resp. constants) ap-
pearing in the conjunct. Each atom has one of the forms
R(~t), or C(t) where (i) ~t, t, and t′ are constants or vari-
ables in ~x, ~yi,~ci, and (ii) R, C are relations and con-
cepts, respectively. The number of variables of ~x is called
the arity of q, and is the arity of the relation denoted by
the query q.

We observe that the atoms in the queries are arbitrary
DLR relations and concepts, freely used in the assertions
of the KB. This distinguishes our approach with respect
to [Donini et al.1998, Levy and Rousset1996], where no
constraints on the relations that appear in the queries
can be expressed in the KB.

Given an interpretation I of a KB, a query Q of arity
n is interpreted as the set QI of n-tuples (o1, . . . , on),
with each oi ∈ ∆I , such that, when substituting each oi

for xi, the formula

∃~y1.body1
(~x, ~y1,~c1) ∨ · · · ∨ ∃~ym.bodym(~x, ~ym,~cm)

evaluates to true in I.
We observe that DLR is able to capture a great

variety of data models with many forms of con-
straints [Calvanese et al.1998b, Calvanese et al.1998a].
Also, we note that logical implication (checking whether
a given assertion logically follows from a KB) in DLR
is EXPTIME-complete, and both query containment
(checking whether one query is contained in another one
in every model of a KB) and query answering (checking
whether a tuple of constants satisfies the query in ev-
ery model of a KB) are EXPTIME-hard and solvable in
2EXPTIME [Calvanese et al.1998a].

3 Answering queries using views

Consider a KB K, and suppose you want to answer a
query Q only on the basis of your knowledge about the
extension of a set of views V1, . . . , Vn. Associated to each
view Vi we have

• a definition def (Vi) in terms of a query over K,

• a set ext(Vi) of tuples of constants (whose arity is
the same as that of Vi) which provides the informa-
tion about the extension of Vi,

• a specification as(Vi) of which assumption to adopt
for the view Vi, i.e., how to interpret ext(Vi) with
respect to the set of tuples that satisfy the view Vi

in K. We describe below the various possibilities
that we consider for as(Vi).

As pointed out in several pa-
pers [Abiteboul and Duschka1998,
Grahne and Mendelzon1999, Levy1996], the above
problem comes in different forms, depending on various
assumptions about how accurate is the knowledge on
both the objects of the KB, and the pairs satisfying
the views. With respect to the knowledge about the
objects, we distinguish between:

• Closed Domain Assumption. The exact set of ob-
jects in the domain of interpretation is known, and
coincides with the set of objects that appear in
the views. We say that an interpretation I of a
KB is a model of ext(V1), . . . , ext(Vn) under CDA
if ∆I coincides with the set of objects appearing in
ext(V1) ∪ · · · ∪ ext(Vn).

• Open Domain Assumption. Only a subset of the
objects in the domain of interpretation is known.
We say that an interpretation I of a KB is a model of
ext(V1), . . . , ext(Vn) under ODA if ∆I is a superset
of the set of constants appearing in ext(V1) ∪ · · · ∪
ext(Vn).

With regard to the knowledge about the views, we
consider the following three assumptions:



• Sound View Assumption. When a view Vi is sound
(satisfies the SVA), written as(Vi) = SVA, from the
fact that a tuple is in ext(Vi) one can conclude that
it satisfies the view, while from the fact that a tuple
is not in ext(Vi) one cannot conclude that it does not
satisfy the view. More formally, if as(Vi) = SVA,
then an interpretation I of a KB is a model of Vi if
ext(Vi) ⊆ def (Vi)

I .

• Complete View Assumption. When a view Vi is
complete (satisfies the CVA), written as(Vi) =
CVA, from the fact that a tuple is in ext(Vi) one can-
not conclude that such a tuple satisfies the view. On
the other hand, from the fact that a tuple is not in
ext(Vi) one can conclude that such a tuple does not
satisfy the view. More formally, if as(Vi) = CVA,
then an interpretation I of a KB is a model of Vi if
ext(Vi) ⊇ def (Vi)

I .

• Exact View Assumption. For each view Vi is ex-
act (satisfies the EVA), written as(Vi) = EVA, the
extension of the view is exactly the set of tuples
of objects that satisfy the view. More formally, if
as(Vi) = EVA, then an interpretation I of a KB is
a model of Vi if ext(Vi) = def (Vi)

I .

The problem of answering queries using views un-
der the domain assumption α in DLR is the following:
Given

• a KB K,

• a set of views V = {V1, . . . , Vn} with def (Vi),
ext(Vi), and as(Vi), for each Vi,

• a query Q of arity n, and a tuple ~d = (d1, . . . , dn)
of constants,

decide whether ~d ∈ ans(Q,K,V) under α, i.e., decide
whether (a1, . . . , an) ∈ QI , for each I such that: (i) I
is a model of K; (ii) I is a model of ext(V1), . . . , ext(Vn)
under α; (iii) I is a model of every Vi.

4 Answering queries using views in

DLR

Our goal is to characterize the complexity of query an-
swering using views in DLR.

4.1 Under closed domain assumption

We start our investigation by considering the closed
domain assumption. By exploiting one of the results
in [Calvanese et al.1999a], it is easy to see that the prob-
lem is coNP-hard. Moreover, the number of possible in-
terpretations of the KB is finite, and therefore, we can
guess one of them, check if it is a model which is a model
of the views, and evaluate the query. This yields an NP
algorithm that checks whether the answer to the query
is no.

Theorem 1 Answering queries using views under the
closed domain assumption in DLR is coNP-complete.

4.2 Under open domain assumption

Let us now consider the case of the open domain as-
sumption. In this case we reduce the problem of check-

ing whether a tuple ~d of constants is in ans(Q,K,V) to
the problem of checking the satisfiability of a concept
in the DL CIQ [De Giacomo and Lenzerini1996]. The
reduction is done in three steps.

• First we add to the KB K special assertions as fol-
lows.

– For each sound view V , with def (V ) =
body

1
(~x, ~y1,~c1) ∨ · · · ∨ bodym(~x, ~ym,~cm), for

each tuple ~a in ext(V ), we include an existen-
tially quantified formula:

∃~y1 · · · ∃~ym.body
1
(~a, ~y1,~c1)∨· · ·∨bodym(~a, ~ym,~cm)

– For each complete view V , we include a univer-
sally quantified formula:

∀~x.∀~y.((~x 6= ~a1 ∨ · · · ∨ ~x 6= ~ak) ⊃ ¬q(~x, ~y,~c))

where {~a1, . . . , ~ak} = ext(V ) and q(~x, ~y,~c) is
the right hand part of def (V ).

– According to the definition, we treat each exact
view as a view that is both sound and complete.

– Finally, since we are checking whether ~d is an
answer of Q, we consider the negation of the
query Q, and we include a universally quanti-
fied formula:

∀~y.¬q(~d, ~y,~c)

where q(~d, ~y,~c) is obtained by instantiating ~x

to ~d in the right hand part of Q.

• Then we translate K and each of the formulas in-
troduced in the previous step into a single concept
in CIQ plus object names (which are concepts that
are satisfied by a single object in each model). In
particular following [Calvanese et al.1998a]:

– We eliminate n-ary relations by means of reifi-
cation.

– We internalize the assertions in K.

– We translate each existentially quantified for-
mula into a concept, treating every existen-
tially quantified variable as a new object name
(skolem constant).

– We translate each universally quantified for-
mula into a conjunction of concepts, one for
each possible instantiation of the universally
quantified variables with the object names in-
troduced so far.

• Finally, we eliminate object names along the lines
of [Calvanese et al.1998a], thus obtaining a concept
in CIQ.

The reduction can be shown to be correct along the
line of [Calvanese et al.1998a]. From the reduction we
get the following result.



Theorem 2 Answering queries using views under the
open domain assumption in DLR is EXPTIME-hard
and can be done in 2EXPTIME.

Interestingly, when all views are sound and the query
is simple, i.e., is an atom of the form R(~x) or C(x), we
obtain a setting that corresponds closely to the typical
TBox and ABox reasoning in DLs. In this case the fol-
lowing result holds.

Theorem 3 Answering simple queries using sound
views under the open domain assumption in DLR is
EXPTIME-complete.

5 Comparison with query rewriting

The problem of query answering using views
has also been dealt with techniques based on
rewriting queries using views [Levy et al.1995,
Duschka and Genesereth1997, Ullman1997,
Beeri et al.1997]: Given a query Q and views V1, . . . , Vn

with associated definitions def (V1), . . . , def (Vn), gener-
ate a new query Q′ over the alphabet V1, . . . , Vn such
that for every database (model in our setting), first
computing the extension of each Vi on the database,
and then evaluating Q′ on the basis of such extensions,
provides the answer to Q. Although methods for
query rewriting can be adapted to the problem of
query answering using views [Levy et al.1995], the two
problems are different. Query rewriting has as inputs
only the view definitions and the query and uses the
view definitions to re-express the query in terms of the
views. Then, to compute the answer to the original
query, the rewritten query is evaluated on the extensions
of the views. On the other hand, query answering takes
as inputs the view definitions, the view extensions, the
view assumptions, and the query, and computes directly
the answer to the query.

Hence, in the general case one cannot exploit query
rewriting using views for query answering. In particu-
lar, when the rewriting is not exact (i.e., it is not equiv-
alent to the query), it may miss some tuples that are
in the answer to a query. Even if there exists an ex-
act rewriting, it may still miss some tuples of the an-
swer to a query in the case where the views are sound
(but not exact). Only if the rewriting is exact and the
views are exact, one can use such rewriting to solve the
query answering problem [Grahne and Mendelzon1999,
Calvanese et al.1999b].

Note that query rewriting in our setting remains an
open problem.

6 Conclusions

We have studied query answering using views for nonre-
cursive datalog queries embedded in a DLR knowledge
base. We have considered different assumptions on the
view extensions (sound, complete, and exact) and on
our knowledge of the domain (closed and open domain
assumptions). We have established decidability and es-
tablished upper and lower bounds for the computational
complexity of the problem.

We conclude by stressing that query answering using
views is essentially an extended form of a familiar rea-
soning service for DLs, namely instance checking, where
from a partial knowledge about the extensions of con-
cepts and relations, i.e. the ABox, one wants to estab-
lish if a given individual (tuple of individuals) is in the
extension of a concept (relation).
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