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Abstract

Recent proposals to improve the quality of
interaction with the World Wide Web sug-
gest considering the Web as a huge semis-
tructured database, so that retrieving inform-
ation can be supported by the task of data-
base querying. Under this view, it is import-
ant to represent the form of both the net-
work, and the documents placed in the nodes
of the network. However, the current propos-
als do not pay sufficient attention to repres-
ent document structures and reasoning about
them. In this paper, we address these prob-
lems by providing a framework where Docu-
ment Type Definitions (DTDs) expressed in
the Standard Generalized Markup Language
are formalized in an expressive Description
Logic equipped with sound and complete in-
ference algorithms. We provide a method
for verifying structural equivalence of DTDs,
which works in worst case deterministic ex-
ponential time, in contrast to the known al-
gorithms for this problem which are double
exponential. We also deal with parametric
versions of structural equivalence, and invest-
igate other forms of reasoning on DTDs. The
reasoning services studied in this paper can
be seen as the fundamental building blocks for
devising more complex inference systems sup-
porting the task of querying the World Wide
Web.

1 Introduction

The view of the World Wide Web as a large information
system constituted by a collection of documents connec-
ted by hypertext links, is stimulating many lines of re-
search related to database and knowledge representation
issues. One of the most interesting aspects addressed in
recent papers is the design of suitable declarative mech-
anisms for querying the Web information system making
use of a representation of the structure of the network
(see for example [Mendelzon et al., 1996; Konopnicki and
Shmueli, 1995; Lakshmanan et al., 1996]). These works

point out that taking into account the structure of doc-
uments placed in the nodes of the Web, and being able
to reason on it, would help in several tasks related to
query processing, such as query formulation, optimiza-
tion and restructuring (see [Christophides et al., 1994;
Quass et al., 1995; Mendelzon et al., 1996]).

One common way of describing the structure of doc-
uments is by marking them up using tags. For example,
HTML documents are defined in this way. The stand-
ard way of describing marked-up documents is by using
Document Type Definitions (DTDs) expressed in Stand-
ard Generalized Markup Language (SGML). Given two
DTDs, a natural and fundamental question is whether
they are equivalent in the sense that they define the
same sets of marked-up documents (strong equivalence).
Other forms of reasoning on DTDs are also of practical
interest [Wood, 1995; Raymond et al., 1995], such as
verifying structural equivalence, which is a weaker form
of equivalence abstracting from tag names in the docu-
ments. SGML literature has stressed the need for reas-
oning methods to determine such equivalences, and for
studying their computational properties [Wood, 1995].

In this paper, we show a formalization of SGML DTDs
in a decidable Description Logic, which provides us with
a general method to reason on DTDs. In this logic non-
first-order constructs as reflexive and transitive closure
and well-foundedness play a crucial role. The proposed
formalization allows us to verify structural equivalence of
DTDs in worst case deterministic exponential time, while
the known algorithms for this problem are double expo-
nential. We also introduce and study parametric versions
of structural equivalence, and investigate other forms of
reasoning on DTDs. The reasoning services studied in
this paper can be seen as the fundamental building blocks
for devising more complex inference systems supporting
the task of querying the Web.

2 SGML Document Type Definitions

In this section we present Document Type Definitions
which are used in SGML [Int, 1986] in order to define
marked-up documents (Section 2.1), and various forms
of reasoning on such documents (Section 2.2).



2.1 DTDs and Documents

An SGML document consists of an SGML prologue and
a marked-up document instance. The prologue includes
a Document Type Definition (DTD), which is constituted
by a set of element type definitions defining the generic
structure of the various components of the marked-up
document instance. The logical components of a docu-
ment are called elements.

It is well known that the fundamental characteristics
of DTDs can be formalized by means of Extended Con-
text Free Grammars (ECFGs) [Wood, 1995]. Marked-up
document instances are seen as syntax trees constructed
according to the grammar, where the tree structure is
determined by the various tags that occur in the doc-
ument and that constitute the markup. An ECFG is a
tuple (E,T,P, I), where E is an alphabet of nonterminal
symbols, T is an alphabet of terminal symbols, P is a set
of production rules, and I ∈ E is the initial symbol of
the grammar. The nonterminal symbols are the elements
defined in the DTD, and the start symbol is the element
that specifies the document type. The terminal symbols
are the basic types of SGML, such as #PCDATA, which
represent generic (unmarked) strings with no associated
structure within the DTD. In the following, with the term
symbol, denoted by the letter S, we mean a generic ter-
minal or nonterminal symbol in E∪T. Each production
rule E → α of the ECFG corresponds to an element type
definition. E is the defined element, and α, called content
model, is an expression over the symbols of the grammar
constructed according to the following syntax:

α ::= S | ε | α1, α2 | α1|α2 | α∗.

In fact, α is a regular expression with “,” denoting con-
catenation and “|” denoting union. Additionally, in con-
tent models, the following standard abbreviations are
used:

α1&α2 = (α1, α2)|(α2, α1)

α? = ε|α

α+ = α, α∗.

When no ambiguity may arise, we identify α with the
set of words generated by the regular expression that α
represents.

Figure 1 shows an example of a DTD M for a
simple mail document, expressed in SGML syntax. It
is straightforward to derive the set of ECFG productions
corresponding to the various element type definitions.

DTDs contain in fact also other aspects that are not
directly related to the document structure. An example
is the possibility to associate to each element a set of
properties by means of a so called attribute list. In the
following, for the sake of simplicity, we do not consider
those additional aspects. We remark, however, that the
representation of DTDs in terms of Description Logics
provided in Section 3, makes it straightforward to take
also these aspects into consideration.

Let D = (E,T,P, I) be a DTD. We assume without
loss of generality that for each element E ∈ E, P con-
tains at most one element type definition E → α where

E appears on the left hand side. We also assume that
for each element E appearing in P, there is an element
type definition E → α in which E is the symbol on the
left hand side. In fact, if such condition is not satisfied,
the grammar can easily be transformed in polynomial
time into one that generates the same set of marked-up
documents, and in which the condition holds.

The set docs(P, S) of marked-up documents generated
by P starting from a symbol S is inductively defined as
follows:

• If S is a terminal, then docs(P, S) = S.

• If S is an element and (S → α) ∈ P, then

docs(P, S) = {<S> d1 · · · dk </S> |
∃σ ∈ α such that σ = S1 · · ·Sk and
di ∈ docs(P, Si), for i ∈ {1, . . . , k}}

The set of marked-up documents generated by a DTD
D = (E,T,P, I) is given by docs(P, I).

2.2 Equivalences and Inclusions between
DTDs

Given two DTDs, a fundamental problem is to determine
whether they are equivalent in some sense, i.e. whether
they define the same sets of documents [Wood, 1995;
Raymond et al., 1995]. Here, we consider a more general
problem, which is that of checking various forms of lan-
guage inclusion (instead of equivalence). The most basic
form of inclusion (equivalence) is inclusion (equality) of
the sets of marked-up documents generated by the two
DTSs. In general, when comparing DTDs we assume
without loss of generality that they are over the same
alphabets of terminals and elements.

Formally, let D1 = (E,T,P1, I1) and D2 =
(E,T,P2, I2) be two DTDs. We say that D1 is strongly
included in D2, denoted with D1 �s D2, if docs(P1, I1) ⊆
docs(P2, I2).

For determining strong inclusion, the names of the
start and end tags that constitute the markup of the two
documents play a fundamental role.

In some cases, however, the actual names of the tags
may not be relevant while the document structure im-
posed by the tags is of importance. The form of inclusion
obtained by ignoring the names of tags and considering
only their positions is called structural inclusion [Wood,
1995]. One DTDs is structurally included into another
if, when we replace in every document generated by the
DTDs all start and end tags with the unnamed tags <>
and </> respectively, the resulting sets for the two DTDs
are one included into the other.

While the restrictions imposed by strong inclusion
may be too strict in some cases, structural inclusion,
which ignores completely all tag names, may be too
weak. A natural generalization of these two concepts
is obtained by considering a spectrum of possible inclu-
sions, of which strong and structural inclusion are just
the two extremes. The different forms of inclusion are
obtained by considering certain tag names as equal, and
others as different, when confronting documents. This



<!DOCTYPE Mail [
<!ELEMENT Mail (From, To, Subject, Body)>
<!ELEMENT From (Address)>
<!ELEMENT To (Address)+>
<!ELEMENT Subject (#PCDATA)>
<!ELEMENT Body (#PCDATA)>
<!ELEMENT Address (#PCDATA)> ]>

Figure 1: DTD M for mail documents

allows us to parameterize inclusion (and therefore equi-
valence) of DTDs with respect to an equivalence relation
on the set of tag names.

Formally, we consider an equivalence relation R on
the set E of nonterminal symbols. For an element E ∈
E, we denote by [E]R the equivalence class of E with
respect to R. Given a DTD D = (E,T,P, I) and such
an equivalence relation R, we inductively define the set
docsR(P, S) of R-marked-up documents generated by P
starting from a symbol S as follows:

• If S is a terminal, then docsR(P, S) = S.

• If S is an element and (S → α) ∈ P, then

docsR(P, S) =
{<[S]R> d1 · · · dk </[S]R> |
∃σ ∈ α such that σ = S1 · · ·Sk and
di ∈ docsR(P, Si), for i ∈ {1, . . . , k}}

The set of R-marked-up documents generated by a DTD
D = (E,T,P, I) is given by docsR(P, I).

For two DTDs D1 = (E,T,P1, I1) and D2 =
(E,T,P2, I2) and an equivalence relation R on E, we say
that D1 is R-included in D2, denoted with D1 �R D2, if
docsR(P1, I1) ⊆ docsR(P2, I2).

Observe that, if we choose for R the equivalence re-
lation in which all equivalence classes are singletons, we
obtain strong inclusion. On the other hand, if R contains
a single equivalence class constituted by the whole set E,
we obtain structural inclusion.

3 Representing DTDs and Reasoning

on them

Let us introduce the logic DL which we use for form-
alizing DTDs and which is a simplified version of the
formalism in [Calvanese et al., 1995]. The syntax of DL
is as follows:

C −→ A | ⊤ | ⊥ | ¬C | C1 ⊓ C2 | C1 ⊔ C2 |

∀R.C | ∃R.C | ∃≤nQ.C | ∃≤nQ−.C |

(Q1 ⊆ Q2) | (Q−
1 ⊆ Q−

2 ) | wf (R)

Q −→ P | Q1 ∪ Q2 | Q1 ∩ Q2 | Q1 \ Q2

R −→ Q | R1 ∪ R2 | R1 ◦ R2 | R− | R∗ | id(C)

where we denote concept names by A, arbitrary concepts
by C, role names by P , basic roles (i.e. roles obtained
by union, intersection and difference of role names) by

Q, and arbitrary roles by R, all possibly with subscripts.
The semantics of the constructs above is the standard
one, except for the construct wf (R), called well-founded,
which is interpreted as those objects that are the initial
point of only finite R-chains. Formally

(wf (R))I = {o0 ∈ ∆I | ∀o1, o2, . . . (ad infinitum)

∃oi : (oi, oi+1) 6∈ RI}.

A DL knowledge base is a set of assertions of the form

C1 ⊑ C2,

where C1 and C2 are arbitrary concepts without any re-
strictions. We use also C1 ≡ C2 as an abbreviation for
the pair of assertions C1 ⊑ C2 and C2 ⊑ C1.

An interpretation I satisfies the assertion C1 ⊑ C2

if CI
1 ⊆ CI

2 . An interpretation is a model of a know-
ledge base K if it satisfies all assertions in K1. Typical
reasoning services (i.e. subsumption, satisfiability, logical
implication) in DL are EXPTIME-complete [Calvanese
et al., 1995; Calvanese, 1996].

Let D = {D1, . . . ,Dk} be a finite collection of DTDs.
We assume without loss of generality that all DTDs in
the collection share the same alphabets T of terminals
and E of elements, i.e. that Di = (E,T,Pi, Ii), for i ∈
{1, . . . , k}. We describe now how to construct from D
a DL knowledge base K capable of fully capturing the
various structural aspects of the DTDs in D.

Independently from the particular collection of DTDs,
K contains special assertions that model general struc-
tural properties of marked-up documents. Specifically,
K contains the following assertions:

DStruc ≡ ∀(f ∪ r).DStruc ⊓

∃≤1f.⊤ ⊓ ∃≤1r.⊤ ⊓ ∃≤1(f ∪ r)−.⊤ ⊓

wf (f ∪ r)

Tag ⊑ DStruc ⊓ ∀(f ∪ r).⊥

Terminal ⊑ DStruc ⊓ ∀(f ∪ r).⊥ ⊓ ¬Tag

The concept DStruc introduces two distinguished roles f
and r (standing for “first” and “rest” respectively) which
are used to represent the tree-like form of marked-up
documents by exploiting the standard encoding of n-ary
trees as binary trees. The assertion on DStruc imposes
functionality of f and r and the existence of at most one
predecessor, hence enforcing a binary tree structure on

1This means that we adopt descriptive semantics for
cycles.



MailM ≡ DStruc ⊓ ∃f.StartMail ⊓ ∃(r ◦ id(∃f.FromM ) ◦ r ◦ id(∃f.ToM ) ◦ r
◦id(∃f.SubjectM ) ◦ r ◦ id(∃f.BodyM ) ◦ r).EndMail

FromM ≡ DStruc ⊓ ∃f.StartFrom ⊓ ∃(r ◦ id(∃f.AddressM ) ◦ r).EndFrom

ToM ≡ DStruc ⊓ ∃f.StartTo ⊓ ∃(r ◦ id(∃f.AddressM ) ◦ r ◦ (id(∃f.AddressM ) ◦ r)∗).EndTo

SubjectM ≡ DStruc ⊓ ∃f.StartSubject ⊓ ∃(r ◦ id(∃f.#PCDATA) ◦ r).EndSubject

BodyM ≡ DStruc ⊓ ∃f.StartBody ⊓ ∃(r ◦ id(∃f.#PCDATA) ◦ r).EndBody

AddressM ≡ DStruc ⊓ ∃f.StartAddress ⊓ ∃(r ◦ id(∃f.#PCDATA) ◦ r).EndAddress

#PCDATA ⊑ Terminal

Figure 2: Knowledge base derived from the DTD M

the (f∪r)∗-connected components of models of the know-
ledge base. Observe that the use of the well-foundedness
construct is essential to impose finiteness and acyclicity
of such connected components.

The symbols that appear in the DTDs and the element
type definitions are then encoded in K as follows:

• For each terminal F ∈ T, K contains an assertion

F ⊑ Terminal.

• For each element E ∈ E, K contains two assertions

StartE ⊑ Tag

EndE ⊑ Tag,

where StartE and EndE represent start and end
tags.

• For each Di ∈ D, and for each element E, such that
(E → α) ∈ Pi

2, K contains the assertion:

EDi
≡ DStruc ⊓ ∃f.StartE ⊓ ∃(r ◦ τ(α)).EndE

with τ(α) defined inductively as:

τ(ε) = id(⊤)

τ(S) = id(∃f.cn(Di, S)) ◦ r

τ(α1|α2) = τ(α1) ∪ τ(α2)

τ(α1, α2) = τ(α1) ◦ τ(α2)

τ(α∗) = τ(α)∗

where cn(·, ·) is a mapping that associates to each
pair constituted by a DTD Di and a symbol S a
concept name as follows:

cn(Di, S) =
{

EDi
if S = E for an element E ∈ E

F if S = F for a terminal F ∈ T

The role τ(α) reflects the structure imposed by α on
the parts of a document that are defined by E → α.
It can be explained in terms of an encoding of the tree
representing the marked-up document into a binary tree.

Observe that while for each tag in the collection of
DTDs we have a unique concept name, the informa-
tion about the DTD a given element belongs to is ex-
plicitly carried out in the knowledge base. Indeed, for

2We assume without loss of generality that every element
appearing in Pi, appears also as the left hand side of some
element type definition in Pi.

each element E we have introduced two concept names
StartE, EndE representing its tags, and one concept
name EDi

for each DTD Di containing a definition of
E.

We stress that for each EDi
the well-foundedness con-

struct in the assertion on DStruc ensures the follow-
ing: Given a model M of K, it is possible to determine
whether an object o is an instance of EDi

by taking into
account only the structure of the (f∪r)∗ connected com-
ponent of M containing o, and the concepts representing
tags and terminals on such component. This property is
essential in order to obtain the desired correspondence
between reasoning on the DTDs in D and reasoning on
K.

Figure 2 shows the knowledge base corresponding to
the DTD M described in Figure 1. We have omitted
the assertions that are independent from the particular
DTD, introduced above, as well as those for the concepts
that represent the various start and end tags.

The knowledge base K can directly be used to determ-
ine strong inclusion between DTDs.

Theorem 1 Let Di and Dj be two DTDs in D, and
K the DL knowledge base derived from D as specified
above. Then Di is strongly included in Dj if and only if
cn(Di, Ii) is subsumed by cn(Dj , Ij) in K.

The knowledge base K can also be extended in order
to verify the other forms of inclusions introduced in Sec-
tion 2. Let R = {{E1

1 , . . . , E1
n1
}, . . . , {Em

1 , . . . , Em
nm

}} be
an equivalence relation on the set E of elements. We ob-
tain the knowledge base KR from K by adding for each
equivalence class {Ej

1, . . . , E
j
nj
} and for each element E

j
i ,

with i ∈ {1, . . . , nj−1}, the assertions:

StartE
j
i ≡ StartE

j
i+1

EndE
j
i ≡ EndE

j
i+1

With these assertions we are essentially imposing the
equivalence of all the concepts representing tags of ele-
ments belonging to each set {Ej

1, . . . , E
j
nj
}. Therefore,

when reasoning on KR the differences between the vari-
ous tags associated to equivalent elements are ignored,
coherently with the notion of R-inclusion.

Theorem 2 Let Di and Dj be two DTDs in D, R an
equivalence relation on E, and KR the DL knowledge



base derived from D as specified above. Then Di is R-
included in Dj if and only if cn(Di, Ii) is subsumed by
cn(Dj , Ij) in KR.

From decidability in deterministic exponential time of
logical implication in DL [Calvanese et al., 1995] we ob-
tain as an immediate consequence an EXPTIME up-
per bound for R-inclusion and R-equivalence between
DTDs.

Corollary 3 R-inclusion and R-equivalence between
two DTDs can be verified in deterministic exponential
time in the size of the DTDs.

As mentioned, the previously known algorithms for struc-
tural equivalence were doubly exponential, while by the
theorem above we obtain a single exponential upper
bound.

4 Conclusions

Several recent papers dealing with the problem of query-
ing the World Wide Web argue that the current tech-
niques for representing and reasoning on document struc-
tures should be improved. We have provided a view of
DTDs as concepts of the expressive Description Logic
DL, and we have demonstrated that this approach is in-
deed very effective for both faithfully representing doc-
ument structures, and answering several open questions
regarding DTD equivalence checking. By exploiting the
constructs of DL, we are able to integrate into the struc-
ture of documents also aspects related to the semantics
of the information contained in them. For example, the
so called attribute lists of DTD elements can be modeled
easily in DL. As another example, if part of a document
(corresponding to a terminal symbol T in the DTD) in-
cludes a table with information about, say, departments
and employees, this can be represented by adding suit-
able properties to the concept corresponding to T . We
can also represent links to other documents, such as those
typically found in the Web, by means of a special concept
with suitable roles for the name of the link and the associ-
ated anchor. Obviously, by means of suitable assertions
we can constrain the anchor to point to a document of a
specific DTD.

We are extending our work along two directions. On
one hand, we aim at capturing more aspects of DTDs
in order to represent, for example, other properties of
documents (attribute list in the terminology of SGML),
exceptions (as described in [Wood, 1995]), or constraints
on the number of occurrences of a certain pattern in an
element definition. On the other hand, the deductive
power of DL allows us to study new types of reasoning
on DTDs, such as further forms of parameterized equi-
valence (e.g. abstracting from the definition of a specified
element), or document classification (infer which is the
DTD that best matches a given marked document among
a set of candidates).
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