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Abstract

In this paper we demonstrate that two-way alternating automata on infinite
trees (2ATAs) provide a very elegant and effective formal tool for addressing rea-
soning in expressive DLs. Indeed, the encoding of a DL concept (to be checked
for satisfiability) into an automaton (to be checked for non-emptiness) is: (i) in-
tuitive, indeed, comparable to tableaux rules; (ii) modular, since each construct is
dealt with separately; (iii) short, since the encoding is polynomial; and (iv) com-
putationally adequate, i.e., optimally w.r.t. the complexity class of reasoning. To
make these claims concrete, we illustrate the use of 2ATAs to decide satisfiabil-
ity of three expressive DLs of increasing complexity, namely ALCFIreg , which
corresponds to converse-pdl with local functionality, ALCFIbreg , which extends
ALCFIreg with boolean combinations of roles, and ALCQIbreg , which further
extends ALCFIbreg with qualified number restrictions.

1 Introduction

Vardi introduced in [14] techniques based on two-way alternating automata on infinite
trees (2ATAs) for reasoning in modal logics of programs. These techniques have been
adopted for devising new results for DLs with fixpoints [2, 10]. In this paper we
demonstrate that 2ATAs provide indeed a very elegant and effective formal tool for
addressing reasoning in expressive DLs. In particular, differently from usual (one-
way nondeterministic) tree automata [12], they provide an high level description of
the automaton computation that abstracts from the combinatorics and allows one to
concentrate on the logical aspects. As a result, the encoding of a DL concept (to be
checked for satisfiability) into an automaton (to be checked for non-emptiness) is:

• intuitive, indeed, comparable to tableaux rules;
• modular, since each construct is dealt with separately;
• short, since the encoding is polynomial;
• computationally adequate, i.e., optimally w.r.t. the complexity class of reasoning.

Moreover, the typical difficulty of tableau-based techniques for expressive DLs, namely
establishing suitable termination conditions, can be dealt with elegantly using appro-
priate acceptance conditions for the 2ATAs.
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To make these claims concrete, we illustrate the use of 2ATAs to decide satis-
fiability of three expressive DLs of increasing complexity, namely ALCFIreg , which
corresponds to converse-pdl [5] with local functionality, ALCFIbreg , which extends
ALCFIreg with boolean combinations of roles [13], and ALCQIbreg , which further
extends ALCFIbreg with qualified number restrictions [6], the most expressive form
of number restrictions considered in DLs.

2 Automata on infinite trees

Infinite trees are represented as prefix closed (infinite) sets of words over N (the set
of positive natural numbers). Formally, an infinite tree is a set of words T ⊆ N

∗, such
that if x·c ∈ T , where x ∈ N

∗ and c ∈ N, then also x ∈ T . The elements of T are
called nodes, the empty word ε is the root of T , and for every x ∈ T , the nodes x·c,
with c ∈ N, are the successors of x. By convention we take x·0 = x, and x·i·−1 = x.
The branching degree d(x) of a node x denotes the number of successors of x. If the
branching degree of all nodes of a tree is bounded by k, we say that the tree has
branching degree k. An infinite path P of T is a prefix-closed set P ⊆ T such that
for every i ≥ 0 there exists a unique node x ∈ P with |x| = i. A labeled tree over an
alphabet Σ is a pair (T, V ), where T is a tree and V : T → Σ maps each node of T to
an element of Σ.

Alternating automata on infinite trees are a generalization of nondeterministic
automata on infinite trees, introduced in [9]. They allow for an elegant reduction
of decision problems for temporal and program logics [3, 1]. Let B(I) be the set of
positive boolean formulae over I, built inductively by applying ∧ and ∨ starting from
true, false, and elements of I. For a set J ⊆ I and a formula ϕ ∈ B(I), we say that
J satisfies ϕ if and only if, assigning true to the elements in J and false to those in
I \ J , makes ϕ true. For a positive integer k, let [k] = {−1, 0, 1, . . . , k}. A two-way
alternating tree automaton (2ATA) running over infinite trees with branching degree
k, is a tuple A = 〈Σ, Q, δ, q0, F 〉, where Σ is the input alphabet, Q is a finite set of
states, δ : Q × Σ → B([k] × Q) is the transition function, q0 ∈ Q is the initial state,
and F specifies the acceptance condition.

The transition function maps a state q ∈ Q and an input letter σ ∈ Σ to a positive
boolean formula over [k]×Q. Intuitively, if δ(q, σ) = ϕ, then each pair (c, q′) appearing
in ϕ corresponds to a new copy of the automaton going to the direction suggested by
c and starting in state q′. For example, if k = 2 and δ(q1, σ) = (1, q2) ∧ (1, q3) ∨
(−1, q1) ∧ (0, q3), when the automaton is in the state q1 and is reading the node x

labeled by the letter σ, it proceeds either by sending off two copies, in the states q2

and q3 respectively, to the first successor of x (i.e., x·1), or by sending off one copy in
the state q1 to the predecessor of x (i.e., x·−1) and one copy in the state q3 to x itself
(i.e., x·0).

A run of a 2ATA A over a labeled tree (T, V ) is a labeled tree (Tr, r) in which every
node is labeled by an element of T ×Q. A node in Tr labeled by (x, q) describes a copy
of A that is in the state q and reads the node x of T . The labels of adjacent nodes
have to satisfy the transition function of A. Formally, a run (Tr, r) is a T ×Q-labeled
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tree satisfying:

1. ε ∈ Tr and r(ε) = (ε, q0).

2. Let y ∈ Tr, with r(y) = (x, q) and δ(q, V (x)) = ϕ. Then there is a (possibly
empty) set S = {(c1, q1), . . . , (cn, qn)} ⊆ [k] × Q such that:

• S satisfies ϕ and

• for all 1 ≤ i ≤ n, we have that y·i ∈ Tr, x·ci is defined, and r(y·i) =
(x·ci, qi).

A run (Tr, r) is accepting if all its infinite paths satisfy the acceptance condition1.
Given an infinite path P ⊆ Tr, let inf (P ) ⊆ Q be the set of states that appear
infinitely often in P (as second components of node labels). We consider here Büchi
acceptance conditions. A Büchi condition over a state set Q is a subset F of Q, and
an infinite path P satisfies F if inf (P ) ∩ F 6= ∅.

The nonemptiness problem for 2ATAs consists in determining, for a given 2ATA,
whether the set of trees it accepts is nonempty. The results in [14] provide the following
complexity characterization of nonemptiness of 2ATAs.

Theorem 2.1 Given a 2ATA A with n states and an input alphabet with m elements,
deciding nonemptiness of A can be done in time exponential in n and polynomial in
m.

3 Reasoning in ALCFIreg

We consider the DL ALCFIreg , defined by the following syntax:

C, C ′ −→ A | ¬C | C ⊓ C ′ | C ⊔ C ′ | ∀R.C | ∃R.C | (≤ 1 Q)

Q −→ P | P−

R, R′ −→ Q | R ∪ R′ | R ◦ R′ | R∗ | id(C)

where A and P denote respectively atomic concepts and atomic roles, and C and
R denote respectively arbitrary concepts and roles. We use Q to denote basic roles,
which for ALCFIreg are either atomic or inverses of atomic roles. The semantics is
the standard one. We concentrate on concept satisfiability, i.e., determining whether
there exists an interpretation in which the concept has a nonempty extension. By
virtue of internalization [11], the results below hold also for reasoning services over
knowledge bases (in particular for logical implication).

We show how to decide satisfiability of ALCFIreg concepts by reducing it to
nonemptiness of 2ATAs. To this end we first define the (syntactic) closure for
ALCFIreg , which extends the standard Fischer-Ladner for converse-pdl [4], by treat-
ing functional restrictions as atomic concepts. For technical reasons we include in the
closure also additional elements representing basic roles and their negations. In par-
ticular, the closure CLF (C0) of an ALCFIreg concept C0 is defined as the smallest set

1No condition is imposed on the finite paths of the run.
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of concepts such that C0 ∈ CLF (C0) and such that (assuming ⊔ and ∀ to be expressed
by means of ⊓ and ∃, and using Q− to denote P when Q = P−)2:

if C ∈ CLF (C0) then ¬C ∈ CLF (C0) (if C is not of the form ¬C ′)
if ¬C ∈ CLF (C0) then C ∈ CLF (C0)
if C ⊓ C ′ ∈ CLF (C0) then C, C ′ ∈ CLF (C0)
if ∃R.C ∈ CLF (C0) then C ∈ CLF (C0)
if ∃(R ∪ R′).C ∈ CLF (C0) then ∃R.C, ∃R′.C ∈ CLF (C0)
if ∃(R ◦ R′).C ∈ CLF (C0) then ∃R.∃R′.C ∈ CLF (C0)
if ∃R∗.C ∈ CLF (C0) then ∃R.∃R∗.C ∈ CLF (C0)
if ∃id(C).C ′ ∈ CLF (C0) then C ∈ CLF (C0)

if ∃Q.C ∈ CLF (C0) then Q, Q−, ¬Q, ¬Q− ∈ CLF (C0)

The cardinality of CLF (C0) is linear in the length of C0.
It can be shown, following the lines of the proof in [15] for converse deterministic

PDL, that ALCFIreg enjoys the tree-model property, i.e., every satisfiable concept
has a model that has the structure of a (possibly infinite) tree with branching degree
linearly bounded by the size of the concept. More precisely, we have the following
result.

Theorem 3.1 Every satisfiable ALCFIreg concept C0 has a tree model with branching
degree kC0

equal to twice the number of elements of CLF (C0).

This property allows us to check satisfiability of an ALCFIreg concept C0 by
building a 2ATA that accepts the (labeled) trees that correspond to tree models of
C0. Let A be the set of atomic concepts appearing in C0, and B the set of atomic roles
appearing in C0 and their inverses. We construct from the ALCFIreg concept C0 a
2ATA AF

C0
that checks that C0 is satisfied at the root of the input tree. We represent

in each node of the tree the information about which atomic concepts are true in the
node, and about the basic role that connects the predecessor of the node to the node
itself (except for the root). More precisely, we label each node x with a set σ of atomic
concepts and basic roles. The atomic concepts in σ are those that are true in x, and
(for ALCFIreg) σ contains, except for the root, a single basic role, which is the one
through which x is reached from its predecessor. That is, if Q stands for an atomic
role P , then x is reached from its predecessor through P , and if Q stands for P−, then
the predecessor is reached from x through P . In the root, σ contains no basic role.

Given an ALCFIreg concept C0, we construct an automaton AF
C0

that accepts
trees that correspond to tree models of C0. For technical reasons, it is convenient to
consider concepts in negation normal form (i.e., negations are pushed inside as much
as possible). It is easy to check that the transformation of a concept into an equivalent
one in negation normal form can be performed in linear time in the size of the concept.
Below, we denote by nnf (C) the negation normal form of C, and with CLnnf

F (C0) the
set {nnf (C) | C ∈ CLF (C0)}. The automaton AF

C0
= (Σ, S, δ, sini , F ) is defined as

follows.

2We remind that C and C
′ stand for arbitrary concepts, and R and R

′ stand for arbitrary roles.
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• The alphabet is Σ =
⋃

Q∈B 2A∪{Q}, i.e., all sets consisting of atomic concepts
and at most one basic role. This corresponds to labeling each node of the tree
with a truth assignment to the atomic concepts, and with the role used to reach
the node from its predecessor.

• The set of states is S = {sini} ∪ CLnnf
F (C0), where sini is the initial state3.

Intuitively, when the automaton is in a state σ ∈ CLnnf
F (C0) and visits a node

x of the tree, this means that the automaton has to check that σ holds in x.
When σ is an atomic concept A (resp. a basic role Q), this amounts to check
that the node label contains A (resp. Q).

• The set F of final states is the set of concepts in CLnnf
F (C0) of the form ∀R∗.C.

Observe that concepts of the form ∃R∗.C are not final states, and this is suffi-
cient to guarantee that such concepts are satisfied in all accepting runs of the
automaton.

• The transition function δ is defined below.

1. For each σ ∈ 2A, i.e., containing no basic role, there is a transition from the
initial state

δ(sini , σ) = (0,nnf (C0))

Such a transition checks that the root of the tree is not labeled with any basic
role, and moves to the state that verifies C0 in the root itself.

2. For each σ ∈ Σ, and each atomic concept or basic role s ∈ A ∪ B there are
transitions

δ(s, σ) =

{

true if s ∈ σ

false if s 6∈ σ

δ(¬s, σ) =
{

true if s 6∈ σ

false if s ∈ σ

For s ∈ A, such transitions check the truth value of atomic concepts and their
negations in the current node of the tree. For s ∈ B, such transitions check
through which role the current node is reached.

3Recall that CL
nnf
F

(C0) contains also the atomic roles appearing in C0 and their inverses.
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3. For the concepts in CLnnf
F (C0) and each σ ∈ Σ there are transitions

δ(C ⊓ C ′, σ) = (0, C) ∧ (0, C ′)
δ(C ⊔ C ′, σ) = (0, C) ∨ (0, C ′)
δ(∀Q.C, σ) = ((0,¬Q−) ∨ (−1, C)) ∧

∧

1≤i≤kC0

((i,¬Q) ∨ (i, C))

δ(∀(R ∪ R′).C, σ) = (0,∀R.C) ∧ (0,∀R′.C)
δ(∀(R ◦ R′).C, σ) = (0,∀R.∀R′.C)

δ(∀R∗.C, σ) = (0, C) ∧ (0,∀R.∀R∗.C)
δ(∀id(C).C ′, σ) = (0,nnf (¬C)) ∨ (0, C ′)

δ(∃Q.C, σ) = ((0, Q−) ∧ (−1, C)) ∨
∨

1≤i≤kC0

((i, Q) ∧ (i, C))

δ(∃(R ∪ R′).C, σ) = (0,∃R.C) ∨ (0,∃R′.C)
δ(∃(R ◦ R′).C, σ) = (0,∃R.∃R′.C)

δ(∃R∗.C, σ) = (0, C) ∨ (0,∃R.∃R∗.C)
δ(∃id(C).C ′, σ) = (0, C) ∧ (0, C ′)

All such transitions, except for those involving ∀R∗.C and ∃R∗.C, inductively
decompose concepts and roles, and move to appropriate states of the automaton
and nodes of the tree. The transitions involving ∀R∗.C treat ∀R∗.C as the
equivalent concept C ⊓ ∀R.∀R∗.C, and the transitions involving ∃R∗.C treat
∃R∗.C as the equivalent concept C ⊔ ∃R.∃R∗.C.

4. For each concept of the form (≤ 1 Q) in CLnnf
F (C) and each σ ∈ Σ there is a

transition

δ((≤ 1 Q), σ) = ((0, Q−) ∧
∧

1≤i≤kC0

(i,¬Q)) ∨

((0,¬Q−) ∧
∧

1≤i<j≤kC0

((i,¬Q) ∨ (j,¬Q)))

Such transitions check that, for a node x labeled with (≤ 1 Q), there exists at
most one node (among the predecessor and the successors of x) reachable from
x through Q.

5. For each concept of the form ¬(≤ 1 Q) in CLnnf
F (C) and each σ ∈ Σ there is a

transition

δ(¬(≤ 1 Q), σ) = ((0, Q−) ∧
∨

1≤i≤kC0

(i, Q)) ∨
∨

1≤i<j≤kC0

((i, Q) ∧ (j, Q))

Such transitions check that, for a node x labeled with ¬(≤ 1 Q), there exist at
least two nodes (among the predecessor and the successors of x) reachable from
x through Q.

A run of the automaton AF
C0

on an infinite tree starts in the root checking that
C0 holds there (item 1 above). It does so by inductively decomposing nnf (C0) while
appropriately navigating the tree (item 3) until it arrives to atomic concepts, func-
tional restrictions, and their negations. These are checked locally (items 2, 4 and 5).
Concepts of the form ∀R∗.C and ∃R∗.C are propagated using the equivalent concepts
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C ⊓ ∀R.∀R∗.C and C ⊔ ∃R.∃R∗.C, respectively. It is only the propagation of such
concepts that may generate infinite branches in a run. Now, a run of the automaton
may contain an infinite branch in which ∃R∗.C is always resolved by choosing the
disjunct ∃R.∃R∗.C, without ever choosing the disjunct C. This infinite branch in the
run corresponds to an infinite path in the tree where R is iterated forever and in which
C is never fulfilled. However, the semantics of ∃R∗.C requires that C is fulfilled after a
finite number of iterations of R. Hence such an infinite path cannot be used to satisfy
∃R∗.C. The acceptance condition of the automaton, which requires that each infinite
branch in a run contains a state of the form ∀R∗.C, rules out such infinite branches
in accepting runs. Indeed, a run always deferring the fulfillment of C will contain an
infinite branch where all states have the form ∃R1. · · · ∃Rn.∃R∗.C, with n ≥ 0 and
R1 ◦ · · · ◦ Rn a postfix of R. Observe that the only remaining infinite branches in a
run are those that arise by propagating concepts of the form ∀R∗.C indefinitely often.
The acceptance condition allows for such branches.

Given a labeled tree T = (T, V ) accepted by AF
C0

, we define an interpretation

IT = (∆I , ·I) as follows. First, we define for each atomic role P , a relation RP as
follows: RP = {(x, xi) | P ∈ V (xi)} ∪ {(xi, x) | P− ∈ V (xi)}. Then, using such
relations, we define:

∆I = { x | (ε, x) ∈ (
⋃

P (RP ∪R−
P ))∗ }

AI = ∆I ∩ { x | A ∈ V (x) }, for each atomic concept A

P I = (∆I × ∆I) ∩RP , for each atomic role P

Lemma 3.2 If a labeled tree T is accepted by AF
C0

, then IT is a model of C0.

Conversely, given a tree model I of C0 with branching degree kC0
, we can obtain

a labeled tree TI = (T, V ) (with branching degree kC0
) as follows:

T = ∆I

V (ε) = {A | ε ∈ AI}
V (xi) = {A | xi ∈ AI} ∪ {Q | (x, xi) ∈ QI}, for each node xi

Lemma 3.3 If I is a tree model of C0 with branching degree kC0
, then TI is a labeled

tree accepted by AF
C0

.

From the lemmas above and the tree model property of ALCFIreg (Theorem 3.1),
we get the following result.

Theorem 3.4 An ALCFIreg concept C0 is satisfiable if and only if the set of trees
accepted by AF

C0
is not empty.

From this theorem, it follows that we can use algorithms for nonemptiness of
2ATAs to check satisfiability in ALCFIreg . It turns out that such a decision procedure
is indeed optimal w.r.t. the computational complexity. The 2ATA AF

C0
has a number

of states that is linear in the size of C0, while the alphabet is exponential in the
number of atomic concepts occurring in C0. By Theorem 2.1 we get an upper bound
for reasoning in ALCFIreg that matches the ExpTime lower bound.

Theorem 3.5 Concept satisfiability (and hence logical implication) in ALCFIreg is
ExpTime-complete.
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4 Boolean combinations of roles

The technique for reasoning in ALCFIreg based on 2ATAs can be extended in a
straightforward way to deal also with boolean combinations of atomic roles and
their inverses [13]. More precisely, we consider the logic ALCFIbreg , which extends
ALCFIreg by allowing as basic roles boolean combinations (with negation restricted
to be difference) of atomic roles and their inverses. Hence, to obtain ALCFIbreg , we
can replace the syntax rule for basic roles of ALCFIreg with the following:

Q, Q′ −→ P | P− | Q ∩ Q′ | Q ∪ Q′ | Q \ Q′

W.l.o.g., we assume that difference is applied only to atomic and/or inverse atomic
roles.

We first extend the definition of closure to take into account the additional con-
structs. The closure CLb(C0) of an ALCFIbreg concept C0 is defined as for CLF , by
replacing the last rule dealing with basic roles with the following ones:

if ∃Q.C ∈ CLb(C0) then Q ∈ CLb(C0)
if P ∈ CLb(C0) then ¬P, P−, ¬P− ∈ CLb(C0)
if P− ∈ CLb(C0) then ¬P, P−, ¬P− ∈ CLb(C0)
if P \ P ′ ∈ CLb(C0) then P, P ′ ∈ CLb(C0)
if Q ∩ Q′ ∈ CLb(C0) then Q, Q′ ∈ CLb(C0)
if Q ∪ Q′ ∈ CLb(C0) then Q, Q′ ∈ CLb(C0)

CLnnf
b is defined similarly to CLnnf

F .
Following [13], one can show that ALCFIbreg enjoys the tree model property. More

precisely, every satisfiable ALCFIbreg concept C0 has a tree model with branching
degree kC0

equal to twice the number of elements of CLb(C0) (notice that CLb(C0)
takes into account boolean combinations of roles).

Then, the 2ATA Ab
C0

= (Σ, S, δ, sini , F ) used to check satisfiability of an
ALCFIbreg concept C0 is defined, similarly as for ALCFIreg , as follows:

• The alphabet is Σ = 2A∪B.

• The set of states is S = {sini} ∪ CLnnf
b (C0).

• The set F of final states is the set of concepts in CLnnf
b (C0) of the form ∀R∗.C.

• The transition function δ is defined as for the automaton for ALCFIreg , with the
following additional transitions used to handle boolean combinations of atomic
and inverse atomic roles. For each σ ∈ Σ:

δ(Q ∩ Q′, σ) = (0, Q) ∧ (0, Q′)

δ(Q ∪ Q′, σ) = (0, Q) ∨ (0, Q′)

δ(Q \ Q′, σ) = (0, Q) ∧ (0,¬Q′)

(Remember that in Q \ Q′, the roles Q and Q′ are either atomic or inverse of
atomic, and hence ¬Q′ is indeed a state of the automaton.)

8



One can show the following result.

Theorem 4.1 An ALCFIbreg concept C0 is satisfiable if and only if the set of trees
accepted by Ab

C0
is not empty.

Since the number of states of Ab
C0

is linear in the size of C0, by Theorem 2.1 we
get the following result.

Theorem 4.2 Concept satisfiability (and hence logical implication) in ALCFIbreg is
ExpTime-complete.

5 Qualified number restrictions

Next we extend our investigation to qualified number restrictions. More precisely, we
consider the logic ALCQIbreg , which extends ALCFIbreg by allowing as concepts also
qualified number restrictions of the form:

> n Q.C 6 n Q.C

where n is a non-negative integer, Q is a boolean combination (with negation restricted
to be difference) of atomic roles and their inverses, and C is an arbitrary ALCQIbreg
concept.

We first extend the definition of closure to take into account qualified number
restriction. The closure CLQ(C0) of an ALCQIbreg concept C0 is defined by adding
to the rules for CLb the following ones:

if > n Q.C ∈ CLb(C0) then Q, C ∈ CLb(C0)
if 6 n Q.C ∈ CLb(C0) then Q, C ∈ CLb(C0)

CLnnf
Q is defined as for the other logics.
One can show that ALCQIbreg enjoys again the tree-model property. More pre-

cisely, every satisfiable ALCQIbreg concept C0 has a tree model with branching degree
kC0

equal to (nmax + 1) · |CLQ(C0)|, where nmax is the maximal number appearing
inside a qualified number restriction, and |CLQ(C0)| is the number of elements of
CLQ(C0).

Then, the 2ATA AQ
C0

= (Σ, S, δ, sini , F ) used to check satisfiability of an
ALCQIbreg concept C0 is defined, similarly as for ALCFIbreg , as follows:

• The alphabet is Σ = 2A∪B.

• The set of states is S = {sini} ∪ CLnnf
Q (C0) ∪ SQ, where

SQ = {〈> n Q.C, i, j〉 | > n Q.C ∈ CLnnf
Q (C0), 0 ≤ i ≤ kC0

+1, 0 ≤ j ≤ n} ∪

{〈6 n Q.C, i, j〉 | 6 n Q.C ∈ CLnnf
Q (C0), 0 ≤ i ≤ kC0

+1, 0 ≤ j ≤ n+1}

Intuitively, the states 〈> n Q.C, i, j〉 are used to check whether a qualified num-
ber restriction > n Q.C is satisfied in a node x by counting the number of nodes
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(among the predecessor and the successors of x) reached from x through Q in
which C holds. More precisely, the automaton will be in a state 〈> n Q.C, i, j〉
if among the first i − 1 successors of x (the 0-th successor is the predecessor)
there are j nodes reached from x through Q in which C holds.

• The set F of final states is the set of concepts in CLnnf
Q (C0) of the form ∀R∗.C.

• The transition function δ is defined as for the automaton for ALCFIbreg , with
the following additional transitions used to handle qualified number restrictions
(we use ≷ to denote either > or 6). For each σ ∈ Σ:

δ(≷ n Q.C, σ) = (0, 〈≷ n Q.C, 0, 0〉)

δ(〈≷ n Q.C, 0, 0〉, σ) = (((0,¬Q−) ∨ (−1,nnf (¬C))) ∧ (0, 〈≷ n Q.C, 1, 0〉)) ∨
((0, Q−) ∧ (−1, C) ∧ (0, 〈≷ n Q.C, 1, 1〉))

δ(〈> n Q.C, i, j〉, σ) = (((i,¬Q) ∨ (i,nnf (¬C))) ∧ (0, 〈> n Q.C, i+1, j〉)) ∨
((i, Q) ∧ (i, C) ∧ (0, 〈> n Q.C, i+1, j+1〉)),

for 1 ≤ i ≤ kC0
, 0 ≤ j ≤ n−1

δ(〈> n Q.C, i, n〉, σ) = true, for 0 ≤ i ≤ kC0
+1

δ(〈> n Q.C, kC0
+1, j〉, σ) = false, for 0 ≤ j ≤ n−1

δ(〈6 n Q.C, i, j〉, σ) = (((i,¬Q) ∨ (i,nnf (¬C))) ∧ (0, 〈6 n Q.C, i+1, j〉)) ∨
((i, Q) ∧ (i, C) ∧ (0, 〈6 n Q.C, i+1, j+1〉)),

for 1 ≤ i ≤ kC0
, 0 ≤ j ≤ n

δ(〈6 n Q.C, i, n+1〉, σ) = false, for 0 ≤ i ≤ kC0
+1

δ(〈6 n Q.C, kC0
+1, j〉, σ) = true, for 0 ≤ j ≤ n

One can show the following result.

Theorem 5.1 An ALCQIbreg concept C0 is satisfiable if and only if the set of trees
accepted by AQ

C0
is not empty.

If the numbers inside qualified number restrictions are coded in unary, then AQ
C0

has a number of states that is polynomial (actually cubic) in the size of C0. Applying
again Theorem 2.1, we get the following result.

Theorem 5.2 Concept satisfiability (and hence logical implication) in ALCQIbreg is
ExpTime-complete, assuming that numbers inside qualified number restrictions are
coded in unary.

Obviously, if one assumes numbers to be coded in binary, Theorem 5.1 does not
provide us with an ExpTime upper bound for concept satisfiability. However, one
can also deal with numbers coded in binary by adopting a more complex reduction
from concept satisfiability in ALCQIbreg to nonemptiness of 2ATAs. Observe that,
with binary coding, the exponential blowup in the size of AQ

C0
has two reasons:

1. the necessity to explicitly have transitions to the kC0
successors of a node (with

binary coding kC0
is exponential in the size of C0);

10



2. the necessity to count up to the maximum number nmax appearing inside qual-
ified number restrictions (which again is exponential).

To cope with point (1), one can construct a 2ATA that, instead of accepting trees
of branching degree kC0

, accepts binary trees that represent them (using the standard
encoding of k-ary trees in binary trees, where the first child of a node becomes its
left successor, and the next sibling of a node becomes its right successor). Observe
that, a node y connected to a node x via a basic role Q in a kC0

-ary tree, may be far
away from x in the corresponding binary tree. It is possible to take this into account
by introducing a linear number of additional states and suitable transitions in the
automaton that works on the binary tree.

To cope with point (2), one can make use of transitions that simulate in the
automaton a “binary counter”, instead of a unary counter as done for AQ

C0
, thus using

a number of states that is polynomial in nmax , even when it is coded in binary.
Hence, it is possible to show that, using techniques based on 2ATAs, concept sat-

isfiability (and hence logical implication) in ALCQIbreg can be decided in ExpTime,
even when numbers inside qualified number restrictions are coded in binary.

6 Conclusions

We have shown that using 2ATAs one can provide an intuitive, short, modular,
and computationally adequate encoding of reasoning services in expressive DLs into
nonemptiness of automata on infinite trees.

There are two main research directions that can be pursued to exploit 2ATAs for
reasoning in DLs. First, 2ATAs can be used for characterizing reasoning for new com-
binations of constructs and/or for new reasoning services. With respect to this, many
new results in DLs exploit the power of tree automata [7, 8], and can be rephrased
using 2ATAs to abstract away the “combinatorial noise” and put forward the main ar-
gument. Second, it is of great interest to study practical methods for testing nonempti-
ness of 2ATAs (which is ExpTime-complete) in light of the optimization techniques
developed for the current state-of-the-art tableau-based DLs systems.
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