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Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{calvanese,degiacomo,lenzerini}@dis.uniroma1.it

Abstract

DLR is an expressive Description Logic (DL) with n-ary relations,
particularly suited for modeling database schemas and queries. Although
DLR has constituted one of the crucial steps for applying DL technology
to data management, there is one important aspect of database schemas
that DLs, including DLR, do not capture yet, namely the notion of key.
In this paper we show that keys are for free in DLR. In particular, we
address the following question: can we add keys to DLR and still have
EXPTIME associated reasoning techniques? Somewhat surprisingly we
answer positively, by showing how to adapt the DLR reasoning algorithm
in such a way that reasoning on a DLR schema with keys can be done with
the same worst-case computational complexity as for the case without
keys.

1 Introduction

In the last years, Description Logics (DLs) have been successfully applied to data
management [10, 2, 13, 8]. One of the basic ideas behind applying DLs to data
management is that database schemas can be expressed as DL knowledge bases,
so that DL reasoning techniques can be used in several ways to reason about
the schema. In [5, 6], we introduced a very expressive DL with n-ary relations,
called DLR, and showed how database schemas can be captured by this logic
(see also [7]). Also, we defined suitable mechanisms for expressing queries over
DLR schemas, and designed techniques for reasoning over queries [5]. Notably,
the investigation on DLR has led to the design of new DL systems effectively
implementing powerful reasoning techniques [11].

Although the above mentioned work has been the crucial step for applying
DL technology to data management, there is one important aspect of database

1



schemas that DLs, including DLR, do not capture yet, namely the notion of
key. Keys are used to state that a certain set of properties uniquely identifies
the instances of either a concept or a relation, and are commonly used in both
database design, and data management.

The question addressed in this paper is as follows: can we add keys to DLR
and still have EXPTIME associated reasoning techniques? Somewhat surpris-
ingly, we answer positively to the question, by illustrating an approach that
allows us to incorporate keys in DLR (almost) for free. In particular, we adapt
the DLR reasoning algorithm in such a way that reasoning on a DLR schema
with keys can be done with the same worst-case computational complexity as for
the case without keys. Also, the proposed technique can be directly incorporated
into present DL systems, such as the one described in [12].

In the last years, there have been some attempts to add keys to DLs. In [4],
keys are modeled by means of special primitive concepts in an expressive DL,
and it is shown that this mechanism allows some inference on keys to be carried
on. However, the drawback of this approach is that several interesting semantic
properties of keys are not represented in the knowledge base. In [3], a more ex-
pressive mechanism is proposed for modeling keys and functional dependencies,
and a sound and complete inference system for reasoning on such constraints
is presented. However, the DL considered in [3] is limited in expressiveness.
In particular, neither number restrictions, nor general inclusion axioms, nor in-
verse roles are taken into account, and therefore useful properties of database
schemas cannot be represented. The proposal presented in this paper fully cap-
tures the semantics of keys in an expressive DL, and, therefore, it overcomes all
the limitations of the previous approaches.

The paper is organized as follows. In Section 2, we recall the DL DLR. In
Section 3, we illustrate the mechanism for specifying key constraints in DLR
knowledge bases. In Section 4, we describe how we can extend the DLR reason-
ing technique in order to take key constraints into account. Finally, Section 5
concludes the paper by pointing out future work aiming at extending the results
presented here.

2 Description Logic DLR

We focus on the Description Logic DLR introduced in [6]. Such a DL is able to
capture a great variety of data models with many forms of constraints [9, 6]. The
basic elements of DLR are concepts (unary relations), and n-ary relations. We
assume to deal with a finite set of atomic relations and atomic concepts, denoted
by P and A, respectively. We use R to denote arbitrary relations (of given arity
between 2 and nmax), and C to denote arbitrary concepts, respectively built
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Figure 1: Semantic rules for DLR (P , R, R1, and R2 have arity n)

according to the following syntax:

R ::= ⊤n | P | $i/n : C | ¬R | R1 ⊓ R2

C ::= ⊤1 | A | ¬C | C1 ⊓ C2 | ∃[$i]R | (≤ k [$i]R)

where i denotes a component of a relation, i.e., an integer between 1 and nmax,
n denotes the arity of a relation, i.e., an integer between 2 and nmax, and k
denotes a nonnegative integer.

We consider only concepts and relations that are well-typed, which means
that (i) only relations of the same arity n are combined to form expressions of
type R1 ⊓ R2 (which inherit the arity n), and (ii) i ≤ n whenever i denotes a
component of a relation of arity n.

A DLR TBox (or schema) is constituted by a finite set of inclusion asser-
tions, where each assertion has one of the forms:

R1 ⊑ R2 C1 ⊑ C2

with R1 and R2 of the same arity.
The semantics of DLR is specified as follows. An interpretation I is consti-

tuted by an interpretation domain ∆I , and an interpretation function ·I that
assigns to each concept C a subset CI of ∆I and to each relation R of arity
n a subset RI of (∆I)n such that the conditions in Figure 1 are satisfied. In
the figure, t[i] denotes the i-th component of tuple t. Observe that, the “¬”
constructor on relations is used to express difference of relations, and not the
complement [6].

An interpretation I satisfies an assertion R1 ⊑ R2 (resp., C1 ⊑ C2) if RI

1
⊆

RI

2
(resp., CI

1
⊆ CI

2
). An interpretation that satisfies all assertions in a TBox

T is called a model of T . A TBox is satisfiable if it has a model. A relation
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R (resp., concept C) is satisfiable in a TBox T if T admits a model I such
that RI (resp., CI) is nonempty. An assertion α is logically implied by a TBox
T if all models of T satisfy α. Satisfiability and logical implication in DLR
are EXPTIME-complete [6]. In fact, relation (resp., concept) satisfiability and
logical implication are polynomially reducible to each other.

DLR TBoxes can capture database schemas expressed in several data mod-
els [9, 7]. For example, Entity-Relationship schemas can be represented in DLR
by modeling each entity as a concept, and each relationship as a relation. At-
tributes of entities are binary relations, and single-valued attributes are mod-
eled through the use of number restrictions. Also, single keys can be modeled
through number restrictions, while multiple keys (keys constituted by more than
one attribute) cannot be represented in DLR. Attributes of relationships can
be modeled in several ways, for instance through special (n + 1)-ary relations,
where n is the arity of the relationship. Finally, integrity constraints such as is-a,
cardinality, existence, and typing constraints are modeled by means of inclusion
assertions.

3 Key Assertions

In this section we extend DLR with key constraints. The resulting DL, called
DLRkey , allows one to express key constraints through a new kind of assertions
in the TBox.

A key assertion on a concept has the form:

(key C [$i1]R1, . . . , [$ih]Rh)

where C is a concept, each Rj is a relation, and each $ij denotes one component
of Rj. Intuitively, such an assertion states that no two different instances of C
agree on the participation to R1, . . . , Rh. In other words, if a is an instance of
C that is the ij-th component of a tuple tj of Rj, for j ∈ {1, . . . , h}, and b is an
instance of C that is the ij-th component of a tuple sj of Rj, for j ∈ {1, . . . , h},
and for each j, tj agrees with sj in all components different from ij, then a and
b coincide.

A key assertion on a relation has the form:

(key R $i1, . . . , $ih)

where R is a relation and $i1, . . . , $ih denote the components of R that identify
the whole tuple. In other words, there cannot be two different tuples in R that
agree on the components $i1, . . . , $ih.

We assign semantics to these assertions by defining when an interpretation
satisfies them. In particular:
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• An interpretation I satisfies the assertion (key C [$i1]R1, . . . , [$ih]Rh) if
and only if for all a, b ∈ CI and for all t1, s1 ∈ RI

1
, . . . , th, sh ∈ RI

h we have
that:

a = t1[i1] = · · · = th[ih],
b = s1[i1] = · · · = sh[ih],
tj[ik] = sj[ik], for each j ∈ {1, . . . , h}, and for each k 6= ij











implies a = b

• An interpretation I satisfies the assertion (key R $i1, . . . , $ih) if and only
if for all t, s ∈ RI , we have that:

t[i1] = s[i1], . . . , t[ih] = s[ih] implies t = s

Generally, in conceptual data models, if an attribute (or a relationship) A
is part of a key for an entity E, then in the database schema it must be the
case that E has a single-mandatory participation in A, i.e., each instance of E
has exactly one associated value for A (see [1]). This limitation is not present
in DLRkey . Indeed, one can define an attribute (or a set of attributes) as a
key of an entity even if the attribute is multi-valued, or optional. Obviously,
single-valued or mandatory attributes can be modeled in DLRkey by means of
number restrictions.

Example 1 Suppose that Student and University are concepts, EnrolledIn is a
binary relation between Student and University, and Code is an attribute of Stu-

dent (a binary relation) associating to each student a unique code. Suppose that
each student has a unique code within the university in which she is enrolled.
Such a situation can be represented by the following DLRkey TBox:

EnrolledIn ⊑ ($1 : Student) ⊓ ($2 : University)
Code ⊑ ($1 : Student) ⊓ ($2 : String)
Student ⊑ (≤ 1 [$1]Code)
(key Student [$1]Code, [$1]EnrolledIn)

Note that, in the conceptual modeling terminology, Student is a weak entity, i.e.,
part of its identifier is external through the relationship EnrolledIn.

4 Reasoning on DLR with Key Assertions

We deal now with the problem of verifying logical implication in DLRkey . To
this end we first observe that a key assertion on a relation of the form

(key R $i)
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is equivalent to the DLR assertion

⊤ ⊑ (≤ 1 [$i]R)

Similarly, the key assertion on a concept

(key C [$i]R)

where R is a binary relation, is equivalent to the DLR assertion

⊤ ⊑ (≤ 1 [$j](R ⊓ $i : C))

where j = 2 if i = 1, and j = 1 if i = 2. Hence, in the following, without loss of
generality, we will not consider key assertions of the above form.

We first focus on verifying whether an inclusion assertion (which does not
involve keys) is logically implied by a DLRkey TBox. Let T = L ∪ K be a
DLRkey TBox, where L is the set of inclusion assertions in T and K is the set
of key assertions in T .

Theorem 2 A DLRkey TBox T = L∪K logically implies an inclusion assertion
L1 ⊑ L2 if and only if L logically implies L1 ⊑ L2.

Proof (sketch). We show that the concept (resp., relation) L1 ⊓ ¬L2 is
satisfiable in L iff it is satisfiable in L ∪ K.

“⇐” Trivial.
“⇒” It is possible to show that DLR has the tree-model property [6], i.e.,

if a TBox admits a model satisfying a concept, it also admits a model satisfying
the concept which has the structure of a tree, considering reified tuples as nodes.
On such models a key assertion is always satisfied. Observe that key assertions
that are equivalent to number restrictions are dealt with directly in DLR.

Theorem 2 shows that key assertions do not interact with inclusion asser-
tions. We consider now logical implication of key assertions. To this end we
introduce a generalized form of DLR ABox. We make use of Skolem constants
(sk-constants). Intuitively, a sk-constant denotes an individual in an interpreta-
tion, in such a way that different sk-constants may denote the same individual.

A (generalized) DLR ABox is constituted by a finite set of assertions of the
following types:

C(x), R(t), x 6= y, r 6= s

where x and y are sk-constants, t is a tuple of sk-constants of the same arity
as that of R, and r and s are two tuples of sk-constants of the same arity. The
notion of interpretation is extended so as to assign to each sk-constant x an
individual xI ∈ ∆I . An interpretation I

• satisfies C(x) if xI ∈ CI ,
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• it satisfies R(x1, . . . , xn) if (xI

1
, . . . , xI

n) ∈ RI ,

• it satisfies x 6= y if xI 6= yI , and

• it satisfies r 6= s if for at least one component i, (r[i])I 6= (s[i])I .

If T is a DLR TBox, and A is a DLR ABox of the above form, then 〈T ,A〉
is called a DLR knowledge base. An interpretation satisfies 〈T ,A〉 if it satisfies
every assertion in T ∪A. It follows from the results in [6], that checking a DLR
knowledge base for satisfiability is EXPTIME-complete.

Given a DLRkey TBox T = L ∪ K and a key assertion

κ = (key C [$i1]R1, . . . , [$ih]Rh)

we define A(K, κ) to be a DLR ABox that contains:

• C(x), C(y), x 6= y;

• Rj(tj), Rj(sj), with j ∈ {1, . . . , h}, where tj and sj are tuples whose arity
is that of Rj with tj[ij] = x, sj[ij] = y, and tj[i] = sj[i] for i 6= ij;

• for each key assertion in K of the form (key C ′ [$i′
1
]R′

1
, . . . , [$i′h]R

′

h′)

– either C ′(x) or ¬C ′(x),

– either C ′(y) or ¬C ′(y),

– either R′

j′(tj) or ¬R′

j′(tj), for each j ∈ {1, . . . , h} and each j′ ∈
{1, . . . , h′} such that the arity of R′

j′ equals that of tj,

– either R′

j′(sj) or ¬R′

j′(sj), for each j ∈ {1, . . . , h} and each j′ ∈
{1, . . . , h′} such that the arity of R′

j′ equals that of sj;

• for each key assertion in K of the form (key R $i′
1
, . . . , $i′h′)

– either R(tj) or ¬R(tj), for each j ∈ {1, . . . , h} such that the arity of
R equals that of tj,

– either R(sj) or ¬R(sj), for each j ∈ {1, . . . , h} such that the arity of
R equals that of sj.

Similarly, given T = L ∪ K and a key assertion

κ = (key R $i1, . . . , $ih)

we define A(K, κ) to be a DLR ABox that contains:

• R(t), R(s), t 6= s, where t and s are tuples whose arity is that of R and
such that t[ij] = s[ij], for j ∈ {1, . . . , h};
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• for each key assertion of the form (key R′ $i′
1
, . . . , $i′h′) where the arity of

R′ equals that of R

– either R′(t) or ¬R′(t), and

– either R′(s) or ¬R′(s).

Note that, given K and κ, there are many (actually, an exponential number)
different ABoxes A(K, κ), one for each possible choice in the items above. Intu-
itively, an ABox A(K, κ) has the following features:

• it violates the key assertion κ,

• it allows to immediately verify whether it violates a key assertion in K.
Indeed, for all objects and tuples appearing in A(K, κ), membership or
non-membership in the relevant relations and concepts appearing in key
assertions that could be violated is explicitly asserted. Hence, it suffices
to verify whether the semantic condition of the key assertion is violated,
considering relations and concepts appearing in the key assertion as prim-
itives.

The following theorem shows that keys are “for free” in DLR, in the sense
that reasoning in DLRkey can be reduced to reasoning in DLR knowledge bases.

Theorem 3 A DLRkey TBox T = L∪K does not logically imply a key assertion
κ if and only if there exists one A(K, κ) that satisfies all key assertions in K
and such that the DLR knowledge base 〈L, A(K, κ)〉 is satisfiable.

Proof (sketch). “⇐” Assume that there exists one A(K, κ) that satisfies all
key assertions in K and such that 〈L, A(K, κ)〉 is satisfiable. Then, by exploiting
the tree model property, one can easily construct a model of L ∪ K where κ is
violated.

“⇒” Assume that T = L ∪ K does not logically imply the key assertion κ.
Then there is a model of T where κ is violated. But then such a model would
be a model of 〈L, A(K, κ)〉 for some A(K, κ).

We can now state the theorem showing that reasoning on a DLR TBox with
key assertions can be done with the same worst-case computational complexity
as for the case without keys.

Theorem 4 Satisfiability and logical implication in DLRkey are EXPTIME-
complete.

Proof (sketch). By Theorem 2, satisfiability of a TBox, satisfiability of a
concept or relation in a TBox, and logical implication of inclusion assertions in
DLRkey reduce to the corresponding problems in DLR. By Theorem 3, logical
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implication of a key assertion κ from a DLRkey TBox T = L ∪ K reduces to
solving a (possibly exponential) number of tests, where each test involves one
A(K, κ) and consists in directly verifying all key assertions in K and checking
the satisfiability of the DLR knowledge base 〈L, A(K, κ)〉. Note that the size of
each 〈L, A(K, κ)〉 is polynomial in the size of T ∪ κ.

5 Conclusions

We have shown how to add keys to DLR, while still retaining the possibility of
reasoning over schemas in EXPTIME. We believe that the approach presented
in this paper can be extended in several ways. For example, our technique can
be directly applied to the case where the DLR knowledge base contains an
ABox, or to the case where DLRreg is used instead of DLR. Moreover, we are
working on the following extensions: (i) using chaining in specifying keys, in the
spirit of [3], (ii) functional dependencies on relations, (iii) query containment
and query answering using views in the presence of both key constraints, and
functional dependencies.
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