
Queries and Constraints on

Semi-Structured Data

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

lastname @dis.uniroma1.it,
http://www.dis.uniroma1.it/∼lastname

Abstract. We extend the model for semi-structured data proposed in [4],
where both databases and schemas are represented as graphs, with the
possibility of expressing different types of constraints on the nodes of
the graphs, and defining queries which are used to select graphs from
a database. We show that reasoning tasks at the basis of query opti-
mization, such as schema subsumption, query-schema comparison, query
containment, and query satisfiability, are decidable.

1 Introduction

The ability to represent data whose structure is less rigid and strict than in
conventional databases is considered a crucial aspect in modern approaches to
information systems, and is important in many application areas, such as bio-
logical databases, digital libraries, and data integration [13, 1, 4, 12, 8].

Recent proposals of models for semi-structured data represent data as graphs
with labeled edges, where information on both the values and the schema of data
are kept. In particular, we base our work on the bdfs data model [4], where
graphs are used to represent both portions of a database (called ground graphs)
and schemas. The former have edges labeled by data, and the latter have edges
labeled by formulae of a decidable and complete first-order theory T over a fixed,
finite universe U .

A ground graph is a rooted connected graph whose edges are labeled with
formulae of the form (self = a)1. A graph schema is a rooted connected graph
whose edges are labeled with unary formulae of T . Note that a ground graph is
a special case of graph schema. A semi-structured database (or simply database)
is a finite set of graphs (where each one is either a ground graph or a graph
schema).

The notion of a ground graph g conforming to a schema S is given in terms
of a special relation, called simulation, between the two graphs. Given a ground
graph g and a schema S, a simulation from g to S is a binary relation � from
the nodes of g to those of S such that u�u′ implies that for each edge u

a
→ v in

1 For each constant a of T , (self = a)(a′) is true if and only if a = a
′.

g, there exists an edge u′ p
→ v′ in S such that T |= p(a), and v � v′. A ground

graph g conforms to a schema S, in notation g � S, if there exists a simulation
from g to S such that root(g) � root(S). Observe that the notion of simulation
is less rigid than the usual notion of satisfaction, and suitably reflects the need
of dealing with less strict structures of data.

For several tasks related to data management, it is important to be able to
check subsumption between two schemas, i.e., to check whether every ground
graph conforming to one schema always conforms to another schema. Given two
schemas S and S′, S′ subsumes S, in notation S ⊑ S′, if for every ground graph
g, g � S implies g � S′. S′ and S are equivalent if both S ⊑ S′ and S′ ⊑ S.
In [4], an algorithm is presented for checking subsumption (and conformance,
being a ground graph a special case of schema). The algorithm essentially looks
for the greatest simulation between the nodes of the two schemas, and works in
polynomial time with respect to the size of the two schemas.

In [4] the issue of extending the model with different types of constraints
is raised. Indeed, in bdfs all the properties of the schema are expressed in
terms of the structure of the graph, and the possibility of specifying additional
constraints, such as existence of edges, is precluded. In this paper we extend the
framework of [4] presenting the following contributions:

– We extend bdfs schemas with constraints (Section 2). The basic idea is to
express constraints in terms of formulae associated to nodes of the schema.
A formula on a node u imposes a condition that, for every ground graph g
conforming to S, must be satisfied by every node of g simulating u. We con-
sider different types of constraints, and we discuss how the expressive power
of the constraint language influences the complexity of subsumption check-
ing. In particular, we show that by adding edge-existence and functionality
constraints the complexity of subsumption remains polynomial.

– We introduce a basic form of queries (Section 3), called graph selection
queries, which are used to select graphs from a database The query language
presented here represents a basic building block of a full-featured query lan-
guage and has been designed on one hand to express sophisticated fixpoint
properties of graphs, and on the other hand to keep several interesting rea-
soning tasks decidable. These reasoning tasks, such as comparing queries and
schemas or checking containment between queries, are at the basis of query
optimization techniques applicable to a more expressive query language.

2 Schemas with Constraints

We address the problem of extending the bdfs data model in order to express
constraints on a schema. We conceive a constraint for a schema S as a formula
associated to a node u of the schema. The formula is expressed in a certain
language L, and its role is to impose a condition that, for every ground graph g
conforming to S, must be satisfied by every node of g simulating u.

A schema with L-constraints, or simply L-schema, is a schema where each
node u is labeled by a formula C(u) of the constraint language L. Given a ground

graph g and an L-schema S, a simulation from g to S is a binary relation �

from the nodes of g to those of S such that u � u′ implies that (1) u satisfies

C(u′), and (2) for each edge u
a
→ v in g, there exists an edge u′ p

→ v′ in S such
that T |= p(a), and v � v′.

Apart from the new definition of simulation, the notions of conformance,
subsumption and equivalence remain unchanged. We assume that L contains the
formula ⊤, which is satisfied by every node of every ground graph. Therefore,
we can view a ground graph g as an L-schema where C(u) = ⊤ for every node u
of g. Thus, conformance is again a special case of subsumption.

Since constraints may contradict each other, or may even be incompatible
with the structure of the graph, the notion of consistency becomes relevant
(notice that a ground graph is always consistent). Given an L-schema S, a node
u ∈ Nodes(S) is consistent if there is at least one ground graph which conforms
to S′, where S′ is equal to S except that root(S′) = u. S is consistent, if root(S)
is consistent. Moreover, two L-schemas S1 and S2 are said to be disjoint, if there
is no ground graph that conforms to S1 and S2.

In general, adding constraints to a schema leads to intractability of reason-
ing [7]. Here we consider a language Ll that allows for expressing interesting
forms of constraints, and for which reasoning remains tractable. The main point
is that we allow for expressing only local constraints, i.e., constraints on the
edges directly emanating from a node. Formulae in Ll have the following syntax
(γ, γ1 and γ2 denote constraints, and p denotes a formula of T):

γ ::= ⊤ | ∃edge (p) | ¬∃edge (p) | ∃≤1edge (p) | γ1 ∧ γ2

Intuitively, a constraint of the form ∃edge (p) on a node u, called edge-existence

constraint, imposes that u has at least one outgoing edge u
a
→ v such that T |=

p(a), while a constraint of the form ∃≤1edge (p), called functionality-constraint,
imposes that u has at most one such outgoing edge.

Our main result is that reasoning with schemas with local constraints can be
done in polynomial time. In particular:

1. We have devised an algorithm for checking whether an Ll-schema S is con-
sistent. The algorithm is based on a function that first removes the non-
existence constraints, and then removes all inconsistent nodes from S. The
function runs in time polynomial in the size of S.

2. We have extended the algorithm in [4] in order to deal with local constraints.
The basic idea of the algorithm is to look for a simulation between the two
schemas by constructing a relation R as the Cartesian product of the two
sets of nodes, and then removing from R all the pairs (u, u′) for which no
relation � satisfying condition (2) above may exist. The algorithm runs in
time polynomial in the size of the two Ll-schemas.

3. We have shown that our technique can also be used to perform in polynomial
time the tow following tasks: computing the Least Upper Bound (LUB) [4]
of two Ll-schemas, and checking whether two Ll-schemas are disjoint.

3 Graph Selection Queries

In general, query languages on semi-structured data are constituted by two com-
ponents: one for selecting graphs, and another one for restructuring the selected
graph to produce the actual answer [5, 3, 9, 2]. Here we introduce a basic form
of queries, which we call graph selection queries (gs-queries), which deal only
with the selection part. The language of gs-queries allows for expressing sophis-
ticated fixpoint properties of graphs. Furthermore it has been carefully designed
in order to keep several interesting reasoning tasks decidable, such as checking
query satisfiability, checking containment or disjointness between queries, and
comparing queries and schemas.

Observe that the unit retrieved by a gs-query is a graph, whereas there
is no means to further manipulate specific data from the retrieved graph (see
for example [10]). Therefore our language cannot be considered a full-featured
query language, such as UnQL [5], but should rather be regarded as providing
basic building blocks for querying semi-structured data, to be exploited in query
processing for improving evaluation performance.

In the rest of the paper, we deal only with Ll-schemas, which we simply call
schemas. The language for expressing graph selection queries has the following
syntax (p denotes a formula of T , n a positive integer, and X a node variable)

node formulae: N ::= X | ∃≥nedge (E) | ¬N | N1 ∧ N2 | µX.N

edge formulae: E ::= p | to(N) | ¬E | E1 ∧ E2

with the restriction that every free occurrence of X in µX.N is in the scope of
an even number of negations2.

Let g be a ground graph. A valuation ρ on g is a mapping from node variables
to subsets of Nodes(g). We denote by ρ[X/N] the valuation identical to ρ except
for ρ[X/N](X) = N . For each node u ∈ Nodes(g), we define when u satisfies a
node formula N under a valuation ρ, in notation ρ, u |= N , as follows:

ρ, u |= X iff u ∈ ρ(X)

ρ, u |= ∃≥nedge (E) iff #{u
a
→ v ∈ Edges(g) | ρ, u

a
→ v |= E} ≥ n

ρ, u |= ¬N iff ρ, u 6|= N
ρ, u |= N1 ∧ N2 iff (ρ, u |= N1) ∧ (ρ, u |= N2)
ρ, u |= µX.N iff ∀N ⊆ Nodes(g).

(∀v ∈ Nodes(g).ρ[X/N], v |= N ⊃ ρ[X/N], v |= X)
⊃ ρ[X/N], u |= X

where

ρ, u
a
→ v |= p iff T |= p(a)

ρ, u
a
→ v |= to(N) iff ρ, v |= N

ρ, u
a
→ v |= ¬E iff ρ, u

a
→ v 6|= E

ρ, u
a
→ v |= E1 ∧ E2 iff (ρ, u

a
→ v |= E1) ∧ (ρ, u

a
→ v |= E2)

2 This is the usual syntactic monotonicity constraint typical of fixpoint logics, that
guarantees the monotonicity of the fixpoint operator.

Given a graph G (either a ground graph or a schema) and a closed node
formula N , we say that G satisfies N , in notation G ⊑ N , if for every ground
graph g conforming to G, root(g) |= N . It is easy to see that if g is a ground
graph and N is a node formula, then g ⊑ N if and only if root(g) |= N .

A graph selection query (gs-query) Q is a closed node formula. The evaluation
of Q over a database DB returns the set Q(DB) of all consistent graphs G ∈ DB
such that G ⊑ Q. A gs-query Q is satisfiable if there exists a database DB such
that Q(DB) is non-empty. Given two gs-queries Q1 and Q2, Q1 is contained in
Q2 if for every database DB , Q1(DB) ⊆ Q2(DB), and Q1 is disjoint from Q2 if
for every database DB , Q1(DB) ∩ Q2(DB) = ∅.

On the basis of a polynomial reduction of satisfiability of a gs-query to satisfi-
ability in a variant of modal mu-calculus [11], we were able to prove the following:
Checking a gs-query for satisfiability and checking containment and disjointness
between two gs-queries are EXPTIME-complete problems [6].

References

[1] S. Abiteboul. Querying semi-structured data. In Proc. of ICDT-97, pages 1–18,
1997.

[2] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, and J. S. Guido Moerkotte.
Querying documents in object databases. Int. J. on Digital Libraries, 1(1):5–19,
1997.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel query
language for semistructured data. Int. J. on Digital Libraries, 1(1):68–88, 1997.

[4] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to
unstructured data. In Proc. of ICDT-97, pages 336–350, 1997.

[5] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and
optimization technique for unstructured data. In Proc. of ACM SIGMOD, pages
505–516, 1996.

[6] D. Calvanese, G. De Giacomo, and M. Lenzerini. Queries and constraints on
semi-structured data. Technical Report 13-98, Dip. di Inf. e Sist., Univ. di Roma
“La Sapienza”, 1998.

[7] D. Calvanese, G. De Giacomo, and M. Lenzerini. What can knowledge represen-
tation do for semi-structured data? In Proc. of AAAI-98, pages 205–210, 1998.

[8] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu. Catching the
boat with strudel: Experiences with a web-site management system. In Proc. of

ACM SIGMOD, pages 414–425, 1998.
[9] M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. A query language for a

web-site management system. SIGMOD Record, 26(3):4–11, 1997.
[10] R. Goldman and J. Widom. DataGuides: Enabling query formulation and op-

timization in semistructured databases. In Proc. of VLDB-97, pages 436–445,
1997.

[11] D. Kozen. Results on the propositional µ-calculus. Theor. Comp. Sci., 27:333–354,
1983.

[12] A. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web. Int.

J. on Digital Libraries, 1(1):54–67, 1997.
[13] D. Quass, A. Rajaraman, I. Sagiv, J. Ullman, and J. Widom. Querying semistruc-

tured heterogeneous information. In Proc. of DOOD-95, pages 319–344. Springer-
Verlag, 1995.

