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Abstract

The problem of modeling semi-structured data is important in
many application areas such as multimedia data management,
biological databases, digital libraries, and data integration.
Graph schemas (Bunemanet al. 1997) have been proposed
recently as a simple and elegant formalism for representing
semistructured data. In this model, schemas are represented
as graphs whose edges are labeled with unary formulae of
a theory, and the notions of conformance of a database to
a schema and of subsumption between two schemas are de-
fined in terms of a simulation relation. Several authors have
stressed the need of extending graph schemas with various
types of constraints, such as edge existence and constraints
on the number of outgoing edges. In this paper we analyze
the appropriateness of various knowledge representation for-
malisms for representing and reasoning about graph schemas
extended with constraints. We argue that neither First Order
Logic, nor Logic Programming nor Frame-based languages
are satisfactory for this purpose, and present a solution based
on very expressive Description Logics. We provide tech-
niques and complexity analysis for the problem of deciding
schema subsumption and conformance in various interesting
cases, that differ by the expressive power in the specification
of constraints.

Introduction
The ability to represent data whose structure is less rigid
and strict than in conventional databases is considered a
crucial aspect in modern approaches to data modeling, and
is important in many application areas, such as biologi-
cal databases, digital libraries, data integration, and access
to web databases (Abiteboul 1997; Bunemanet al. 1997;
Christophideset al. 1994; Mendelzon, Mihaila, & Milo
1997; Quasset al. 1995). Consider, for example, the set of
home pages designed by the faculties for a University web
site. Since different home pages may vary considerably one
from another, it is extremely hard to describe their structure
in a rigid form such as the one imposed, say, by relational
databases. Indeed, we need structuring mechanisms that are
much more flexible than traditional data models.

Following (Abiteboul 1997), we define semi-structured
data as data that is neither raw, nor strictly typed as in con-
ventional database systems.BDFS (Basic Data model For
Semi-structured data) (Bunemanet al. 1997) is a formal
and elegant data model, based on graphs with labeled edges,
where information on both the values and the schema for the
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data are kept. The labels of edges in the schemas are formu-
lae of a certain theoryT , and the notion of a databaseD
being coherent to a schemaS is given in terms of a spe-
cial relation, called simulation, between the graph repre-
senting the database and the graph representing the schema.
Roughly speaking, a simulation is a correspondence be-
tween the edges ofD and those ofS such that, whenever
there is an edge labeleda in D, there is a corresponding
edge inS labeled with a formula satisfied bya (but not nec-
essarily vice-versa). The notion of simulation is less rigid
than the usual notion of satisfaction, and suitably reflects
the need of dealing with less strict structures of data.

In (Bunemanet al. 1997), the authors point out that, for
several tasks related to data management, it is important to
be able to reason about schemas, in particular to check sub-
sumption between two schemas, which is the task of de-
ciding whether every database conforming to one schema
always conforms to another schema. They also present al-
gorithms for, and analyze the complexity of checking sub-
sumption inBDFS.

Several papers indicate that in many applications there is
the need to extend theBDFS model with different types of
constraints. Indeed, in (Bunemanet al. 1997) all the proper-
ties of the schema are expressed in terms of the structure of
the graph, and therefore, there is no possibility of specifying
additional conditions, such as existence of edges or bounds
on the number of edges emanating from a node, or imposing
that a certain subgraph is well-founded.

Our intuition suggests that Knowledge Representation
(KR) techniques should be very useful for the above pur-
pose. After all, the problem deals withrepresentingcon-
straints, andreasoningabout schemas with constraints. The
basic goal of the work reported in this paper was to verify
this intuition, and we present here the following results of
our investigation:
• We analyze the appropriateness of various KR formalisms

for representing and reasoning about graph schemas ex-
tended with constraints, and demonstrate that neither First
Order Logic, nor Logic Programming nor Frame-based
languages are satisfactory for this purpose.

• We show that very expressive Description Logics (DLs),
such as the ones studied in (De Giacomo & Lenzerini
1996; Calvanese 1996; De Giacomo & Lenzerini 1997),
are the right tools for modeling and reasoning about semi-
structured data with constraints. In particular, we propose
to express constraints in terms of DLs formulae associated
to nodes of the schema. A formula on a nodeu imposes
a condition that, for every databaseD conforming toS,
must be satisfied by every node ofD simulatingu.



• We consider languages for specifying constraints with dif-
ferent expressive power, and present several results on
the corresponding reasoning problems. We show that
adding various types of local constraints (i.e. constraints
that impose conditions only on the edges emanating from
a node) does not increase the complexity of reasoning.
On the other hand, we present an intractability result for
the case of non-local constraints. Finally, we study the
case where the constraints are expressed in a very pow-
erful DL, namely,µALCQ (De Giacomo & Lenzerini
1997), that allows for imposing complex conditions on
the schema, such as well-foundedness of subgraphs. We
present a technique for checking subsumption in this case,
showing that the problem is decidable in double exponen-
tial time.

Our presentation starts with a brief description of both
BDFS, and the description logicµALCQ.

Preliminaries
In this section, we describe the basic characteristics of the
BDFS model for semi-structured data and the description
logic µALCQ.

The BDFS Data Model

The data modelBDFS, which is the basis of our investiga-
tion, is an edge-labeled graph model of semi-structured data,
where labels are unary formulae of a first order language
LT . The languageLT is constituted by a set of predicates,
including the equality predicate “=”, and one constant for
every element of a universeU .

A schema inBDFS always refers to a complete and decid-
able theoryT onU . In other words,T is the set of first order
formulae which are true (or valid) for the elements ofU , and
it is decidable to check whether a formulap in LT is valid
in T (in notation,T |= p).

Definition 1 A BDFST -schemais a rooted connected graph
whose edges are labeled with unary formulae ofLT . A T -
databaseis a rooted connected graph whose edges are la-
beled with constants ofT .

For any rooted graphG, we denote the root ofG by
root(G), the set of nodes ofG by Nodes(G), and the set
of edges ofG by Edges(G). We denote an edge from node
u to nodev labeled bya with u

a
→ v.

In order to establish if a database is coherent with a
schema, or if a schema is more general than another schema,
the notions of conformance and subsumption are defined as
follows.

Definition 2 A T -databaseD conforms to a BDFS T -
schemaS, in notationD � S, if there exists asimulation
fromD to S, i.e. a binary relation� from the nodes ofD
to those ofS satisfying: (1)root(D) � root(S), (2) u � u′

implies that for each edgeu
a
→ v in D, there exists an edge

u′
p
→ v′ in S such thatT |= p(a), andv � v′.

Definition 3 If S andS ′ are twoBDFST -schemas, thenS ′

subsumesS, in notationS ⊑ S ′, if for everyT -databaseD,
D � S impliesD � S ′. S is equivalent toS ′ if S ⊑ S ′ and
S ′ ⊑ S.

In (Bunemanet al. 1997), an algorithm is presented for
checking subsumption (and also conformance, being aT -
database a special case ofT -schema). The algorithm es-
sentially looks for the greatest simulation between the nodes
of the two schemas, and works in timeO(mO(1) · tT (m)),
wherem is the size of the two schemas andtT (x) is the time
needed to check whether a formula of sizex is valid in T .
In general it is meaningful not to considerT to be part of
the input of the problem (Bunemanet al. 1997). Therefore,
whenevertT (m) may be assumed to be independent ofm,
tT (m) can be replaced by a constant (e.g. whenm is polyno-
mial in the size|S| of aT -schemaS, which is considerably
smaller than|T |).

If not specified otherwise, we also make the assumption
that the theoryT is not part of the input to the reasoning
problems addressed in the paper (namely, consistency and
subsumption).

The Description LogicµALCQ
Description logics (DLs) allow one to represent a domain
of interest in terms ofconceptsandroles. Concepts model
classes of individuals, while roles model relationships be-
tween classes. We concentrate on the DLµALCQ studied
in (De Giacomo & Lenzerini 1997), where a correspondence
was shown with a well-known logic of programs, called
modal mu-calculus(Kozen 1983; Streett & Emerson 1989),
that has been recently investigated for expressing temporal
properties of reactive and parallel processes (Stirling 1996;
Emerson 1996).µALCQ can be viewed as a well-behaved
fragment of first-order logic with fixpoints (Park 1970;
Abiteboul, Hull, & Vianu 1995). We make use of the stan-
dard first-order notions of scope, bound and free occurrences
of variables, closed formulae, etc., treatingµ andν as quan-
tifiers.

The primitive symbols inµALCQ areatomic concepts,
(concept) variables, and atomic roles (in the following
called simplyroles). Concepts are formed according to the
following syntax:

C ::= A | ¬C | C1 ⊓ C2 | (≥ nR.C) | µX.C | X

whereA denotes an atomic concept,R a role,n a natural
number, andX a variable, and the restriction is made that
every free occurrence ofX in µX.C is in the scope of an
even number of negations.

We introduce the following abbreviations:C1 ⊔ C2 for
¬(¬C1 ⊓ ¬C2), ⊤ for A ⊔ ¬A, ⊥ for ¬⊤, ∃R.C for
(≥ 1R.C), ∀R.C for ¬∃R.¬C, (≤ nR.C) for ¬(≥
n+1R.C), (= nR.C) for (≤ nR.C) ⊓ (≥ nR.C), and
νX.C for ¬µX.¬C[X/¬X] (whereC[X/¬X] is the con-
cept obtained by substituting all free occurrences ofX with
¬X).

An interpretationI = (∆I , ·I) consists of aninterpre-
tation domain∆I , and aninterpretation function·I , which
maps every atomic concept to a subset of∆I , and every
atomic role to a subset of∆I × ∆I . The presence of free
variables does not allow us to extend the interpretation func-
tion ·I directly to every concept of the logic. For this reason
we introduce valuations. Avaluationρ on an interpretation
I is a mapping from variables to subsets of∆I . Given a
valuationρ, we denote byρ[X/E ] the valuation identical to
ρ except for the fact thatρ[X/E ](X) = E .

Let I be an interpretation andρ a valuation onI. We
assign meaning to concepts of the logic by associating toI



andρ anextension function·Iρ , mapping concepts to subsets
of ∆I , as follows:

XI
ρ = ρ(X) ⊆ ∆I

AI
ρ = AI ⊆ ∆I

(¬C)Iρ = ∆I − CI
ρ

(C1 ⊓ C2)
I
ρ = (C1)

I
ρ ∩ (C2)

I
ρ

(≥ nR.C)Iρ = {s ∈ ∆I |
#{s′ | (s, s′) ∈ RI ands′ ∈ CI

ρ } ≥ n}
(µX.C)Iρ =

⋂

{E ⊆ ∆I | CI
ρ[X/E] ⊆ E }

Observe thatCI
ρ[X/E] can be seen as an operator from sub-

setsE of ∆I to subsets of∆I , and that, by the syntactic
restriction enforced on variables, such an operator is guar-
anteed to be monotonic wrt set inclusion. The constructs
µX.C andνX.C denote respectively theleast fixpointand
thegreatest fixpointof the operator. The extension of closed
concepts is independent of the valuation, and therefore for
closed concepts we do not consider the valuation explicitly.

A µALCQ knowledge baseis a finite set ofaxiomsC1 ⊑
C2 whereC1 andC2 are closed concepts ofµALCQ. An
interpretationI satisfies an axiomC1 ⊑ C2, if CI

1 ⊆ CI
2 .

I is amodelof a knowledge baseΓ, if I satisfies all axioms
in Γ. A closed conceptC is satisfiablein a knowledge base
Γ if there exists a modelI of Γ such thatCI 6= ∅.

Theorem 4 (De Giacomo & Lenzerini 1997) Satisfiability
of closedµALCQ concepts inµALCQ knowledge bases is
an EXPTIME-complete problem.

Which KR Formalism for Semi-Structured
Data Modeling?

In this section we discuss how the technology of KR can
contribute to the problem of modeling semi-structured data
with constraints.

We start our investigation by verifying whether First Or-
der Logic (FOL) is suited for representingBDFS schemas.
We observe that, in principle, FOL would be an interesting
tool, because it would allow expressing very complex con-
straints on the schema. However, we need to check if FOL is
able to model the notions ofBDFS schemas, databases, and
simulation.

A reasonable approach to expressingBDFS schemas in
FOL is based on the following observations:

• If u1, . . . , uN are the nodes of the schema, we make use
of predicate symbols,n1, . . . , nN andedge, whereni(x)
means thatx is a node (theni corresponding to the root
is called the root predicate), andedge(x, y, z) means that
there is an edge fromx to y labeled withz. The fact that
the labelz satisfies the formulaF of T is represented by
F (z).

• We represent the schemaS by means of a setFOL(S) of
suitable formulae. For example, the fact that a nodeui
has two outgoing edges touj anduk labeled withP1 and
P2, is represented by the formula

∀x (ni(x) ⇔ (∀y∀z edge(x, y, z) ⊃
((P1(z) ∧ nj(y)) ∨ (P2(z) ∧ nk(y)))))

• An interpretation ofFOL(S) is obtained by choosing a
so-called pre-interpretation that assigns a truth value to
every ground formula of the formedge(x, y, z), and then

extending it to an interpretation by computing the exten-
sion of the predicatesn1, . . . , nN on the basis of the for-
mulae inFOL(S).

• Given a logical modelM of FOL(S), if we traverse the
relationedge in M starting from one object satisfying the
root predicate, we should obtain a structure that corre-
sponds to a database conforming toS, and, on the con-
trary, every database conforming toS should correspond
to a logical model ofFOL(S) in which the extension of
the root predicate is not empty.
Consider, for example, theBDFS schemaS1 with two

nodesu1 andu2, and one edge fromu1 to u2 labeled with
P . The corresponding setFOL(S1) of formulae in FOL is:

{ ∀x (n1(x) ⇔ (∀y∀z edge(x, y, z) ⊃ (P (z) ∧ n2(y)))),
∀x (n2(x) ⇔ (¬∃y∃z edge(x, y, z)) }

Consider the databaseD1 with two nodesd ande and an
edge fromd toe labeled witht such thatP (t) is valid inT . It
is easy to see thatD1 conforms toS1, and that it corresponds
to the pre-interpretation whereedge(d, e, t) is true, which
is extended to a model ofFOL(S1) such thatd ∈ n1 and
e ∈ n2. Observe that the empty database with just one node
and no edges also conforms toS1 and corresponds to the
pre-interpretation whereedge(x, y, z) is always false. This
is correctly captured byFOL(S1).

On the other hand, consider a schemaS2 with one nodeu
and one edge fromu to u labeled withP . The setFOL(S2)
is simply

{ ∀x (n(x) ⇔ (∀y∀z edge(x, y, z) ⊃ (P (z) ∧ n(y)))) }

and it is easy to see that there is at least one model of
FOL(S2) which does not correspond to any database con-
forming to S2. Indeed, consider a pre-interpretationI as-
signing true toedge(d, d, t), with P (t) valid in T . Clearly,
such a pre-interpretation can be extended to a model of
FOL(S2) simply by letting the extension ofn be empty.
However, sinced is not in the extension ofn, the resulting
model does not reflect the fact that the database correspond-
ing to I conforms toS2.

The above example shows a general problem that FOL
has in representingBDFSschemas. The first order semantics
is intrinsically too liberal for capturing the notion of simu-
lation. Indeed, in order to reflect such a notion, we need a
type of semantics that forces an objecto to be in the exten-
sion of a predicateni whenever there is no evidence that it
cannot satisfy such predicate. We observe that the greatest
fixpoint semantics (Baader 1996) satisfies exactly this prop-
erty. Thus, FOL extended with fixpoints would be suitable,
but FOL itself is not.

For the same reason, one can verify that neither Logic
Programming languages under the completion seman-
tics (Lloyd 1987), nor Frame-based languages are suited
for modelingBDFS schemas. In particular, the difficulties
arise whenBDFSschemas with cycles are taken into account
(see the schemaS2 in the example above). On the contrary,
schemas without cycles may be modeled correctly, for ex-
ample by using KR systems such as CLASSIC (Borgida &
Patel-Schneider 1994). Note, however, that the assumption
of acyclicity of semi-structured data schemas is too restric-
tive in practice.

The above observations tell us that, in order to use the
KR technology for modeling and reasoning about semi-
structured data with constraints, we must resort to KR for-
malisms that are able:



• to model graphs with no limitations on cycles;

• to interpret such graphs by making use of the greatest fix-
point semantics;

• to express complex constraints on the graphs;

• to provide reasoning procedures for computing the sub-
sumption relation between schemas.

Below we show thatµALCQ has exactly the above char-
acteristics. However, as a first step, we need to formally de-
fine graph schemas with constraints and the associated rea-
soning tasks.

Schemas with Constraints
We address the problem of extending theBDFS data model
in order to express constraints on the graph representing a
schema. We conceive a constraint for aBDFS schemaS as
a formula associated to a nodeu of the schema. The for-
mula is expressed in a certain languageL, and its role is to
impose a condition that, for every databaseD conforming
to S, must be satisfied by every node ofD simulatingu. In
other words, constraints are used to impose additional con-
ditions on the schema, with respect to those already implied
by the structure of the graph.

Definition 5 A T -schema withL-constraintsis a pairS =
(G, C), whereG is a BDFST -schema, andC is a total func-
tion from the nodes ofG to formulae of a constraint language
L.

Definition 6 AT -databaseD conforms toaT -schema with
L-constraintsS = (G, C), in notationD � S, if there exists
a constraint-consistent simulation, i.e. a binary relation�
from the nodes ofD to those ofG satisfying: (1)root(D) �

root(G), (2) u � u′ implies that (2.1)u satisfiesC(u′), and
(2.2) for each edgeu

a
→ v inD, there exists an edgeu′

q
→ v′

in S such thatT |= q(a), andv � v′.

Since constraints may contradict each other, or may even
be incompatible with the structure of the graph, the notion
of consistency becomes relevant.

Definition 7 For a T -schema withL-constraintsS =
(G, C), a nodeu ∈ Nodes(G) is consistentif there is at
least oneT -database which conforms to(G′, C), whereG′

is equal toG except thatroot(G′) = u. S is consistent, if
root(G) is consistent.

The notion of subsumption remains unchanged.
We consider now different constraint languages, and

study consistency and subsumption checking for schemas
with constraints. Being conformance a special case of sub-
sumption, we do not explicitly deal with conformance.

Local Constraints
We first consider a languageLl in which only local con-
straints can be expressed, i.e. only constraints on the edges
directly emanating from a node.Ll is inspired by DLs with
number restrictions and its formulae have the following syn-
tax (γ, γ1 andγ2 denote constraints, andp denotes a formula
of T ):

γ ::= ⊤ | ∃p | ¬∃p | ∃≤1p | γ1 ∧ γ2

Intuitively, a constraint of the form∃p on a nodeu, called
edge-existence constraint, imposes thatu has at least one

outgoing edgeu
a
→ v such thatT |= p(a), while a constraint

of the form∃≤1p, called functionality-constraint, imposes
thatu has at most one such outgoing edge. More precisely,
let S = (G, C) be aT -schema withLl-constraints. andD a
T -database. Then a nodeu of D satisfiesa constraintγ, in
notationu |=c γ, if the following conditions are satisfied:

u |=c ⊤ always
u |=c ∃p iff ∃u

a
→ v ∈ Edges(D). T |= p(a)

u |=c ¬∃p iff ∀u
a
→ v ∈ Edges(D). T |= ¬p(a)

u |=c ∃≤1p iff #{u
a
→ v ∈ Edges(D) | T |= p(a)} ≤ 1

u |=c γ1 ∧ γ2 iff (u |=c γ1) ∧ (u |=c γ2)

Note that we can view aT -databaseD as aT -schema
(D, C) with constraints, whereC(u) = ⊤ for every nodeu
of D (such a schema is always consistent).

Checking the consistency of a schema amounts to visiting
the graph and removing nodes that violate constraints, which
can be detected by a local check. An algorithm for subsump-
tion is obtained essentially by incorporating local checksfor
constraint violations into the algorithm of (Bunemanet al.
1997).

Theorem 8 Consistency and subsumption ofT -schemas
with Ll-constraints, can be checked in polynomial time in
the size of the schemas.

Non-Local Constraints
Next we consider languages in which the constraints are not
local, i.e. they can express conditions on edges that are not
directly connected to the node labeled with the constraint.
We show that even in a simple non-local constraint lan-
guage, namelyLALE inspired by the DLALE (Donini et
al. 1992), consistency and subsumption ofT -schemas be-
come intractable.

The formulae ofLALE have the following syntax:

γ ::= ⊤ | ∃p↑γ | ∀p↑γ | γ1 ∧ γ2

where the additional rules for the satisfaction of constraints
of LALE in a nodeu of aT -database are:

u |=c ∃p↑γ iff ∃u
a
→ v ∈ Edges(D). (T |= p(a) ∧ v |=c γ)

u |=c ∀p↑γ iff ∀u
a
→ v ∈ Edges(D). (T |= p(a) ⊃ v |=c γ)

Observe thatLALE is not local since the constraints im-
posed on one node may imply other constraints on adjacent
nodes. By exploiting this property and the hardness results
in (Donini et al. 1992), we can show that consistency check-
ing is coNP-hard.

Theorem 9 Checking the consistency of aT -schemaS with
LALE -constraints is coNP-hard in the size ofS, even ifT is
empty, i.e. all edges ofS are labeled withtrue.

By observing that checking consistency can be reduced
to checking subsumption wrt an inconsistent schema, we
immediately get that subsumption is NP-hard. Theorem 9
shows also that consistency stays coNP-hard, even ifT can
be used as an oracle for validity. The complexity of checking
consistency in the presence of non-local constraints lies in
the necessity to verify whether a database may exist, whose
topology is determined by the constraints. SinceT cannot
predict anything about the possible topologies of databases,
the validity checker ofT cannot be used to “hide” a poten-
tially exponential calculation. Note that this is different from
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Figure 1: AT -schema withLµ-constraints

the case of local constraints, where the aspects related to the
topology enforced by the constraints can be embedded in an
appropriate formula ofT .

Fixpoint Constraints
We now extend our framework to a very expressive con-
straint language, which is a variant ofµALCQ, and show
decidability of consistency and subsumption.

The constraint languageLµ is the set ofclosedformulae
constructed according to the following syntax (p denotes a
formula ofT , n a positive integer, andX a variable):

γ ::= X | ∃≥nF | ¬γ | γ1 ∧ γ2 | µX.γ
F ::= p | ↑γ | ¬F | F1 ∧ F2

with the restriction that every free occurrence ofX in µX.γ
is in the scope of an even number of negations.

We introduce the abbreviations:γ1∨γ2 for ¬(¬γ1∧¬γ2),
⊤ for γ ∨ ¬γ, and∀p↑γ for ¬∃≥1(p ∧ ↑¬γ).

Let D be aT -database, andM be a model ofT . A
valuation ρ on D is a mapping from variables to subsets
of Nodes(D). We denote byρ[X/E ] the valuation iden-
tical to ρ except forρ[X/E ](X) = E . For each node
u ∈ Nodes(D), we define whenu satisfies a constraintγ
under a valuationρ, in notationρ, u |=c γ, as follows:

ρ, u |=c X iff u ∈ ρ(X)

ρ, u |=c ∃≥nF iff #{u
a
→ v ∈ Edges(D) |

ρ, u
a
→ v |=c F} ≥ n

ρ, u |=c ¬γ iff ρ, u 6|=c γ
ρ, u |=c γ1 ∧ γ2 iff (ρ, u |=c γ1) ∧ (ρ, u |=c γ2)
ρ, u |=c µX.γ iff ∀E ⊆ Nodes(D). (∀v ∈ Nodes(D).
ρ[X/E ], v |=c γ ⊃ ρ[X/E ], v |=c X) ⊃ ρ[X/E ], u |=c X

where

ρ, u
a
→ v |=c p iff T |= p(a)

ρ, u
a
→ v |=c ↑γ iff ρ, v |=c γ

ρ, u
a
→ v |=c ¬F iff ρ, u

a
→ v 6|=c F

ρ, u
a
→ v |=c F1 ∧ F2 iff (ρ, u

a
→ v |=c F1) ∧ (ρ, u

a
→ v |=c F2)

Since the constraints inLµ are closed formulae, satisfaction
is independent of the valuation, and we denote it simply by
u |=c γ.

Example The schema shown in Figure 1 represents a set
of web pages such as those generated by “latex2html” when
translating a LATEX article containing nested sections and
possibly a bibliography. The connections between the pages

are represented by the graph, whereas the content of the
pages is modeled byT . Notice the use of constraints to
state complex conditions on the structure of the allowed
databases. In particular, the constraintµX.∀Section↑X
associated withu1 rules out all databases that have loops in
the connections of the various sections.

Checking Subsumption forLµ We develop now a tech-
nique for checking subsumption ofT -schemas withLµ-
constraints, which works in the case where the theoryT can
be expressed in terms of axioms ofµALCQ. In order to il-
lustrate the features of the technique, we further assume that
T is interpreted over a fixed finite universeU , includes only
unary predicates, one distinct constantc(d) for each element
d ∈ U , and is presented as a finite set containing eitherp(a)
or¬p(a) for each predicatep and constanta1.

The formulae ofT that label the edges of aT -schema are
boolean combinations of atomic formulae in the language of
T and of expressions of the form(self = a), wherea is a
constant ofT . We define when a formulap(a) labeling an
edge is valid inT , in notationT |= p(a), as follows:

T |= (self = a′)(a) iff a = a′

T |= ¬p(a) iff T 6|= p(a)
T |= (p1 ∧ p2)(a) iff T |= p1(a) ∧ T |= p2(a)

It is immediate to view aT -database as aT -schema, sim-
ply by replacing each edge labela by (self = a). Therefore,
as inBDFS, conformance is a special case of subsumption.

The technique we use for checking subsumption is based
on a reduction to unsatisfiability inµALCQ knowledge
bases. Differently from the previous cases, in what follows
we considerT to be part of the input to subsumption check-
ing.

Given twoT -schemasS1 andS2, we reduce the problem
of deciding whetherS1 ⊑ S2, to the problem of deciding the
unsatisfiability of theµALCQ conceptΦS1

⊓ ¬ΦS2
in the

µALCQ knowledge baseΓT , whereΓT , ΦS1
, andΦS2

are
defined as follows.

ΓT : encoding ofT and of the general properties ofBDFS
graphs To encode the general properties ofBDFS graphs,
ΓT exploitsreificationof edges, as used in (Bunemanet al.
1997). Specifically, we use a special roleE and split each

labeled edgeu
a
→ v into two edgesu

E
→ euv

E
→ v, by intro-

ducing an intermediate nodeeuv labeled bya. ΓT contains
the following axioms (⊤N , ⊤E , and⊤D are new atomic
concepts, andL is a new role):

⊤ ⊑ ⊤N ⊔ ⊤E ⊔ ⊤D ⊤N ⊑ ¬⊤E

⊤E ⊑ ¬⊤D ⊤D ⊑ ¬⊤N

⊤N ⊑ ∀E.⊤E

⊤E ⊑ ∀E.⊤N ⊓ (= 1E.⊤) ⊓ ∀L.⊤D ⊓ (= 1L.⊤)

Intuitively, these axioms partition the interpretation domain
into objects denoting nodes (⊤N ), edges (⊤E), and con-
stants ofT (⊤D), and specify the correct links for those
object denoting nodes and edges.

In addition, in order to encode the theoryT , we introduce
one conceptCp for each predicate ofT , and one conceptOa
(called anobject-concept) for each constanta of T , and, for
each pairCp,Oa we add toΓT the axiom:

1We point out that we restrict ourselves to such simple kinds of
theories for the sake of simplicity, but our approach works whenT
has a more general form.



⊤D ⊓Oa ⊑ Cp if T |= p(a)
⊤D ⊓Oa ⊑ ¬Cp if T |= ¬p(a)

Observe that,|ΓT | is linear in|T |.

ΦS : encoding of the schemaS In order to define the en-
codingΦS of aT -schemaS = (G, C) we define a mapping
ψ from constraint expressions toµALCQ formulae as fol-
lows:

ψ(X) = X
ψ(∃≥nF ) = (≥ nE.ψ(F ))
ψ(¬γ) = ¬ψ(γ)

ψ(γ1 ∧ γ2) = ψ(γ1) ⊓ ψ(γ2)
ψ(µX.γ) = µX.ψ(γ)

ψ(p) = ∀L.p
ψ(↑γ) = ∀E.ψ(γ)
ψ(¬F ) = ¬ψ(F )

ψ(F1 ∧ F2) = ψ(F1) ⊓ ψ(F2)

We construct for each nodeu ∈ Nodes(G) = {u1, . . . , uh}
a characteristicµALCQ conceptχu as follows2: Consider
the set of mutual recursive equations, one for each nodeui
in Nodes(G)

Xu1
≡⊤N ⊓ ψ(C(u1)) ⊓ ∀E.(⊤E ⊓

⊔

u1

p
→v

(∀L.p ⊓ ∀E.Xv))

· · ·
Xuh

≡⊤N ⊓ ψ(C(uh)) ⊓ ∀E.(⊤E ⊓
⊔

uh

p
→v

(∀L.p ⊓ ∀E.Xv))

and eliminate, one at the time, each of the above equations,
except the one forXui

as follows: Eliminate the equation
Xuj

= Cj and substitute each occurrence ofXuj
in the

remaining equations byνXuj
.Cj . LetXui

= Ci be the re-
sulting equation. The conceptχui

isνXui
.Ci. The encoding

ΦS of S is ΦS = χroot(G).
Observe that, in the worst case,|ΦS | is exponential with

respect to|S|.

Properties of the encoding The following three proper-
ties of the encoding establish decidability and complexity
of checking subsumption between twoT -schemas withLµ-
constraintsS1 andS2.

Theorem 10 S1 is subsumed byS2 if and only if there is no
model ofΓT that satisfiesΦS1

⊓ ¬ΦS2
and interprets every

object-concept as a singleton.

Theorem 11 Let ΓT , ΦS1
, and ΦS2

be as defined above.
Then there exists aµALCQ knowledge baseΓ′ whose size
is polynomial in|ΓT |+|ΦS1

|+|ΦS2
| such that:ΦS1

⊓¬ΦS2

is satisfied in a model ofΓT that interprets every object-
concept as a singleton, if and only ifΦS1

⊓ ¬ΦS2
is satisfi-

able inΓ′.

Theorem 12 Checking whether S1 is subsumed
by S2 is EXPTIME-hard and decidable in time
O(2p(|ΓT |+|ΦS1

|+|ΦS2
|)).

Since|ΦS | may be exponential with respect to|S|, it follows
that subsumption checking in the presence ofLµ-constraints
can be done in deterministic double exponential time with
respect to the size of the two schemas.

2This construction is analogous to the one used in Process Al-
gebra for defining a characteristic formula of a process (Steffen
& Ingólfsdóttir 1994), i.e. a formula which is satisfied by exactly
all processes that are equivalent to the process under bisimulation.
In a certain sense, we may say thatΦS characterizes, exactly all
databases that conform toS.

Conclusions
The result of our investigation is that very expressive DLs
are interesting tools for modeling and reasoning about semi-
structured data with constraints. The analysis presented in
the paper shows that the complexity of subsumption rises
even when simple non-local constraints are added toBDFS.
This justifies our approach that aims at adding as much
expressive power as possible in specifying the constraints,
without loosing decidability.
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