
■ Data integration is the problem of combining data
residing at different autonomous, heterogeneous
sources and providing the client with a unified,
reconciled global view of the data. We discuss data-
integration systems, taking the abstract viewpoint
that the global view is an ontology expressed in a
class-based formalism. We resort to an expressive
description logic, ALCQI, that fully captures class-
based representation formalisms, and we show
that query answering in data integration, as well as
all other relevant reasoning tasks, is decidable.
However, when we have to deal with large a-
mounts of data, the high computational complex-
ity in the size of the data makes the use of a full-
fledged expressive description logic infeasible in
practice. This leads us to consider DL-Lite, a specif-
ically tailored restriction of ALCQI that ensures
tractability of query answering in data integration
while keeping enough expressive power to capture
the most relevant features of class-based forma-
lisms. 

Data integration is the problem of com-
bining data residing at different auton-
omous, heterogeneous sources and pro-

viding the client with a unified, reconciled
view of these data. The typical architecture of a
data-integration system in depicted in figures 1
and 2. In such a system, the actual data resides
in a set of data sources. The user, however, does
not access such data sources directly, but poses
his or her queries to the integration system,
and is thus freed from the necessity of knowing
where the actual data reside and how to access
the data sources to extract it. It is the task of the
integration system to decide which sources are
relevant for answering the user query, to dis-
tribute the query over such sources, to collect
the returned answers, to combine and reconcile
them, and to present the overall answer to the
user. Two types of software modules called
wrappers and mediators typically accomplish

these tasks. Wrappers are responsible for direct-
ly accessing the sources and returning the data
therein in a unified form (for example, as sets
of tuples conforming to a relational schema).
Mediators are responsible for combining the da-
ta coming from wrappers or other mediators
and presenting them according to a specified
structure (for example, a relational schema
with certain attributes). The problem of setting
up data-integration systems, and specifically
wrappers and mediators, is becoming increas-
ingly important, especially in enterprise appli-
cations, and is characterized by a number of is-
sues that are interesting, both from a theo-
retical and from a practical point of view.

Most of the current work on data integration
in databases (Hull 1997; Ullman 1997; Halevy
2001; and Lenzerini 2002) takes a declarative
approach to the problem. This approach as-
sumes that a data-integration system is charac-
terized by giving explicitly to the client a glob-
al, virtual, reconciled, and unified view of the
data. The virtual concepts are mapped to the
concrete data sources, where the actual data re-
sides, through explicit mapping assertions.
Thus, the user formulates his or her queries in
terms of the global view, and the system de-
cides how to exploit the mappings in order to
reformulate the user query in terms of the data
sources. The abstract architecture correspond-
ing to such an approach is depicted in figure 2.
It maps to the concrete architecture in figure 1
by considering that the mediators implement
the query reformulation process and the actual
execution of the reformulated query. Also, in
this abstract view, we do not deal with the is-
sues related to wrapping the sources, and we as-
sume that all sources are represented through
their schema in a uniform data model, specifi-
cally, the relational model.

Different approaches for specifying map-
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since now the system is not told explicitly how
to reformulate the concepts in the global view
mentioned in the user query in terms of the da-
ta sources. On the other hand, changes in the
sources require only changing the associated
mappings and have no impact on the global
view. A generalized approach, in which a map-
ping assertion relates a query over the global
view to a query over the sources, called GLAV
(global-local-as-view), has also been considered
(Friedman, Levy, and Millstein 1999).

The loose coupling between data sources and
global view by means of the mappings results
in having incomplete information on the ex-
tensions of the concepts of the global view. In
other words, if we fix the actual data at the
source, there are in general many possible ways
to get the extension of the concepts of the
global view that are compatible with the data
at the sources and with the mapping. Hence,
when answering queries posed over the global
view, such incompleteness must be taken into
account. This results in an interest in comput-
ing the certain answers (Halevy 2001, Lenzerini
2002), or in other words, those answers that
hold for all extensions of the global view that
are compatible with the provided information.

More recently, the work on data integration
in databases has started to consider also con-
straints expressed over the concepts of the glo-
bal view, ranging from keys and foreign keys to
more complex forms of assertions expressible
in semantic data models, such as the entity-re-
lationship model or unified modeling language
(UML) class diagrams. Such constraints help to
capture the complex interrelationships in the
domain of interest better. However, they have
a deep impact on how certain answers are com-
puted, and hence they must be fully taken into
account during query answering (Calì et al.
2001, 2002a, and 2004). We observe that, once
we allow for constraints on the global view, the
differences between the various approaches for
establishing mappings become blurred, since,
with the help of constraints, one can mimic
one approach in the other (Calì et al. 2002b).

If we take an AI point of view, we can consid-
er the whole integration system, constituted by
the global view (with constraints), the data
sources, and the mapping, as a knowledge base.
In such a knowledge base, knowledge about
specific data items (that is, extensional knowl-
edge) and knowledge about how the informa-
tion of interest is organized (that is, intensional
knowledge) are clearly separated: extensional
knowledge is constituted by the data sources,
while intensional knowledge is formed by the
global view and the mapping. Under this view,
computing certain answers essentially corre-

pings in a data-integration system have been
proposed (Halevy 2001, Lenzerini 2002). In the
global-as-view (GAV) approach, each concept of
the global view is mapped to a query over the
data sources. In other words, it is assumed that
the data corresponding to a concept of the
global view, which the user expects to obtain
when she or he formulates her or his queries,
can actually be retrieved from the data sources
through a specific query, specified in a certain
query language (such as select-project-join
queries in structured query language [SQL]). In
this way, query processing is conceptually easy,
because it amounts to replacing (or unfolding)
each global concept in the user query with the
associated query over the sources and then ex-
ecuting the unfolded query over the sources.1

However, the approach does not cope well with
dynamicity and changes in the sources, since
such changes potentially affect all mappings
and require restructuring the global view. In
contrast, in the local-as-view (LAV) approach,
each concept in the data sources is defined in
terms of a query over the global view. Thus, the
information content of the sources is described
in terms of the global view—in other words, in
terms of those concepts that are familiar to the
user and in terms of which the user accesses the
system. This complicates query processing,
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Figure 1. The Concrete Architecture of a Data-Integration System.
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sponds to logical inference: the certain answers
are those data that are logically implied to be in
answer to the query by the data present in the
sources and the informaion on the global view
and mapping.

Building on the above considerations, the ul-
timate realization of a global view is an ontol-
ogy that clients can access and that gives them
a semantically rich framework in which to un-
derstand the information gathered by the sys-
tem. The mappings relate such ontology to the
data sources used to retrieve the extensional in-
formation. In this article we take this perspec-
tive and consider an integration system as
formed by a (global) ontology, a set of data
sources, and mappings between the two. In
particular, we discuss in detail ontologies that
are expressed in terms of classes and relation-
ships between classes. Such an approach stems
from representation formalisms developed in
various areas, ranging from entity-relationship
diagrams in databases (Batini, Ceri, and Na-
vathe 1992), UML class diagrams in software
engineering,2 and ontology languages for the
semantic web, such as OWL-DL.3

Specifically, we start by introducing a general
formal framework for describing information
integration systems based on an ontology for
the global view (in the “General Framework for
Semantic Integration” section). Then, in the
“Semantic Integration Using Description Log-
ics” section, we look at systems whose ontol-
ogy is expressed in terms of an expressive de-
scription logic, namely ALCQI (Baader et al
2003), which is a description logic that fully
captures class-based representation formalism
(Calvanese, Lenzerini, and Nardi 1999; Calì et
al. 2002) and that is at the base of the current
proposals for standard ontology languages. No-
tably, although we are using a full-fledged class-
based language, all reasoning tasks, including
computing certain answers in integration sys-
tems, are decidable. However, in information
integration systems, since we typically deal
with large amounts of data, it is crucial not on-
ly that reasoning tasks be decidable but that
they also remain tractable in the size of data.
Unfortunately, this is not the case for ALCQI
nor for any representation formalism that aims
at fully capturing class-based modeling. This
leads us to consider, in the section “Why DL-
Lite is a ‘Rich’ DL,” a specifically tailored re-
striction of ALCQI that we call DL-Lite, which,
on the one hand, provides enough expressive
power to capture the most relevant features of
class-based formalisms and, on the other hand,
ensures tractability with respect to the size of
the data. In our conclusion, we discuss further
research directions.

General Framework for 
Semantic Integration

In this section we present a general formal
framework for semantic-integration systems.
Following the standard approach in informa-
tion integration, we will refer to integration
systems whose components are the following:
(1) a set of data sources, containing the actual
information users are interested in; (2) a global
ontology, which provides a reconciled, inte-
grated, and virtual view of the underlying
sources in terms of which users access the sys-
tem; and (3) the mapping between the two,
which is used to relate the information in the
sources to the concepts in the global ontology.

In what follows, one of the main aspects is
the definition of the semantics of both the in-
tegration system and of queries posed to the
global ontology. To keep things simple, we will
use in the following a unique semantic domain
∆, constituted by a fixed, infinite set of sym-
bols. We also assume a fixed set of constants,
and we fix the interpretation of such constants
so that (1) each constant denotes an element in
∆; (2) different constants denote different ele-
ments of ∆; and (3) each element in ∆ is denot-
ed by a constant.4 In the following, with some
abuse of notation, we will not distinguish be-
tween constants and the domain elements they
denote.

Formally, an ontology-based integration sys-
tem (OIS) � is a triple ��, �, ��, where � is the
global ontology, � is the set of data sources,
and � is the mapping between � and �.

We assume that the global ontology � of an OIS
is expressed as a theory (named simply �) in
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Figure 2. The Abstract Architecture of a Data-Integration System.
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One of the most common ways to express
knowledge on a domain of interest is to resort
to class-based formalisms, in which knowledge
is represented in terms of objects grouped into
classes and relationships between classes. Ex-
amples are entity-relationship diagrams in
databases, UML class diagrams in software en-
gineering, and ontology languages for the se-
mantic web such as OWL-DL. All such for-
malisms can be captured in a fragment of
first-order logic in which one can express inclu-
sions and equivalences between classes and
possibly pose additional constraints on the re-
lations between classes. Such fragments corre-
spond to a class of logics called description logics
(Baader et al. 2003).

On the other hand, for the mapping, which
represents the heart of an OIS, it is in general
not sufficient to limit the expressive power to
direct correspondences between classes, since
this does not allow one to capture the complex
interrelations that may exist between the data
in the sources and the (virtual) data in the glob-
al view. In a real-world setting, one needs a
much more powerful mechanism for establish-
ing mappings between the sources � and the
global view �. Specifically, one would like, on
the one hand, to acquire the relevant informa-
tion to be extracted from � by navigating and
aggregating several concepts and, on the other
hand, to characterize these data in terms of the
elements of � as precisely as possible. To
achieve this, it is necessary to resort to map-
pings that relate to each other a query Qs over �
and a query Qg over �, both expressed in an ap-
propriate query language. As is common in da-
ta integration, we assume the mappings to be
sound, that is, the data extracted from the
sources through Qs are in general only a subset
of those satisfying the corresponding query Qg
in the global models for � with respect to a
source database.

Semantic Integration
Using Description Logics

The considerations made in the previous sec-
tion lead us to provide a formalization of an
OIS, which is based on the use of description
logics to represent ontologies (Calvanese et al.
1998a, 1998b). Description logics (DLs) (Baader
et al. 2003) are knowledge representation for-
malisms that are able to capture the core fea-
tures of virtually all class-based representation
formalisms used in AI, software engineering,
and databases (Calvanese, Lenzerini, and Nardi
1998, 1999). Recently, DLs have gained an in-
creased popularity as the formalisms that pro-
vide the theoretical foundation for the lan-

some logic (for example, first-order logic) in-
volving a set of predicates interpreted over ∆. 

We assume to have a set � of n data sources S1,
…, Sn, each one consisting of extensions of
predicates over ∆. We assume that the (predi-
cate) alphabets of the various data sources are
mutually disjoint and that each one is disjoint
from the alphabet of the global ontology. For
simplicity of exposition, without loss of gener-
ality, we assume that each source is constituted
by the extension of a single predicate. 

The mapping � is the heart of the OIS, in that
it specifies how the predicates in the global on-
tology � and in the data sources � are mapped
to each other. In particular, such mappings are
established by relating open formulas (that is,
queries) over the global ontology to open for-
mulas over the data sources. 

Notice that we have assumed that data
sources are seen as databases. In turn, such
sources may be complex ontologies, thus con-
taining dependencies and interrelationships
among their various concepts at the intensional
level. However, we consider a setting in which
such data sources are completely autonomous
and hence may not conform to the global ontol-
ogy that the clients of an OIS can access. Neither
do we want to integrate their intensional knowl-
edge into the global ontology seen by the client.
We want just to take into account how the data
at the sources is used to feed the predicate exten-
sion of the global ontology. Intuitively, in spec-
ifying the semantics of an OIS, we have to start
with an extension of the data sources, called the
source database, and the crucial point is to deter-
mine which are the models of the global ontol-
ogy that correspond to such a source database.
In doing so, both the constraints specified in the
global ontology and the mapping are taken into
account. More precisely, the semantics of an OIS
is defined as the set of all models of the global
ontology that satisfy the mapping with respect
to the source database. What it means to satisfy
a mapping depends on the form of the mapping
and is discussed in the section “OIS Based on AL-
CQI” (see also Calvanese, De Giacomo, and
Lenzerini 2002). 

Queries posed to an OIS � are expressed in
terms of a certain query language over the al-
phabet of the global ontology and are intended
to extract a set of tuples of elements of the se-
mantic domain ∆. In accordance with what is
typical in databases, we require that each query
have an associated arity and that it extract only
tuples of that arity. Given a source database for
�, the tuples we are interested in are those that
are guaranteed to be in the answer of the query
for every model for � with respect to the source
database. In other words, we are interested in
certain answers. 
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guages becoming standard for the semantic
web, specifically OWL-DL. One of the distin-
guishing features of these logics is that they are
equipped with optimal reasoning algorithms,
and practical systems implementing such algo-
rithms are now available (Horrocks 1998,
Haarslev and Möller 2001, Möller and Haarslev
2003).

In the following section, we first introduce a
specific DL and then illustrate how such logic is
used to define an OIS.

The Description Logic ALCQI
In DLs, the domain of interest is modeled by
means of concepts and roles. Concepts are unary
predicates, which denote classes of objects
called instances of the concept. Roles instead are
binary predicates, which denote binary rela-
tionships between objects. The simplest forms
of concepts and roles are atomic concepts and
roles, which are constituted just by a name.
Each DL is then equipped with a set of specific
constructs that allow one to obtain, starting
from atomic concepts and roles, complex con-
cept expressions (or simply concepts). Each
construct has a precise set-theoretic semantics,
and therefore the meaning of complex con-
cepts is determined on the basis of the meaning
of their constituents and the constructs com-
bining them. Similarly, a DL may be equipped
with constructs for obtaining complex role ex-
pressions (or simply roles).

We focus our attention on a specific DL, AL-
CQI, which belongs to the well-studied family
of AL languages (Baader et al. 2003). ALCQI is
a notable example of an expressive DL that fea-
tures constructs that are typical of conceptual
modeling formalisms and that in fact allow AL-
CQI to capture the most important features of
such formalisms (Berardi, Calvanese, and De
Giacomo 2001; Berardi et al. 2003). Here, we do
not provide a formal presentation of ALCQI;
instead we introduce its constructs by means of
examples. Also, instead of the abstract notation
typical of the DL literature (compare with
Baader et al. 2003), we make use of a more ver-
bose, textual notation that is easier for readers
not familiar with the DL syntax to understand.

The ALCQI DL provides concept constructs
for complement, intersection, union, existen-
tial restriction, universal quantification, and
number restrictions. As for roles, it provides the
construct for inverse roles. Recall that roles de-
note binary relations between objects; in the
following we say that an object o1 is connected
to another object o2 through a role R, meaning
that the pair (o1, o2) is in the relation represent-
ed by R. We now discuss the various constructs
in more detail. Complement, intersection, and

union denote simply the corresponding set op-
erations on the sets of instances of the involved
concepts. Existential restriction and universal
quantification represent restricted forms of ex-
istential and universal quantification, respec-
tively. More precisely, through existential re-
striction on a role R, one can denote all those
objects connected through R to at least one in-
stance of a concept C. For example, (Staff and
(teaches some Course)) denotes those individuals
that are staff members and that teach some
course. The dual construct, universal quantifica-
tion on a role R, denotes objects that are con-
nected through R only to instances of a con-
cept C. For example, (teaches only UGCourse)
denotes those individuals that teach only un-
dergraduate courses. Also, through number re-
strictions on a role R, one can express restric-
tions on the minimum and maximum number
of connections that an object may have
through R to instances of a concept C. Thus,
number restrictions represent a generalization
of existential, functionality, and multiplicity
constraints in data models. For example,
(teaches at-most 3 Course) denotes those individ-
uals that teach at most three courses. Finally,
through an inverse role (inverse R) one can de-
note the inverse of the relationship denoted by
a role R. For example, (Course and ((inverse
teaches) some Postdoc) denotes all those courses
that are taught by a postgraduate. This is done
by referring to the role teaches, whose inverse is
the taught-by relation.

In ALCQI, a knowledge base is constituted by
two components, a TBox, used to express inten-
sional knowledge, and an ABox, used to express
extensional knowledge. Specifically, a TBox is
constituted by a set of inclusion assertions, each
of the form (C1 is-a C2), where C1 and C2 are
two arbitrary ALCQI concepts. Such an inclu-
sion assertion states a subclass-superclass rela-
tionship in which C1 is the subclass and C2 is
the superclass. For example, ((Staff and (teaches
some Course)) is-a Busy) expresses that each staff
member teaching a course is busy. There is no
restriction on the set of assertions that may
constitute a TBox, and, in particular, they may
involve cycles.

The ABox of an ALCQI knowledge base is
constituted by a set of membership assertions
involving concepts or roles, of the form C(z)
and R(z1, z2), stating respectively that the ob-
ject z is an instance of the concept C and that
the pair of objects (z1, z2) is an instance of the
role R. For example, Staff(ann), Course(ai), teach-
es(ann,ai) express respectively that ann is a staff
member, that ai is a course, and that ann teach-
es ai.

Being logics, DLs in general and ALCQI in
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consists in determining all tuples of objects
that are in the answer to the query, whenever
all assertions of the knowledge base are satis-
fied. Observe that, as a special case of query an-
swering, we have concept satisfiability and log-
ical implication of ABox assertions. Query
containment consists in determining, given a
knowledge base and two queries of the same ar-
ity, whether the answer to one query is con-
tained in the answer to the other one whenever
all assertions of the knowledge base are satis-
fied. As a special case of query containment, we
have logical implication of inclusion assertions
involving atomic concepts on both sides. In
fact, it can also be shown that query contain-
ment can be reformulated as query answering
(Abiteboul and Duschka 1998).

ALCQI is equipped with effective reasoning
techniques that are sound and complete with
respect to the semantics. In particular, all rea-
soning tasks involving a knowledge base only
(and not queries) are EXPTIME-complete.
Checking query containment, and hence also
query answering, are instead EXPTIME-hard
and solvable in 2EXPTIME in the size of the
knowledge base (Calvanese, De Giacomo, and
Lenzerini 1998). Note that such an exponential
bound depends also on the size of the data
(that is, the ABox).

OIS Based on ALCQI
We now set up a framework for ontology inte-
gration, which extends ideas developed for da-
ta integration over DL knowledge bases (Cal-
vanese et al. 1998a; Calvanese, De Giacomo,
and Lenzerini 2000). In particular, we describe
the main components of the ontology integra-
tion system, and we provide the semantics
both of the system and of query answering.

In this setting, an OIS O = ��, �, �� is defined
as follows:

The global ontology � is an ALCQI knowledge
base constituted only by a TBox. In accordance
with what we discussed earlier, this means that
only intensional knowledge (that is, describing
how the information is organized) and no ex-
tensional knowledge (that is, about specific data
items) can be maintained by such a global on-
tology. 

Each data source in � is constituted simply by a
relational alphabet and by the extensions of the
relations in such an alphabet. For example,
such extensions may be expressed as relational
databases. Observe that we are assuming that
no intensional relation between terms is pre-
sent in the local ontologies. 

The mapping � between � and � is given by a
set of correspondences of the form Qs ˚ Qg,
where Qs is a conjunctive query over one of the
data sources in �, and Qg is a conjunctive query

particular are equipped with a formal seman-
tics and with reasoning services defined in ac-
cordance with the semantics. The basic reason-
ing services over DL knowledge bases are (1)
knowledge base satisfiability, that is, determin-
ing whether a knowledge base can be populat-
ed without violating any of the inclusion or
membership assertions; (2) concept satisfiabili-
ty with respect to a knowledge base, that is, de-
termining whether it is possible to populate a
knowledge base in such a way that a given con-
cept is populated with at least one instance;
and (3) logical implication, that is, determining
whether a given TBox or ABox assertion neces-
sarily holds whenever all assertions in a given
knowledge base hold.

Finally, we introduce the notion of query in
ALCQI. Remember that the answer to a query,
when the query is evaluated over a knowledge
base, is a set of tuples of objects. The types of
queries we consider are conjunctive queries,
which correspond to SQL select-project-join
queries but have a notation that is more conve-
nient for formal manipulations. A conjunctive
query over an ALCQI knowledge base is a con-
junction of atoms in which each atom involves
a predicate applied to a variable or a constant.
Each predicate is either an atomic concept
(hence, a unary predicate) or an atomic role
(hence, a binary predicate), which may also
freely be used in the assertions of the knowl-
edge base. When evaluating the query, the con-
stants denote specific domain objects, while
the variables are instantiated on the domain
objects, in accordance with the predicates in
which they appear. For example, the variable x
in the atom UGCourse(x) may be instantiated
only on undergraduate courses. Each variable
may be either free or existentially quantified.
The free variables (also called distinguished vari-
ables) denote the components of the tuples
that are in the answer to the query. Existential-
ly quantified variables, instead, are used to re-
late to each other the various atoms in the
query, but they do not directly contribute to
the answer to the query. For example, the con-
junctive query {x, y | Staff(x) � Staff(y) � teach-
es(x, z) � teaches(y, z) � UGCourse(z)} denotes
all pairs of staff members that have at least one
undergraduate course they teach in common.
The distinguished variables are x and y, while z
is an existentially quantified variable that
stands for the commonly taught undergradu-
ate course (notice that the existential quantifier
on z is not explicitly present in the query, but
is implicit in its semantics).

The basic reasoning services that are of inter-
est in the presence of queries are query answer-
ing and query containment. Query answering
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over the global ontology �. As mentioned, the
mapping correspondences are assumed to be
sound. This means that the correspondence Qs
˚ Qg is satisfied whenever the data extracted
from the sources through Qs is a subset of (not
necessarily equal to) the global data satisfying
Qg.

The form of mapping we have considered
here is quite general and represents a general-
ization of the types of mappings that have been
considered in the literature on data integration
(Hull 1997, Halevy 2001, Lenzerini 2002). In-
deed, two basic approaches for defining such a
mapping have been proposed: (1) the local-as-
view (LAV) approach, in which each relation of
the data sources in � is mapped to a query over
the global ontology �; and (2) the global-as-
view (GAV) approach, in which each concept
of the global ontology G is mapped to a query
over the data sources in �.

The GAV approach has been traditionally
considered simpler, since, in order to answer a
query over the global ontology, it is sufficient
to unfold all concepts referenced in the query
with their definition in terms of the data
sources specified in the mapping. However, in
the presence of intensional constraints in the
global ontology, this is in general not sufficient
any more, and query answering becomes more
involved (Calì et al. 2001, 2002a, 2004).

Many authors point out that, despite its dif-
ficulty, the LAV approach better supports a dy-
namic environment, where data sources can be
added to the system without the need for re-
structuring the global ontology. Hence, recent
research work on data integration has followed
this approach (Ullman 1997; Halevy 2001;
Levy, Srivastava, and Kirk 1995; Calvanese et al.
1998a; Calvanese et al. 2000). The major chal-
lenge in this case is that, to answer a query ex-
pressed over the global ontology, one must be
able to reformulate the query in terms of
queries to the sources. While in the GAV ap-
proach such a reformulation is guided by the
correspondences in the mapping, in LAV the
problem requires a reasoning step, so as to infer
how to use the sources for answering the query.

The type of mapping we have considered
here—GLAV (Friedman, Levy, and Millstein
1999)—combines the flexibility of the LAV and
GAV approaches by allowing one to establish
directly mappings between two queries. We
will see later that, also in our setting, the added
expressive power provided by GLAV mappings
does not add complexity to the techniques that
have already been adopted to handle LAV map-
pings.

Query answering in this setting requires
quite sophisticated techniques. Indeed, in or-
der to answer a query posed over the global on-

tology with the data contained in the local on-
tologies, one has to take into account the
knowledge both in the global ontology and in
the mapping. Such query-answering tech-
niques are studied by Calvanese, De Giacomo,
and Lenzerini (2000) for the case of LAV and
are essentially based on encoding the data ex-
tracted through the mappings into an ABox.
The techniques can be applied to GLAV map-
pings as well, by observing that a GLAV map-
ping Qs˚Qg can be rephrased by introducing a
new source relation R of the same arity as the
queries Qs and Qg in the mapping. The exten-
sion of the new source R is given by evaluating
Qs on the data sources, and R is then mapped to
the global ontology through LAV mapping
{x1,…,xn | R(x1,…,xn)} ˚Qg.

Consider for example the OIS �d = ��d,�d,�d�
defined in figure 3.

Simplifying Reasoning Tasks
One of the most important lines of research in
DLs is concerned with the trade-off between
expressive power and computational complex-
ity of sound and complete reasoning. Research
on this topic has shown that DLs with efficient,
that is, worst-case polynomial time, reasoning
algorithms lack the modeling power required
in capturing conceptual models and basic on-
tology languages, while DLs with sufficient
modeling power, such as ALCQI, suffer from in-
herently worst-case exponential time behavior
of reasoning (Calvanese, Lenzerini, and Nardi
1998, 1999; Borgida and Brachman 2003). This
is reflected also when addressing ontology-
based integration, in which the inherently
high computational complexity of the underly-
ing DL has a negative effect on the computa-
tional complexity of query answering, and
makes it infeasible in practice.

In this section we introduce a DL called DL-
Lite (Calvanese, De Giacomo, Lenzerini, and
Rosati 2004; Calvanese, De Giacomo, Lembo,
Lenzerini, and Rosati 2004) to be used as the
formalism underlying an ontology-based inte-
gration system. Such a DL provides a very good
trade-off between expressive power and com-
plexity of reasoning, both over a knowledge
base and over queries. On the one hand it has
sufficient expressive power, being specifically
tailored to capture the fundamental aspects of
conceptual data models (such as entity-rela-
tionship diagrams) (Batini, Ceri, and Navathe
1992), object-oriented formalisms (such as ba-
sic UML class diagrams), and basic ontology
languages, such as OWL-DL. On the other
hand, it admits advanced forms of sound and
complete reasoning, which take into account
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do not further qualify it. For example, the con-
cept (teaches something) denotes those objects
that teach something without further qualify-
ing what is taught. General concepts in DL-Lite
are then conjunctions of basic concepts and
their complements. Note that, in DL-Lite, the
use of complement is restricted to basic con-
cepts only and that we cannot express union of
concepts. As for roles, similar to ALCQI, DL-
Lite has a construct for inverse roles.

Using this simple language, in a DL-Lite
knowledge base we allow the making of asser-
tions of specific forms only. Specifically, in a
DL-Lite TBox, we allow for inclusion assertions
of the form (B is-a C), for which on the left-
hand side we must have a basic concept while
on the right-hand side we may have an arbi-
trary DL-Lite concept. Observe that, as in AL-
CQI, we do allow for cyclic assertions. Indeed,
we can enforce the cyclic propagation through
the role P of the property of belonging to con-
cept A using the two DL-Lite inclusion asser-
tions (A is-a (P something)) and (((inverse P)
something) is-a A). The first assertion states that
all objects in A are connected through role P to
some object. The second assertion states that
all objects to which role P connects are in A.
Hence, if we start by considering an object o1 in
A, then o1 must be connected through P to
some object o2, which itself must be in A, and
hence connected through P to some object o3,
and so on. This could go on forever, or we
could close the “chain” by connecting a certain
oi to one of the previous objects, for example,
o1.

Also, in addition to the above inclusion as-
sertions, in DL-Lite we have a specific form of
inclusion assertions that make use of number
restrictions. Such assertions, called functional-
ity assertions, have the form (functional P) and
(functional (inverse P)) and express, respectively,
the functionality of an atomic role P and of the
inverse (inverse P) of an atomic role. Function-
ality of P means that each object may be con-
nected through P to at most one object; similar-
ly for functionality of (inverse P). Note that, in
contrast to ALCQI, in DL-Lite functionality of
a certain role can be expressed only as a global
property and not locally, that is, for the in-
stances of a certain concept. Thus, we are not
allowed to assert, for instance, that postgradu-
ates teach at most one course, while professors
can teach an arbitrary number of courses. This
would require stating that teaches is functional
for the instances of Postdoc while it is not so for
the instances of Professor, and this is not possi-
ble in DL-Lite .

Finally, the ABox of a DL-Lite knowledge
base has the same form as that of an ALCQI

both a knowledge base (constituted by a TBox
and an ABox), and queries, and which are poly-
nomial time in the size of the knowledge base,
including the data.

DL-Lite 
DL-Lite is a DL that is quite simple from the
language point of view. The constructs it pro-
vides are complement and intersection of con-
cepts (but no union), simplified forms of exis-
tential restriction and number restrictions, and
inverse roles (recall that roles denote binary re-
lations). Moreover, the concept constructs may
not be combined freely but need to respect cer-
tain syntactic conditions. Namely, starting
again from atomic concepts and atomic roles,
we define basic concepts as either an atomic
concept or an unqualified existential restric-
tion (Baader and Nutt 2003). Such a construct
denotes all objects that are connected through
a role R to some other object o. In an existential
restriction in ALCQI, we specify the concept
that this object o must be an instance of. In DL-
Lite, we just say that such an object exists but
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The global ontology �d is the ALCQI knowledge base 

Postdoc is-a Staff

UGCourse is-a Course

Staff and (teaches some Course) is-a Busy

expressing that each postdoc is a staff member, that each undergrad-
uate course is a course, and that each staff member who teaches a
course is busy. 

The set �d of data sources consists of two data sources, containing re-
spectively the unary relations T1 and T2.

The mapping �d is 

{x | T1(x) } ˚ { x | Staff(x) ∧ teaches(x,y) ∧ UGCourse(y) }

{x | T1(x) } ˚ { x | Postdoc(x) }

that is, it is constituted by two LAV correspondences, associating to
each source relation a conjunctive query over the global ontology.
The first correspondence expresses that source relation T1 contains a
set of staff members teaching an undergraduate course. Notice that,
since the mapping is sound, there may be also other staff members
teaching an undergraduate course besides those listed in T1. Similarly,
the second correspondence expresses that source relation T2 contains
postgraduate students. 

Consider that the conjunctive query Qw = {x | Postdoc(x) � Busy(x)}
over �d is asking for the postdocs who are busy. Given the source data-
base �, in which T1 has extension {ann, bill} and T2 has extension
{ann, dan}, we have that the certain answer is constituted by the single
tuple ann. Observe that, to obtain such an answer, we have to reason
using the mappings and the inclusions in the global ontology.

Figure 3. Example 1.



knowledge base and is thus constituted by a set
of membership assertions involving concepts
and roles. Recall that the former have the form
C(z), where C is a concept and z is an individ-
ual, while the latter have the form R(z1,z2),
where R is a role and z1, z2 are individuals.

We consider queries in DL-Lite that have the
same form as those in ALCQI and hence are
conjunctive queries over a (DL-Lite) knowledge
base.

Why DL-Lite is a “Rich” DL
Although equipped with advanced reasoning
services, at first sight DL-Lite seems to be rather
weak in modeling intensional knowledge and
hence of limited use in practice. In fact this is
not the case. Despite the simplicity of its lan-
guage and the specific form of inclusion asser-
tions allowed, DL-Lite is able to capture the
main notions (though not all, obviously) of
conceptual modeling formalism used in data-
bases and software engineering, such as entity-
relationship and UML class diagrams. In partic-
ular, DL-Lite assertions allow us to specify the
following important constructs (relying on
database terminology, we use the terms class
and relation to denote respectively an atomic
concept and an atomic role): 

ISA, or subclass-superclass relations, using
assertions of the form (A1 is-a A2), stating that
the class A1 is a subclass of the class A2. For ex-
ample, (UGCourse is-a Course) states that each
undergraduate course is a course. 

Class disjointness, using assertions of the
form (A1 is-a not A2), stating disjointness
between the two classes A1 and A2. For example,
(Course is-a not Staff) states that courses and staff
members are disjoint. 

Role typing, using assertions of the form ((P
something) is-a A1) (resp., (((inverse P) something)
is-a A2)), stating that the first (resp., second)
component of the relation P is of type A1 (resp.,
A2).

5 Notice that these kinds of assertions corre-
spond to domain (resp., range) assertions. For ex-
ample, ((teaches something) is-a Staff) types the
domain of teaches to be a staff member, while
(((inverse teaches) something) is-a Course) types
the range of teaches to be a course. 

Participation constraints, using assertions of
the form (A is-a (P something)) (resp., (A is-a ((in-
verse P) something))), stating that instances of
class A participate to the relation P as the first
(resp., second) component. For example, (Postdoc
is-a (teaches something)) states that each postdoc
has to teach something, while (UGCourse is-a
((inverse teaches) something)) states that under-
graduate courses need to be taught by someone. 

Nonparticipation constraints, using asser-
tions of the form (A is-a not (P something)) (resp.,
(A is-a not ((inverse P) something))), stating that
instances of class A do not participate to the re-
lation P as the first (resp., second) component.

For example, (Student is-a not (teaches some-
thing)) states that a student cannot teach any-
thing. 

Functionality restrictions, using assertions
of the form (functional P) (resp., (functional (in-
verse P))), stating that an object can be the first
(resp., second) component of the relation P at
most once. For example, (functional (inverse
teaches)) states that a course may be taught by at
most one individual. 

Notably two important modeling features of
class-based formalisms, which can be captured
by ALCQI, are missing in DL-Lite: (1) the ability
of stating covering constraints, that is, stating
that each instance of a class must be an in-
stance of (at least) one of its subclasses; and (2)
the ability of stating subset constraints between
relations. Note that these features are present
in full-fledged entity-relationship diagrams and
UML class diagrams. They are missing in DL-
Lite exactly to get the nice computational char-
acteristics that we are after. Instead, observe
that the limitation to binary roles only is not
crucial. Indeed, it is possible to extend the rea-
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We reexpress example 1 (shown in figure 3) in DL-Lite. The OIS �d =
��d,�d,�d� is defined as follows: 

The global ontology �d is the DL-Lite knowledge base 

Postdoc is-a Staff

UGCourse is-a Course

(teaches something) is-a Staff

((inverse teaches ) something) is-a Course

(teaches something) is-a Busy

As in figure 3, we have that each postdoc is a staff member and that
each undergraduate course is a course. Here we also have that teach-
ing is always performed by a staff member and involves a course.
Moreover, who teaches is busy. Observe that the DL-Lite typing asser-
tions on teaches, together with the last assertion, imply the ALCQI as-
sertion (Staff and (teaches some Course) is-a Busy) of figure 3.

The set �d of data sources consists of the same two data sources. 

The mapping �d is 

{x | T1(x) } ˚ {x | teaches(x,y) � UGCourse(y)}

{x | T2(x) } ˚ {x | Postdoc(x)}

Note that, with respect to figure 3, we have removed the Staff(x) atom
from the first assertion, since it is implied by the ontology. 

Considering again the conjunctive query Qw = { x | Busy(x) } over �d,
and the same source database, we get the same answers as in figure 3.

Figure 4. A Reexpression of Figure 3 in DL-Lite.



the extension and what is known to be part of
the extension (Calvanese, De Giacomo, Lenz-
erini, and Rosati 2004; Calvanese, De Giacomo,
Lembo, Lenzerini, and Rosati 2004).
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Notes
1. Of course, system-level problems, such as how to
distribute the query over the sources, how to collect
and combine the answers, and so on, still remain to
be addressed, but we are not concerned with these as-
pects here.

2. www.omg.org/uml/

3. www.w3.org/2001/sw/WebOnt/

4. That is, such constants act as standard names
(Levesque and Lakemeyer 2001).

5. Observe that this has nothing to do with the qual-
ified restrictions (P some A) (resp., (P only A)),
which are not used to type the role P but are used to
select those objects that are the first component of P
and that are related (through P) to some object (resp.,
only to objects) belonging to A.
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