
Adding Context to Knowledge and Action Bases?

Diego Calvanese1, İsmail İlkan Ceylan2, Marco Montali1, and Ario Santoso1

1 Free University of Bozen-Bolzano, lastname@inf.unibz.it
2 Technische Universität Dresden, ceylan@tcs.inf.tu-dresden.de

Abstract. Knowledge and Action Bases (KABs) have been recently proposed
as a formal framework to capture the dynamics of systems which manipulate
Description Logic (DL) Knowledge Bases (KBs) through action execution. In
this work, we enrich the KAB setting with contextual information, making use
of different context dimensions. On the one hand, context is determined by the
environment using context-changing actions that make use of the current state
of the KB and the current context. On the other hand, it affects the set of TBox
assertions that are relevant at each time point, and that have to be considered when
processing queries posed over the KAB. Here we extend to our enriched setting
the results on verification of rich temporal properties expressed in mu-calculus,
which had been established for standard KABs. Specifically, we show that under a
run-boundedness condition, verification stays decidable.

1 Introduction

Recent work in the areas of knowledge representation, databases, and business processes
[21,2,9,15] has identified the need for integrating static and dynamic aspects in the design
and maintenance of complex information systems. The static aspects are characterized
on the one hand by the data manipulated by the system, and on the other hand by possibly
complex domain knowledge that may vary during the evolution of the system. Instead,
dynamic aspects are affected by the processes that operate over the system, by executing
actions that manipulate the state of the system. In such a setting, in which new data may
be imported into the system from the outside environment, the system becomes infinite-
state in general, and the verification of temporal properties becomes more challenging:
indeed, neither finite-state model checking [12] nor most of the current techniques for
infinite-state model checking apply to this case.

Knowledge and action bases (KABs) [2] have been introduced recently as a mech-
anism for capturing systems in which knowledge, data, and processes are combined
and treated as first-class citizens. In particular, KABs provide a mechanism to represent
semantically rich information in terms of a description logic (DL) knowledge base (KB)
and a set of actions that manipulate such a KB over time. Additionally, actions allow
one to import into the system fresh values from the outside, via service calls. In this
setting, the problem of verification of rich temporal properties expressed over KABs in a
first-order variant of the µ-calculus has been studied. Decidability has been established
under the assumptions that in the properties first-order quantification across states is

? This paper is an abridged version of a paper published in the proceeding of JELIA 2014 [5].

25

ar
X

iv
:1

41
2.

79
65

v1
 [

cs
.A

I]
 2

6
D

ec
 2

01
4

26 Diego Calvanese, İsmail İlkan Ceylan, Marco Montali, and Ario Santoso

restricted, and that the system satisfies a so-called run-boundedness condition. Intuitively,
these ensure that along each run the system cannot encounter (and hence manipulate) an
unbounded number of distinct objects. In KABs, the intensional knowledge about the
domain, expressed in terms of a DL TBox, is assumed to be fixed along the evolution of
the system, i.e., independent of the actual state. However, this assumption is in general
too restrictive, since specific knowledge might hold or be applicable only in specific,
context-dependent circumstances. Ideally, one should be able to form statements that are
known to be true in certain cases, but not necessarily in all.

Work on representing and formally reasoning over contexts dates back to work
on generality in AI see [16]. Since then, there has been some effort in knowledge
representation and in DLs to devise context-sensitive formalisms, ranging from multi-
context systems [3] to many-dimensional logics [14]. An important aspect in modeling
context is related to the choice of which kind of information is considered to be fixed
and which context dependent. Specifically, for DLs, one can define the assertions in
the TBox [1,11], the concepts [3], or both [19,14] as context-dependent. Each choice
addresses different needs, and results in differences in the complexity of reasoning.

We follow here the approach of [1,11], and introduce contextualized TBoxes, in
which each inclusion assertion is adorned with context information that determines under
which circumstances the inclusion assertion is considered to hold. The relation among
contexts is described by means of a lattice in [1] and by means of a directed acyclic graph
in [11]. In our case, we represent context using a finite set of context dimensions, each
characterized by a finite set of domain values that are organized in a tree structure. If for
a context dimension d, a value v2 is placed below v1 in the tree (i.e., v2 is a descendant
of v1), then the context associated to v1 is considered to be more general than the one
for v2, and hence whenever context dimension d is in value v2, it is also in value v1.

Starting from this representation of contexts, we enrich KABs towards context-
sensitive KABs (CKABs), by representing the intensional information about the domain
using a contextualized TBox, in place of an ordinary one. Moreover, the action compo-
nent of KABs, which specifies how the states of the system evolve, is extended in CKABs
with context changing actions. Such actions determine values for context dimensions
in the new state, based on the data and the context in the current state. In addition, also
regular state-changing actions can query, besides the state, also the context, and hence
be enabled or disabled according to the context. Notably, we show that verification of a
very rich temporal logic, which can be used to query the system evolution, contexts, and
data, is decidable for run-bounded CKABs.

2 Preliminaries

DL-LiteA. For expressing knowledge bases, we use the lightweight DL DL-LiteA [6].
The syntax for concept and role expressions in DL-LiteA is as follows:

B ::= N | ∃R R ::= P | P−

where N denotes a concept name, B a basic concept, P a role name, P− an inverse role,
and R a basic role. A DL-LiteA knowledge base (KB) is a tuple O = 〈T,A〉, where:

Adding Context to Knowledge and Action Bases 27

– T is a TBox, containing a finite set of assertion of the form:

B1 v B2 R1 v R2 B1 v ¬B2 R1 v ¬R2 (funct R)

From left to right, assertions of the first two columns respectively denote posi-
tive inclusions between basic concepts and basic roles; assertions of the third and
fourth columns denote negative inclusions between basic concepts and basic roles;
assertions of the last column denote functionality on roles.

– A is an Abox, i.e., a finite set of ABox membership assertions of the form N(c1) or
P (c1, c2), where c1, c2 denote individuals (constants).

We use the standard semantics of DLs based on FOL interpretations I = (∆I , ·I)
such that cI ∈ ∆I , NI ⊆ ∆I , and P I ⊆ ∆I ×∆I . The semantics of the DL-LiteA
constructs and of TBox and ABox assertions, and the notions of satisfaction and of
model are as usual (see, e.g., [8]). We also say that A is T -consistent if O = 〈T,A〉 is
satisfiable, i.e., admits at least one model.

Queries. We are interested to query the KB, i.e., retrieving relevant constants in the
ABox based on the query. We denote with ADOM(A) the set of constants appearing in
A. A union of conjunctive queries (UCQ) q over a KB O = 〈T,A〉 is a FOL formula
of the form

∨
1≤i≤n ∃~yi.conj i(~x, ~yi) with free variables ~x and existentially quantified

variables ~y1, . . . , ~yn. Each conj i(~x, ~yi) in q is a conjunction of atoms of the form N(z),
P (z, z′), where N and P respectively denote a concept and a role name occurring in T ,
and z, z′ are constants in ADOM(A) or variables in ~x or ~yi, for some 1 ≤ i ≤ n.

The (certain) answers of q over O = 〈T,A〉 are defined as the set ans (q, T,A) of
substitutions σ which substitute the free variables of q with constants from ADOM(A)
such that qσ evaluates to true in every model of O = 〈T,A〉. If q has no free variables,
then it is called boolean and its certain answers are either true or false.

We also consider an extension of UCQs, namely EQL-Lite(UCQ) [7] (briefly, ECQs),
i.e., the FOL query language whose atoms are UCQs evaluated according to the certain
answer semantics. An ECQ over a TBox T is a possibly open formula of the form:

Q ::= [q] | ¬Q | Q1 ∧Q2 | ∃x.Q

where q is a UCQ over T . The certain answers ANS(Q,T,A) of an ECQ Q over
O = 〈T,A〉 are obtained by first computing the certain answers over O = 〈T,A〉 of
each UCQs embedded in Q, then evaluating them through the first-order part of Q,
and interpreting existential variables as ranging over ADOM(A). As stated in [7], the
reformulation algorithm for answering query q over DL-LiteA KB O = 〈T,A〉 which
allows us to “compile away” the TBox (i.e., ans (q, T,A) = ans (rew(q), ∅, A), where
rew(q) is a UCQ computed by the algorithm in [6]) can be extended to ECQs.

Knowledge and Action Bases. In the following, we make use of a countably infinite
set ∆ of constants, and a finite set F of functions representing service calls, which can
be used to introduce fresh values from ∆ into the system.

A knowledge and action base (KAB) is a tuple K = 〈T,A0, Γ,Π〉 where: (i) T is a
DL-LiteA TBox capturing the domain of interest, (ii) A0 is the initial DL-LiteA ABox,
which intuitively represents the initial data of the system, (iii) Γ is a finite set of actions
that characterize the evolution of the system, (iv) Π is a finite set of condition-action

28 Diego Calvanese, İsmail İlkan Ceylan, Marco Montali, and Ario Santoso

rules forming a process that intuitively specifies when and how an action can be executed.
T and A0 together form the knowledge base while Γ and Π form the action base.

An action α ∈ Γ represents the progression mechanism that changes the ABox in
the current state and hence generates a new ABox for the successor state. Formally, an
action α ∈ Γ is represented as α(p1, . . . , pn) : {e1, . . . , em} where (i) α is the action
name, (ii) p1, . . . , pn are the input parameters, and (iii) {e1, . . . , em} is the set of effects.
Each effect ei is of the form [q+i] ∧Q

−
i Ai, where: (a) q+i is an UCQ, and Q−i is an

arbitrary ECQ whose free variables occur all among the free variables of q+i . (b) Ai is a
set of facts (over the alphabet of T) which includes as terms: constants in ADOM(A0),
input parameters, free variables of q+i , and Skolem terms representing service calls
formed by applying a function f ∈ F to one of the previous kinds of terms. Intuitively,
q+i , together with Q−i acting as a filter, selects the values that instantiate the facts listed
in Ai. Collectively, the instantiated facts produced from all the effects of α constitute the
newly generated ABox, once the ground service calls are substituted with corresponding
results. The process Π is formally defined as a finite set of condition-action rules of
the form Q(~x) 7→ α(~x), where: (i) α ∈ Γ is an action, and (ii) Q(~x) is an ECQ over T ,
which has the parameters of α as free variables ~x, and quantified variables or values in
ADOM(A0) as additional terms.

KABs Execution Semantics. The execution semantics of a KAB is defined in terms of
a possibly infinite-state transition system. Formally, given a KAB K = 〈T,A0, Γ,Π〉,
we define its semantics by the transition system ΥK = 〈∆,T,Σ, s0, abox ,⇒〉, where:
(i) T is a DL-LiteA TBox; (ii) Σ is a (possibly infinite) set of states; (iii) s0 ∈ Σ is the
initial state; (iv) abox is a function that, given a state s ∈ Σ, returns an ABox associated
to s; (v) ⇒ ⊆ Σ × Σ is a transition relation between pairs of states. Intuitively, the
transitions system ΥK of KAB K captures all possible evolutions of the system by the
actions in accordance with the process rules.

During the execution, an action can issue service calls. In this paper, we assume
that the semantics of service calls is deterministic, i.e., along a run of the system,
whenever a service is called with the same input parameters, it will return the same
value. To enforce this semantics, the transition system remembers the results of previous
service calls in a so-called service call map that is part of the system state. Formally,
a service call map is defined as a partial function m : SC → ∆, where SC is the set
{f(v1, . . . , vn) | f/n ∈ F and {v1, . . . , vn} ⊆ ∆} of (skolem terms representing)
service calls. Each state s ∈ Σ of the transition system ΥK is a tuple 〈A,m〉, where A is
an ABox and m is a service call map.

The semantics of an action execution is as follows: Given a state s = 〈A,m〉, let
α ∈ Γ be an action of the form α(p1, . . . , pn) : {e1, . . . , em} with ei = [q+i] ∧Q

−
i

Ai, and let σ be a parameter substitution for p1, . . . , pn with values taken from ∆.
We say that α is executable in state s with parameter substitution σ, if there exists
a condition-action rule Q(~x) 7→ α(~x) ∈ Π s.t. ANS(Qσ, T,A) is true. The result of
the application of α to an ABox A using a parameter substitution σ is captured by the
following function:

DO(T,A, ασ) =
⋃

[q+i]∧Q−i Ai in α

⋃
ρ∈ANS(([q+i]∧Q−i)σ,T,A)

Aiσρ

Adding Context to Knowledge and Action Bases 29

Intuitively, the result of the evaluation of α is obtained by combining the contribution of
each effect of α, which in turn is obtained by grounding the facts Ai in the head of the
effect with all the certain answers of the query [q+i] ∧Q

−
i over 〈T,A〉.

The result of DO(T,A, ασ) is in general not a proper ABox, because it could contain
(ground) Skolem terms, attesting that in order to produce the ABox, some service
calls have to be issued. We denote by CALLS(DO(T,A, ασ)) the set of such ground
service calls, and by EVALS(T,A, ασ) the set of substitutions that replace such calls
with concrete values taken from ∆. Specifically, EVALS(T,A, ασ) is defined as

EVALS(T,A, ασ) = {θ | θ : CALLS(DO(T,A, ασ))→ ∆ is a total function}.

With all these notions in place, we can now recall the execution semantics of a
KAB K = 〈T,A0, Γ,Π〉. To do so, we first introduce a transition relation EXECK that
connects pairs of ABoxes and service call maps due to action execution. In particular,
〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ EXECK if the following holds: (i) α is executable in state
s = 〈A,m〉 with parameter substitution σ; (ii) there exists θ ∈ EVALS(T,A, ασ)
s.t. θ and m “agree” on the common values in their domains (in order to realize the
deterministic service call semantics); (iii) A′ = DO(T,A, ασ)θ; (iv) m′ = m ∪ θ (i.e.,
updating the history of issued service calls).

The transition system ΥK of K is then defined as 〈∆,T,Σ, s0, abox ,⇒〉 where
s0 = 〈A0, ∅〉, and Σ and ⇒ are defined by simultaneous induction as the smallest
sets satisfying the following properties: (i) s0 ∈ Σ; (ii) if 〈A,m〉 ∈ Σ, then for all
actions α ∈ Γ , for all substitutions σ for the parameters of α and for all 〈A′,m′〉
s.t. 〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ EXECK and A′ is T -consistent, we have 〈A′,m′〉 ∈ Σ,
〈A,m〉 ⇒ 〈A′,m′〉. A run of ΥK is a (possibly infinite) sequence s0s1 · · · of states of
ΥK such that si ⇒ si+1, for all i ≥ 0.

3 Contextualizing Knowledge Bases

Following [17], we formalize context as a mathematical object. Basically, we follow
the approach in [19] of contextualizing knowledge bases by adopting the metaphor
of considering context as a box [4,13]. Specifically, this means that the knowledge
represented by the TBox (together with the ABox) in a certain context is affected by the
values of parameters used to characterize the context itself.

Formally, to define the context, we fix a set of variables Cdim = {d1, . . . , dn} called
context dimensions. Each context dimension di ∈ Cdim comes with its own tree-shaped
finite value domain 〈Dom(di),≺di〉, where Dom(di) represents the finite set of domain
values, and ≺di represents the predecessor relation forming the tree. We denote the
domain value in the root of the tree with>di . Intuitively,>di is the most general value in
the tree-shaped value hierarchy of Dom(di). We denote the fact that a context dimension
d is in value v by [d; v], and call this a context dimension assignment.

A context C over a set Cdim of context dimensions is defined as a set {[d1 ;

v1], . . . , [dn ; vn]} of context dimension assignments such that for each context
dimension d ∈ Cdim, there exists exactly one assignment [d; v] ∈ C. To predicate over
contexts, we introduce a context expression language Lcx over Cdim, which corresponds

30 Diego Calvanese, İsmail İlkan Ceylan, Marco Montali, and Ario Santoso

to propositional logic where the propositional letters are context dimension assignments
over Cdim. The syntax of Lcx is as follows:

ϕC ::= [d; v] | ϕC ∧ ϕ′C | ¬ϕC

where d ∈ Cdim, and v ∈ Dom(d). We adopt the standard propositional logic semantics
and the usual abbreviations. The notion of satisfiability and model are as usual. We call a
formula expressed in Lcx a context expression.

Observe that a context C = {[d1 ; v1], . . . , [dn ; vn]}, being a set of (atomic)
formulas in Lcx , can be considered as a propositional theory. The semantics of value
domains in Cdim can also be characterized by a Lcx theory. Specifically, we define
the theory ΦCdim

as the smallest set of context expressions satisfying the following
conditions. For every context dimension d ∈ Cdim, we have:

– For all values v1, v2 ∈ Dom(d) s.t. v1 ≺d v2, we have that ΦCdim
contains the

expression [d ; v1] → [d ; v2]. Intuitively, this states that the value v2 is more
general than v1, and hence, whenever we have [d; v1] we can infer that [d; v2].

– For all values v1, v2, v ∈ Dom(d) s.t. v1 ≺d v and v2 ≺d v, we have that ΦCdim

contains the expression [d ; v1] → ¬[d ; v2]. Intuitively, this expresses that
sibling values v1 and v2 are disjoint.

Example 1. Consider an online retail enterprise (e.g., amazon.com) with many warehouses. A
simple order processing scenario is as follows: (i) The customer submits the order. (ii) The central
processing office receives the order. (iii) The assembler collects the ordered product. For each
product that is not available in the central warehouse, the assembler makes a request to one of
the warehouses having that product. (iv) The wrapper wraps the ordered product. (v) The quality
controller (QC) checks the prepared order. (vi) The delivery team delivers the order to the delivery
service. In this scenario we consider Cdim = {PP,S}, where PP stands for processing plan, and
S stands for season. Dom(PP) = {WE,ME,RE,N,AP} (WE stands for worker efficiency, ME
stands for material efficiency, RE stands for resource efficiency, N stands for normal processing
plan, and AP stands for any processing plan.), where (i) WE ≺PP RE, (ii) ME ≺PP RE,
(iii) RE ≺PP AP, (iv) N ≺PP AP, For example, WE ≺PP RE means that worker efficiency is a
form of resource efficiency. Dom(S) = {WH, PS, LS,NS,AS} (WH stands for winter holiday,
PS stands for peak season, LS stands for low season, NS stands for normal season, and AS stands
for any season.), where (i) WH ≺S PS, (ii) PS ≺S AS, (iii) NS ≺S AS, (iv) LS ≺S AS.

Context-Sensitive Knowledge Bases. We define a context-sensitive knowledge base
(CKB) Ocx over Cdim as a standard DL knowledge base in which the TBox assertions
are contextualized. Formally, a contextualized TBox Tcx over Cdim is a finite set of
assertions of the form 〈t : ϕ〉, where t is a TBox assertion and ϕ is a context expression
over Cdim. Intuitively, 〈t : ϕ〉 expresses that the TBox assertion t holds in all those
contexts satisfying ϕ, taking into account the theory ΦCdim

. Given a contextualized
TBox Tcx , we denote with VOC(Tcx) the set of all concept and role names appearing in
Tcx , independently from the context.

Given a CKB Ocx = 〈Tcx , A〉 and a context C, both over Cdim, we define the
KB Ocx in context C as the KB OCcx = 〈TCcx , A〉, where TCcx = {t | 〈t : ϕ〉 ∈
Tcx and C ∪ ΦCdim

|= ϕ}.

Example 2. Continuing our example, in a normal situation, to guarantee a suitable service quality,
wrapper and assembler must not be the QC. However, in the situation (context) where we have

Adding Context to Knowledge and Action Bases 31

either peak season ([S ; PS]) or the company wants to promote worker efficiency ([PP ; WE]),
the wrapper and the assembler act also as QC. This situation can be encoded as follows:

〈Assembler v ¬QC : [PP ; N] ∧ [S ; NS]〉 〈Assembler v QC : [PP ; WE] ∨ [S ; PS]〉
〈Wrapper v ¬QC : [PP ; N] ∧ [S ; NS]〉 〈Wrapper v QC : [PP ; WE] ∨ [S ; PS]〉

4 Context-Sensitive Knowledge and Action Bases

We now enhance KABs with context-related information, introducing in particular
context-sensitive knowledge and action bases (CKABs), which consist of: (i) a context-
sensitive knowledge base (CKB), which maintains the information of interest, (ii) an
action base, which characterizes the system evolution, and (iii) context information that
evolves over time, capturing changing circumstances. Differently from KABs, where the
TBox is fixed a-priori and remains rigid during the evolution of the system, in CKABs
the TBox changes depending on the current context. Alongside the evolution mechanism
for data borrowed from KABs, CKABs include also a progression mechanism for the
context itself, giving raise to a system in which data and context evolve simultaneously.

4.1 Formalization of CKABs

As for standard KABs, in addition to ∆ and F , we fix the set Cdim = {d1, . . . , dn} of
context dimensions. A CKAB is a tuple Kcx = 〈Tcx , A0, Γ,Π,C0, ΠC〉 where:

– Tcx is a DL-LiteA contextualized TBox capturing the domain of interest.
– A0 and Γ are as in a KAB.
– Π is a finite set of condition-action rules that extend those of KABs by including, in

the precondition, a context expression. Such context expression implicitly selects
those contexts in which the corresponding action can be executed. Specifically, each
condition-action rule has the form 〈Q(~x), ϕC〉 7→ α(~x), where (i) α ∈ Γ is an
action, (ii) Q(~x) is an ECQ over Tcx whose free variables ~x correspond exactly to
the parameters of α, and (iii) ϕC is a context expression over Cdim.

– C0 is the initial context over Cdim.
– ΠC is a finite set of context-evolution rules, each of which determines the con-

figuration of the new context depending on the current context and data. Each
context-evolution rule has the form 〈Q,ϕC〉 7→ Cnew, where: (i) Q is a boolean
ECQ over Tcx , (ii) ϕC is a context expression, and (iii) Cnew is a finite set of context
dimension assignments such that for each context dimension d ∈ Cdim, there exists
at most one context dimension assignment [d; v] ∈ C. If a context variable is not
assigned by Cnew, it maintains the assignment of the previous state.

Example 3. In our running example, suppose the company has warehouses in a remote area (re-
mote warehouses), each of which is expected to guarantee a certain time to delivery (TTD) for prod-
ucts. During the low season, the company is free to set the TTD for all its remote warehouses, which
we model as a chgTTD() action. The execution of this action is controlled by the condition-action
rule 〈∃w.RemWH(w), [S ; LS]〉 7→ chgTTD().Assuming that the company maintains the TTD
for a remote warehouse in the relation hasTTD, the chgTTD() action can be specified as follows:
chgTTD() : { RemWH(x) ∧ hasTTD(x, y) {RemWH(x), hasTTD(x, newTTD(x, y))}}
Intuitively, the unique effect in hasTTD updates the TTD of a remote warehouse x, by issuing a
service call newTTD(x, y), which also takes into account the current TTD y of x.

32 Diego Calvanese, İsmail İlkan Ceylan, Marco Montali, and Ario Santoso

Example 4. An example of context-evolution rule is 〈true, [S ; PS]〉 7→ [S ; NS]. It models
the transition from peak season to normal season, independently from the data.

4.2 CKAB Execution Semantics

We are interested in verifying temporal properties over the evolution of CKABs, in
particular “robust” properties that the system is required to guarantee independently
from context changes. Towards this goal, we define the execution semantics of CKABs
in terms of a possibly infinite-state transition system that simultaneously captures all
possible evolutions of the system as well as all possible context changes.

Each state in the execution of a CKAB is a tuple 〈id, A,m,C〉, where id is a state
identifier, A is an ABox maintaining the current data, m is a service call map accounting
for the service call results obtained so far, and C is the current context. The context
univocally selects which are the axioms of the contextual TBox that currently hold, in
turn determining the current KB.

Formally, given a CKAB Kcx = 〈Tcx , A0, Γ,Π,C0, ΠC〉, we define its semantics
in terms of a context-sensitive transition system ΥKcx

= 〈∆,Tcx , Σ, s0, abox , ctx ,⇒〉,
where: (i) Tcx is a contextualized TBox; (ii) Σ is a set of states; (iii) s0 ∈ Σ is the initial
state; (iv) abox is a function that, given a state s ∈ Σ, returns the ABox associated to
s; (v) ctx is a function that, given a state s ∈ Σ, returns the context associated to s;
(vi)⇒ ⊆ Σ ×Σ is a transition relation between pairs of states.

Starting from the initial state s0, ΥKcx
accounts for all the possible (simultaneous)

data and context transitions. To single out the dynamics of the system as opposed to those
of the context, the transition system is built by repeatedly alternating between system
and context transitions. Technically, we revise the notion of executability for KABs by
taking into account context expressions, as well as the context evolution. Given an action
α ∈ Γ , we say that α is executable in state s with parameter substitution σ if there exists
a condition-action rule 〈Q(~x), ϕC〉 7→ α(~x) in Π s.t. ~xσ ∈ ANS(Q,T

ctx(s)
cx , abox (s))

and ctx (s) ∪ ΦCdim
|= ϕC .

We then introduce an action transition relation EXECKcx , where
〈〈A,m,C〉, ασ, 〈A′,m′, C ′〉〉 ∈ EXECKcx if the following holds:

– Action α is executable in state 〈A,m,C〉 with parameter substitution σ;
– There exists θ ∈ EVALS(TCcx , A, ασ) s.t. θ and m “agree” on the common values in

their domains;
– A′ = DO(TCcx , A, ασ)θ;
– m′ = m ∪ θ;
– C ′ = C, i.e., the context does not change.

Alongside the action transition relation, we also define a context transition relation
CEXECKcx

, where 〈〈A,m,C〉, 〈A′,m′, C ′〉〉 ∈ CEXECKcx
if the following holds:

– A′ = A, i.e., the ABox does not change;
– m′ = m, i.e., the service call map does not change;
– there exists a context rule 〈Q,ϕC〉 7→ Cnew in ΠC s.t.: (i) ANS(Q,TCcx , A) is true;

(ii) C ∪ ΦCdim
|= ϕC ; (iii) for every context dimension d ∈ Cdim s.t. [d ; v] ∈

Cnew, we have [d ; v] ∈ C ′; (iv) for every context dimension d ∈ Cdim s.t.
[d ; v] ∈ C, and there does not exist any v2 s.t. [d ; v2] ∈ Cnew, we have
[d; v] ∈ C ′.

Adding Context to Knowledge and Action Bases 33

Given these, we can now define how ΥKcx
is constructed, by suitably alternating the

action and context transitions. In order to single out the states obtained by applying
just an action transition and for which the context transition has not taken place yet,
we introduce a special marker State(inter), which is an ABox assertion with a fresh
concept name State and a fresh constant inter. When State(inter) is present, it means
that the state has been produced by an action execution, and that the next transition will
represent a context change. Such states can be considered as intermediate, in the sense
that the overall change both of the ABox facts and of the context has not taken place yet.

Formally, given a CKAB Kcx = 〈Tcx , A0, Γ,Π,C0, ΠC〉, the context-sensitive
transition system ΥKcx = 〈∆,Tcx , Σ, s0, abox , ctx ,⇒〉 is defined as follows:

– s0 = 〈id0, A0, ∅, C0〉;
– Σ and⇒ are defined by simultaneous induction as the smallest sets satisfying the

following properties: (i) s0 ∈ Σ; (ii) if 〈id, A,m,C〉 ∈ Σ and State(inter) /∈ A,
then for all actions α ∈ Γ , for all substitutions σ for the parameters of α, and for all
A′, m′ s.t. 〈〈A,m,C〉, ασ, 〈A′,m′, C〉〉 ∈ EXECKcx , let

S = {〈id′′, A′,m′, C ′〉 | id′′ is a fresh identifier, and there is 〈A′,m′, C〉
such that 〈〈A′,m′, C〉, 〈A′,m′, C ′〉〉 ∈ CEXECKcx

}.

If for some 〈id′′, A′,m′, C ′〉 ∈ S, we have that A′ is TC
′

cx -consistent, then s′ ∈ Σ
and 〈id, A,m,C〉 ⇒ s′, where s′ = 〈id′, A′ ∪ {State(inter)},m′, C〉 and id′ is a
fresh identifier. Moreover, in this case, for each s′′ = 〈id′′, A′,m′, C ′〉 ∈ S such
that A′ is TC

′

cx -consistent, we have that s′′ ∈ Σ and s′ ⇒ s′′.
Notice that, if at some point in the above inductive construction, for no
〈id′′, A′,m′, C ′〉 ∈ S we have that A′ is TC

′

cx -consistent, then neither the state s′ nor
any state in S becomes part of Σ.

5 Verifying Temporal Properties over CKAB

Given a CKAB Kcx , we are interested in verifying whether the evolution of Kcx , which
is represented by ΥKcx , complies with some given temporal property. The challenge is
that in general the transition system is infinite due to the presence of services calls, which
can introduce arbitrary fresh values into the system.

5.1 Verification Formalism: Context-Sensitive FO-variant of µ-Calculus

In order to specify temporal properties over CKABs, we use a first-order variant of
µ-calculus [20,18], one of the most powerful temporal logics, which subsumes LTL,
PSL, and CTL* [12]. In particular, we introduce the language µLCTX of context-sensitive
temporal properties, which is based on µLEQL

A defined in [2]. Basically, we exploit
ECQs to query the states, and support a first-order quantification across states, where
the quantification ranges over the constants in the current active domain. Additionally,
we augment ECQs with context expressions, which allows us to check also context
information while querying states. Formally, µLCTX is defined as follows:

Φ := Q | ϕC | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉[−]Φ | [−][−]Φ | Z | µZ.Φ

34 Diego Calvanese, İsmail İlkan Ceylan, Marco Montali, and Ario Santoso

where Q is a possibly open EQL query that can make use of the distinguished constants
in ADOM(A0), ϕC is a context expression over Lcx , and Z is a second order predicate
variable (of arity 0). We adopt the usual abbreviations of FOL, and also [−]Φ = ¬〈−〉¬Φ
and νZ.Φ = ¬µZ.¬Φ[Z/¬Z]. Hence 〈−〉〈−〉Φ = ¬[−][−]¬Φ and [−]〈−〉Φ = ¬〈−〉[−]¬Φ.

Notice that 〈−〉[−]Φ and [−][−]Φ are used in µLCTX to quantify over the successor states
of the current state, obtained after a state-changing transition followed by a context-
changing one. This allows one to separately control how the property quantifies over state
and context changes. Furthermore, due to the fact that the diamond and box operators can
be only used in pairs, the local queries that inspect the data and the context maintained
by the states are never issued over intermediate states, but only over those resulting from
the combination of an action and context transition.

The semantics of µLCTX is defined over a transition system
Υ = 〈∆,Tcx , Σ, s0, abox , ctx ,⇒〉. Since µLCTX contains formulae with both in-
dividual and predicate free variables, given a transition system Υ, we introduce an
individual variable valuation v, i.e., a mapping from individual variables x to ∆, and a
predicate variable valuation V , i.e., a mapping from predicate variables Z to subsets of
Σ. The semantics of µLCTX follows the standard µ-calculus semantics, except for the
semantics of queries and of quantification. We assign meaning to µLCTX formulas by
associating to Υ and V an extension function (·)Υv,V , which maps µLCTX formulas to
subsets of Σ. The extension function (·)Υv,V is defined inductively as follows:

(Q)Υv,V = {s ∈ Σ | ANS(Qv, TCcx , abox (s)) = true}
(ϕC)

Υ
v,V = {s ∈ Σ | ctx (s) ∪ ΦCdim |= ϕC}

(∃x.Φ)Υv,V = {s ∈ Σ | ∃d.d ∈ ADOM(abox (s)) and s ∈ (Φ)Υv[x/d],V }
(Z)Υv,V = V (Z) ⊆ Σ

(¬Φ)Υv,V = Σ − (Φ)Υv,V
(Φ1 ∨ Φ2)

Υ
v,V = (Φ1)

Υ
v,V ∪ (Φ2)

Υ
v,V

(〈−〉Φ)Υv,V = {s ∈ Σ | ∃s′. s⇒ s′ and s′ ∈ (Φ)Υv,V }
(µZ.Φ)Υv,V =

⋂
{E ⊆ Σ | (Φ)Υv,V [Z/E]

⊆ E}

where Qv is the query obtained from Q by substituting its free variables according to v.
For a closed formula Φ (for which (Φ)Υv,V does not depend on v or V), we denote with
(Φ)Υ the extension of Φ in Υ, and we say that Φ holds in a state s ∈ Σ if s ∈ (Φ)Υ .

Model checking is the problem of checking whether s0 ∈ (Φ)Υ , denoted by Υ |= Φ.
We are interested in verification of µLCTX properties over CKABs, i.e., given a CKAB
Kcx , and a µLCTX property Φ, check whether ΥKcx

|= Φ.

Example 5. In our running example, the property νZ.(∀x.CustOrder(x) ∧ [S ; PS] →
µY.(Delivered(x) ∨ [−][−]Y)) ∧ [−][−]Z checks that every customer order placed during peak
season will be eventually delivered, independently on how the context and the state evolve.

5.2 Decidability of Verification

In general, verification of temporal properties over CKABs is undecidable, even for
properties as simple as reachability, which can be expressed in much weaker languages
than µLCTX. This follows immediately from the fact that CKABs generalize KABs [2].

Adding Context to Knowledge and Action Bases 35

In order to establish decidability of verification, we need to pose restrictions on
the form of CKABs. We adopt the semantic restriction of run-boundedness identified
in [2], which intuitively imposes that along every run the number of distinct values
cumulatively appearing in the ABoxes of the states in the run is bounded. Formally,
given a CKAB Kcx , a run τ = s0s1 · · · of ΥKcx

is bounded if there exists a finite bound
b s.t.

∣∣⋃
s state of τ ADOM(abox (s))

∣∣ < b. We say that Kcx is run-bounded if there exists
a bound b s.t. every run τ in ΥKcx

is bounded by b. The following result shows that the
decidability of verification for run-bounded KABs can be lifted to CKABs as well.

Theorem 1. Verification of µLCTX properties over run-bounded CKABs is decidable,
and can be reduced to finite-state model checking.

Theorem 2. Given a weakly acyclic CKAB Kcx , we have that ΥKcx is run-bounded.

From Theorems 1 and 2, we finally obtain:

Corollary 1. Verification of µLCTX properties over weakly acyclic CKABs is decidable,
and can be reduced to finite-state model checking.

6 Conclusion

We have introduced context-sensitive KABs, which extend KABs with contextual infor-
mation. In this enriched setting, we make use of context-sensitive temporal properties
based on a FOL variant of µ-calculus, and establish decidability of verification for such
logic over CKABs in which the data values encountered along each run are bounded.

In this work, we adopt a simplistic approach to deal with inconsistency, based on
simply rejecting inconsistent states. This approach is particularly critical in the presence
of contextual information, which could lead to an inconsistent state simply due to a
context change. In this light, it is particularly interesting to merge the approach presented
here with the one in [10], where inconsistency is treated in a more sophisticated way.

Acknowledgments. This research has been partially supported by the EU IP project
Optique (Scalable End-user Access to Big Data), grant agreement n. FP7-318338, and
by DFG within the Research Training Group “RoSI” (GRK 1907).

References

1. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and consequences
of semantic web ontologies. John Wiley & Sons 12–13, 22–40 (2012)

2. Bagheri Hariri, B., Calvanese, D., Montali, M., De Giacomo, G., De Masellis, R., Felli,
P.: Description logic knowledge and action bases. J. of Artificial Intelligence Research 46,
651–686 (2013)

3. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer
sources. J. on Data Semantics 1, 153–184 (2003)

4. Bozzato, L., Ghidini, C., Serafini, L.: Comparing contextual and flat representations of
knowledge: a concrete case about football data. In: Proc. of the 7th Int. Conf. on Knowledge
Capture (K-CAP). pp. 9–16. ACM Press (2013)

36 Diego Calvanese, İsmail İlkan Ceylan, Marco Montali, and Ario Santoso

5. Calvanese, D., Ceylan, İ.İ., Montali, M., Santoso, A.: Verification of context-sensitive knowl-
edge and action bases. In: Proc. of the 14th European Conf. on Logics in Artificial Intelligence
(JELIA). LNAI, vol. 8761, pp. 514–528. Springer (2014)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodrı́guez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Reasoning Web. Semantic
Technologies for Informations Systems – 5th Int. Summer School Tutorial Lectures (RW),
LNCS, vol. 5689, pp. 255–356. Springer (2009)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective
first-order query processing in description logics. In: Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI). pp. 274–279 (2007)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

9. Calvanese, D., De Giacomo, G., Lembo, D., Montali, M., Santoso, A.: Ontology-based
governance of data-aware processes. In: Proc. of the 6th Int. Conf. on Web Reasoning and
Rule Systems (RR). LNCS, vol. 7497, pp. 25–41. Springer (2012)

10. Calvanese, D., Kharlamov, E., Montali, M., Santoso, A., Zheleznyakov, D.: Verification of
inconsistency-aware knowledge and action bases. In: Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence (IJCAI) (2013)

11. Ceylan, İ.İ., Peñaloza, R.: The Bayesian description logic BEL. In: Proc. of the 7th Int. Joint
Conf. on Automated Reasoning (IJCAR). LNCS, vol. 8562, pp. 480–494. Springer (2014)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge, MA,
USA (1999)

13. Giunchiglia, F., Bouquet, P.: Introduction to contextual reasoning. an artificial intelligence
perspective. In: Perspectives on Cognitive Science, pp. 138–159. NBU Press (1997)

14. Klarman, S., Gutiérrez-Basulto, V.: ALCALC : A context description logic. In: Proc. of the
12th Eur. Conference on Logics in Artificial Intelligence (JELIA). LNCS, vol. 6341, pp.
208–220. Springer (2010)

15. Limonad, L., De Leenheer, P., Linehan, M., Hull, R., Vaculin, R.: Ontology of dynamic
entities. In: Proc. of the 31st Int. Conf. on Conceptual Modeling (ER) (2012)

16. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–1035 (1987)
17. McCarthy, J.: Notes on formalizing context. In: Proc. of the 13th Int. Joint Conf. on Artificial

Intelligence (IJCAI). pp. 555–560 (1993)
18. Park, D.M.R.: Finiteness is Mu-ineffable. Theoretical Computer Science 3(2), 173–181 (1976)
19. Serafini, L., Homola, M.: Contextualized knowledge repositories for the semantic web. J. of

Web Semantics 12, 64–87 (2012)
20. Stirling, C.: Modal and Temporal Properties of Processes. Springer (2001)
21. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: Proc. of the

12th Int. Conf. on Database Theory (ICDT). pp. 1–13 (2009)

	Adding Context to Knowledge and Action Bases

