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Abstract

For the basic Description Logics reasoning
with respect to finite models amounts to reas-
oning with respect to arbitrary ones, but
finiteness of the domain needs to be con-
sidered if expressivity is increased and the
finite model property fails. Procedures for
reasoning with respect to arbitrary models in
very expressive Description Logics have been
developed, but these are not directly applic-
able in the finite case. We first show that we
can nevertheless capture a restricted form of
finiteness and represent finite modeling struc-
tures such as lists and trees, while still reas-
oning with respect to arbitrary models. The
main result of this paper is a procedure to
reason with respect to finite models in an
expressive Description Logic equipped with
inverse roles, cardinality constraints, and in
which arbitrary inclusions between concepts
can be specified without any restriction. This
provides the necessary expressivity to go bey-
ond most semantic and object-oriented Data-
base models, and capture several useful ex-
tensions.

1 INTRODUCTION

From the start of the discipline, researchers working in
Knowledge Representation (KR), have aimed at aug-
menting the expressivity of the formalisms used for
representing structured knowledge, without comprom-
ising the computational properties of the procedures
adopted for reasoning about it. This research has par-
alleled the one in Databases (DBs), where expressive
data models have been developed, aimed at represent-
ing the data manipulated by commercial applications.

There is a strong similarity between all these ap-
proaches, in which the domain knowledge is repres-
ented in form of a schema by defining classes, which
denote subsets of the domain, and by specifying various
types of relations between classes, which establish their
structural properties (Calvanese, Lenzerini, & Nardi,
1994; Borgida, 1995). In this context it is fundamental
to provide methods for reasoning about such specifica-
tions in order to detect inconsistencies and hidden de-
pendencies which arise from the specified constraints.
This is precisely the objective of all KR systems in
the style of KL-ONE, and of Description Logics (DL)
introduced for their formalization. It is gaining an in-
creased importance also in DBs, both to support the
phase of analysis and design of DB systems, and in
the process of query answering to perform for example
semantic query optimization.

However, while in DBs it is usually assumed that the
underlying domain is finite, reasoning in DLs is per-
formed without making such hypothesis. This seems
to be in contrast with the purpose of a KR system to
represent real world structures, which are inherently fi-
nite. It can however be justified by observing that most
DLs studied so far have the finite model property, stat-
ing that a consistent schema (or KB) always admits a
model with finite domain. This implies that one does
not need to take special care about finiteness of the do-
main, since it can always be assumed. Unfortunately,
the finite model property does not hold for more ex-
pressive logics, as those studied for example in (De Gi-
acomo & Lenzerini, 1994a; Buongarzoni, Menghini,
Salis, Sebastiani, & Straccia, 1995). In particular, this
happens also for the logics which include inverse roles
and functionality of roles, and which therefore have suf-
ficient expressivity to represent semantic and object-
oriented DB models (Calvanese et al., 1994). For those
logics it becomes important to provide specific reason-
ing methods for both the finite and the unrestricted
case.



While for unrestricted reasoning, techniques have been
developed to deal with very expressive DLs (De Gi-
acomo & Lenzerini, 1995), decidability of reasoning
with respect to finite models is still open for important
cases. In particular, there is no known method capable
of handling schemata in which classes can be defined by
necessary and sufficient conditions, in a logic featuring
the constructs typical of DB models. Such methods
are however necessary if one wants to reason for ex-
ample on views in object-oriented models. Moreover,
excessively limiting expressivity goes against the spirit
of capturing in the schema as much as possible of the
semantics of the modeled reality. Only an expressive
formalism equipped with sound and complete reason-
ing procedures provides the user with the necessary
tools to reason about relevant aspects of the domain
he needs to represent. In this paper we present such
formalisms in which different forms of finiteness can
be captured.

On one hand, we show that while keeping the max-
imum expressivity, one can add to the language a well-
founded constructor which allows one to impose well-
foundedness and therefore finiteness of certain struc-
tures, without necessarily requiring the whole domain
to be finite. By means of the well-founded constructor
it becomes possible to define classes that represent
modeling structures such as lists and trees, and reason
about them like about any other class in the schema.
This represents a significant improvement with respect
to traditional data models, where such modeling struc-
tures, if present at all, are ad hoc additions that re-
quire a special treatment by the reasoning procedures
(Cattell, 1994). The known methods for reasoning
with respect to arbitrary models in expressive DLs are
based on a correspondence between DLs and Proposi-
tional Dynamic Logics (PDLs) and exploit the powerful
reasoning methods developed for PDLs (Schild, 1991;
De Giacomo & Lenzerini, 1994a). We show that the
correspondence can in fact be extended to handle also
well-foundedness, and present a reasoning technique
for the resulting PDL.

On the other hand, we develop a method to reason
with respect to finite models on schemata built using
a very expressive DL, and show its decidability in de-
terministic double exponential time. The DL we con-
sider includes besides number restrictions and inverse
roles also general negation of concept expressions. The
schemata are of the most general form, in which one
can express arbitrary inclusions between complex ex-
pressions without any restriction at all. This makes
our language not only capable of capturing the struc-
tural properties of class-based representation formal-
isms used in DBs, but provides also the necessary ex-

pressivity to subsume the terminological component of
most existing concept based systems.

The rest of the paper is organized as follows: In Sec-
tion 2 we present the representation formalism we ad-
opt, in Section 3 we discuss the issues related to reason-
ing about finite modeling structures and in finite mod-
els and in Sections 4 and 5 we analyze the reasoning
methods used in both contexts. In Section 6 we outline
possible directions for future work.

2 THE REPRESENTATION

FORMALISM

In this section, we present the family of class-based
formalisms we deal with. These formalisms exploit De-
scription Logics for the definition of schemata, and the
logics we define extend the well known logics of the
AL-family (Donini, Lenzerini, Nardi, & Nutt, 1991a)
by several expressive constructs.

2.1 SYNTAX AND SEMANTICS OF

DESCRIPTION LOGICS

The basic elements of Description Logics (DLs) are
concepts and roles, which denote classes and binary
relations, respectively. Complex concept and role ex-
pressions are built, starting from a set of concept and
role names, by applying certain constructors. Each
DL is characterized by the set of allowed construct-
ors. Table 1 shows the concept and role forming con-
structors we consider in this paper. The first column
specifies the name of each constructor and the second
column specifies a letter that is used to denote each
constructor when naming a logic. The basic logic we
consider is AL, which contains only the constructors
to which no letter is associated. All other logics we
deal with include the constructors of AL. Each logic
is named with a string that starts with AL and in-
cludes the letters that are associated to the additional
constructors in the logic.

The syntax of each constructor in concept and role
expressions is shown in the third column of the table.
Concept names are denoted by C and complex concept
expressions by E. Role names and complex role ex-
pressions are denoted by P and R, respectively. m

denotes a positive and n a nonnegative integer.

Concepts are interpreted as subsets of a domain and
roles as binary relations over that domain. More pre-
cisely, an interpretation I := (∆I , ·I) consists of a set
∆I (the domain of I) and a function ·I (the interpret-
ation function of I) that maps every concept name C

to a subset CI of ∆I , every role name P to a sub-



Constructor Name Syntax Semantics

concept name C CI ⊆ ∆I

top ⊤ ∆I

atomic negation ¬C ∆I \ CI

conjunction E1 ⊓ E2 EI
1 ∩ EI

2

universal quantification ∀R.E {o | ∀o′ : (o, o′) ∈ RI → o′ ∈ EI}
unqualified existential quantification ∃R {o | ∃o′ : (o, o′) ∈ RI}
existential quantification E ∃R.E {o | ∃o′ : (o, o′) ∈ RI ∧ o′ ∈ EI}
disjunction U E1 ⊔ E2 EI

1 ∪ EI
2

general negation C ¬E ∆I \ EI

number restrictions N ∃≥mR {o | ♯{o′ | (o, o′) ∈ RI} ≥ m}
∃≤nR {o | ♯{o′ | (o, o′) ∈ RI} ≤ n}

qualified number Q ∃≥mR.E {o | ♯{o′ | (o, o′) ∈ RI ∧ o′ ∈ EI} ≥ m}
restrictions ∃≤nR.E {o | ♯{o′ | (o, o′) ∈ RI ∧ o′ ∈ EI} ≤ n}
well-founded W wf (R) {o0 | ∀o1, o2, . . . (ad infinitum) ∃i ≥ 0 : (oi, oi+1) 6∈ RI}
role value map V (R1 ⊆ R2) {o | {o′ | (o, o′) ∈ RI

1 } ⊆ {o′ | (o, o′) ∈ RI
2 }}

role name P P I ⊆ ∆I × ∆I

inverse I R− {(o, o′) | (o′, o) ∈ RI}
union R R1 ∪ R2 RI

1 ∪ RI
2

concatenation R R1 ◦ R2 RI
1 ◦ RI

2

reflexive transitive closure R R∗ (RI)∗

identity R id(E) {(o, o) | o ∈ EI}
difference D R1 \ R2 RI

1 \ RI
2

Table 1: Syntax and semantics of the concept and role forming constructors.

set P I of ∆I × ∆I , and concept and role expressions
according to the last column of Table 11.

Most of the constructors we have presented are well
known in DLs, and have a correspondence in modeling
constructs used both in Frame Based Systems and in
DB models. This is not the case for the constructor
wf , called well-founded, which has rarely been con-
sidered in KR, but which proves particularly useful
for expressing modeling structures that are inherently
finite.

2.2 AL-SCHEMATA

Using concept expressions of a DL, intensional know-
ledge can be specified through schemata. Given an
AL-DL L, an L-schema is a triple S := (C,P, T ),
where C is a finite set of concept names, P is a finite
set of role names, and T is a finite set of assertions.
Each such assertion has one of the forms

C �̇ E (primitive concept specification)

C
.
= E (concept definition)

where C ∈ C and E is a concept expression of L in-
volving only names of C ∪ P. In the following, when

1♯S denotes the cardinality of a set S.

not specified otherwise, we assume that S := (C,P, T ),
and that C and P are the sets of concept and role names
that appear in T .

Primitive concept specifications are used to specify ne-
cessary conditions for an object to be an instance of a
concept, while concept definitions specify both neces-
sary and sufficient conditions. More formally, an inter-
pretation I satisfies an assertion C �̇ E if CI ⊆ EI ,
and it satisfies an assertion C

.
= E if CI = EI . An

interpretation that satisfies all assertions in a schema S
is called a model of S. A finite model is a model with
finite domain. A concept expression E is (finitely) con-
sistent in S if S admits a (finite) model I such that
EI 6= ∅, and E1 is (finitely) subsumed by E2 in S if
EI

1 ⊆ EI
2 for every (finite) model I of S.

Both in KR and in DB models several different as-
sumptions on the form of a schema are made, either
implicitly or explicitly:

1. For each concept name there is at most one asser-
tion in which that name appears in the left-hand
side.

2. The schema contains no cycles2.

2See (Nebel, 1991) for a formal definition of cycle in a
schema.



3. The schema contains only primitive concept spe-
cifications (primitive schema).

Assumption 1 corresponds to the natural requirement
that all the information concerning a class is contained
in one place, which contributes to a better structuring
of the represented knowledge (Nebel, 1990; Baader,
1990; Lecluse & Richard, 1989; Bergamaschi & Sar-
tori, 1992). It may however be too restrictive, espe-
cially in those cases where one wants to state additional
constraints that are not specific to a certain class.

Assumption 2 of acyclicity (which is meaningful only
in the presence of assumption 1) is made in most ex-
isting concept-based KR systems, although imposing
this condition strongly limits the expressive power of
the system (Nebel, 1990). Many real world concepts
can in fact be expressed naturally only in a recursive
way and thus through cycles. The reason for not ad-
mitting cycles is twofold. On one hand cycles greatly
increase the computational complexity of reasoning on
a schema (Baader, 1990; Calvanese, 1996a), and on the
other hand, there is still no agreement in the field on
which semantics to adopt in their presence. Besides
descriptive semantics, which is the semantic specifica-
tion described above, so called fixpoint semantics have
been considered (Nebel, 1991). Descriptive semantics,
which is the one we use, has been advocated to be the
one which gives the most intuitive results (Nebel, 1991;
Buchheit, Donini, Nutt, & Schaerf, 1995), and it is also
the only one that can be adopted for the most gen-
eral type of schemata, called free, in which none of the
three conditions above is required to hold3. (Baader,
1990) argues that from a constructive point of view
greatest fixpoint semantics should be preferred. Least
fixpoint semantics, on the other hand, seems the most
appropriate for the definition of inductive structures.
We will see in Section 3 that we can obtain a similar
result by using the well-founded constructor together
with descriptive semantics. We remark that recently
there have been also proposals for an integration of
the different types of semantics by including fixpoint
constructors in the logic (Schild, 1994; De Giacomo
& Lenzerini, 1994b) and interpreting cycles with de-
scriptive semantics.

Assumption 3 is sometimes made in concept-based KR
systems (Buchheit et al., 1995) and it is usually impli-
cit in DB models, in which the classes are specified
only through necessary conditions (Calvanese et al.,

3The expressivity of free schemata defined in this way
is equivalent to the one of schemata constituted by free
inclusion assertions, which have the form E1 �̇ E2, where
both E1 and E2 are arbitrary concept expressions with no
restriction at all.

1994). Although it strongly limits expressivity, reas-
oning on primitive schemata is nevertheless intractable
even in the simplest setting, where we use only the
constructors of AL (which are common to almost all
representation formalisms) and the schema is acyclic
(Buchheit et al., 1995). In fact assumption 3 reduces
worst case complexity of reasoning on a schema only
if relatively weak languages are adopted (Calvanese,
1996a).

3 FROM FINITE MODELING

STRUCTURES TO FINITE

MODELS

Both in KR and in DBs representation formalisms have
been developed which offer powerful structuring cap-
abilities and procedures to reason about a specifica-
tion. However, while in DBs the common assump-
tion is that the modeled domain is finite, this has sel-
dom been an issue in KR in general and in DLs in
particular, where the developed reasoning methods do
not take care of finiteness. For most of the DLs that
have been considered till now this does not represent
a limitation, neither for reasoning on concept expres-
sions (Donini et al., 1991a; Donini, Lenzerini, Nardi,
& Nutt, 1991b) nor on schemata (Nebel, 1991; Buch-
heit et al., 1995), since for these formalisms the fi-
nite model property holds. It states that if a schema
(or concept expression) admits a model, then it also
admits one with a finite domain, and therefore reas-
oning with respect to unrestricted models amounts to
reasoning with respect to finite ones. This does not
hold anymore for the more expressive logics studied
recently, which include inverse roles and functionality
of roles, since these constructors in combination with
cycles in the schema cause the finite model property to
fail to hold.

Example 1 Consider the following schema:

Guard �̇ ∃shields.Guard ⊓ ∃≤1shields−

FirstGuard �̇ Guard ⊓ ∃≤0shields−

Each Guard shields at least some guard, and is shiel-
ded by at most one individual. A FirstGuard is a
guard whom nobody shields. It is easy to see that
the existence of a FirstGuardforces the existence of
an infinite sequence of guards, each one shielding the
next. Therefore FirstGuard is consistent but not fi-
nitely consistent.

For other examples, see the logics in (De Giacomo &
Lenzerini, 1994a; Calvanese et al., 1994), or the one
in (Buongarzoni et al., 1995), where not cycles but



singleton concepts are used to specify concepts that
are consistent only in an infinite domain.

For the most expressive DLs (and in particular for
those that lack the finite model property), methods
for reasoning with respect to arbitrary models have
been developed, which are based on a correspond-
ence between DLs and Propositional Dynamic Logics
(PDLs). PDLs are formalisms specifically designed for
reasoning about program schemes (Kozen & Tiuryn,
1990), and their correspondence with DLs was de-
scribed first in (Schild, 1991) and extended to more
expressive logics in (De Giacomo & Lenzerini, 1994a).
The correspondence allows one to reduce concept con-
sistency to satisfiability of a formula of some PDL,
and to use the advanced methods developed for PDLs
to solve this latter task. These methods exploit the
fundamental tree model property, shared by all PDLs,
which states that every satisfiable formula admits par-
ticular models that have the form of an (infinite) tree
of bounded degree. If the domain has to be finite,
however, the existence of tree-like models is not guar-
anteed, and the known reasoning methods are not ap-
plicable.

It is nevertheless possible to express restricted forms of
finiteness, even in those logics that lack the finite model
property, by imposing conditions that force certain
structures in the domain to be well-founded, without
assuming the whole interpretation domain to be finite.
This allows us to deal with finite modeling structures,
while exploiting the powerful techniques for reasoning
with respect to unrestricted models. Well-foundedness
can be imposed by using wf (R), which expresses that
there is no infinite sequence of objects, connected one
to the next by means of role R. In terms of PDLs,
wf (R) corresponds to a negated repeat formula ¬∆(R)
(Streett, 1982), which is in turn equivalent to the least
fixpoint expression4 µX.∀R.X (Kozen, 1983). Thus
we can use such constructor to express finite structures
that admit a least-fixpoint definition. We illustrate this
on the example of binary trees.

Example 2 We can define a binary tree inductively
as the least set bin-tree such that:

• a node having no successors is a bin-tree,

• a node whose successors are all bin-trees, is a bin-
tree,

4A least fixpoint expression µX.f(X), where X is a
concept variable and f is a monotone operator, is inter-
preted as the least set XI of objects in ∆I satisfying
XI = (f(X))I . See (Schild, 1994; De Giacomo & Len-
zerini, 1994b) for more details.

and where additionally a node is constrained to have
at most one predecessor and at most two successors
(plus possibly additional properties such as a label).

The inductive part of the definition can be captured by
the least fixpoint expression

µX.((Node ⊓ ∃≤0edge) ⊔ (Node ⊓ ∀edge.X))

which is equivalent to

µX.(Node ⊓ ∀edge.X).

Thus, the following (non-recursive) schema reflects the
full definition of binary tree, where the first assertion
in the schema captures the local properties of nodes:

Node �̇ ∃≤2edge ⊓ ∃≤1edge− ⊓ ∃label. . . .

BinTree
.
= µX.(Node ⊓ ∀edge.X) (1)

It is possible to show that, for every model I of a
schema S containing the assertions above, the set of
objects that are instances of BinTree remains the same
if we replace assertion 1 by the following:

BinTree
.
= Node ⊓ ∀edge.BinTree ⊓ wf (edge) (2)

Notice that this assertion is recursive and makes use of
the well-founded constructor to achieve the same effect
as the least-fixpoint expression. In particular, given
an interpretation I of S that interprets all concept and
role names in S except BinTree, there is a unique way
to extend I to BinTree such that it satisfies asser-
tion 2. The extension of BinTree is exactly the set of
objects that are instances of the least-fixpoint expres-
sion on the right hand side of assertion 1. Therefore as-
sertion 2, despite being recursive, represents a proper
definition.

By proceeding in a similar way, most data structures
encountered in Computer Science which admit an in-
ductive definition, such as lists, trees, and directed
acyclic graphs, can be modeled in a DL including the
well-founded constructor. Notice that in general to this
end both inverse roles and number restrictions are in-
dispensable. For this reason we can not directly make
use of fixpoint constructors as in the DLs presented in
(Schild, 1994; De Giacomo & Lenzerini, 1994b), since
decidability is still open for those logics including fix-
points in combination with inverse roles.

Another important use of the well-founded constructor
is for the definition of well-founded relations, of which
the part-of relation is a notable example with great
practical relevance (Artale, Franconi, Guarino, &
Pazzi, 1996; Sattler, 1995). Transitivity of the part-of



relation can be captured by taking the transitive clos-
ure of a basic part of role, while asymmetricity and
finiteness (i.e. well-foundedness) are imposed by an as-
sertion of the form ⊤ �̇ wf (basic part of). Notice
also that by means of role value maps on role names
we can capture different specializations of the part-of
relation.

The constructors that cause the loss of the finite model
property are all necessary in order to capture the char-
acteristics of the most important representation form-
alisms used both in KR and in DBs (Calvanese et al.,
1994). In fact, neither the Entity-Relationship model
nor expressive object-oriented models have the finite
model property, and since the assumption of a finite
domain is essential in this context, specialized meth-
ods capable of reasoning in these formalisms with re-
spect to finite models are needed. This seems to be
more difficult than reasoning with respect to arbitrary
ones. As already noticed, if the domain has to be fi-
nite the tree model property does not hold, and the
correspondence with PDLs cannot be exploited. In
fact, decidability of finite concept consistency and fi-
nite subsumption for more expressive formalisms is still
an open problem, and there are no known methods to
handle concept definitions or even (qualified) existen-
tial quantification in conjunction with the constructors
that cause the finite model property not to hold. The
main result of this paper, presented in Section 5, is a
method to reason with respect to finite models on free
ALCQI-schemata. The possibility in such schemata
to make use of full negation and of concept definitions
provides indeed the necessary expressivity to go bey-
ond the basic features of DB models and capture and
reason upon several useful constructs that have been
proposed as extensions to existing models. Relevant
examples are:

• Classes defined through necessary and sufficient con-
ditions, which correspond to so called views in
object-oriented DBs (Abiteboul & Bonner, 1991).
Using free assertions5 it is also possible to specify
only sufficient conditions for an object to be an in-
stance of a class, and more general forms of integrity
constraints.

• Classes defined as the union of other classes.

• ISA relations between relationships in the Entity-
Relationship model (Di Battista & Lenzerini, 1993).

• Negative assertions about classes, such as disjoint-
ness, or non-participation in a relationship (Di Bat-
tista & Lenzerini, 1993).

5See footnote 3.

Athlete �̇ ∀partic.Comp ⊓ ∃≤4partic ⊓
∀wins.RunningComp ⊓ ∃wins.Final

Comp �̇ ∀partic−.Athlete

Final �̇ Comp ⊓ ∃≤1wins−

RunningComp �̇ Comp

Final ⊓ RunningComp �̇ ∃≥6partic−

Figure 1: A schema with finitely inconsistent concepts

Example 3 The schema S shown in Figure 1 mod-
els the participation of athletes in sports competitions.
The last (free) inclusion assertion represents a con-
straint that is not associated to a specific concept
name. It turns out, however, that S contains a mod-
eling error that causes Athlete to be finitely incon-
sistent. In fact, the conditions imposed on Athlete

should only be required for (fast) runners that win a
final. Therefore it is not correct to assume that only
such athletes can participate in a competition. Notice
that the inconsistency above would not be detected by
a reasoning procedure that ignores finiteness, since all
concepts in S are consistent.

Before discussing in Section 5 the method to reason
with respect to finite models, we briefly illustrate in
Section 4 how to reason with respect to arbitrary mod-
els in a very expressive DL which includes the well-
foundedness constructor, and therefore allows us to
represent finite modeling structures.

4 REASONING ABOUT FINITE

MODELING STRUCTURES

We now sketch a method to reason with respect to
arbitrary models on free schemata expressed in a
DL that includes all constructors shown in Table 1,
and in particular the well-founded constructor that al-
lows us to define finite modeling structures. Some
of the other constructors, however, and in particular
role-value maps, intersections of complex roles, and
number restrictions on complex roles, make reasoning
highly undecidable if they are used without restrictions
(Schmidt-Schauß, 1989; Harel, 1983). Therefore, we
syntactically restrict the use of these problematic con-
structors in a way similar to what done in (De Giac-
omo & Lenzerini, 1995) for the logic CAT S. The logic
ALT , in which we distinguish between basic roles, de-
noted by the letter B, and arbitrary complex roles, is
defined as follows:

E −→ C | E1 ⊓ E2 | ¬E | ∀R.E | ∃≤n

B.E |

∃≤n

B
−
.E | (B1 ⊆ B2) | (B−

1 ⊆ B
−
2 ) | wf (R)



B −→ P | B1 ∪ B2 | B1 \ B2

R −→ B | R1 ∪ R2 | R1 ◦ R2 | R
− | R

∗ | id(E).

The semantics for ALT class and role expressions is
defined as in Table 1, considering that basic roles are
just particular types of complex roles.

Decidability in deterministic exponential time of reas-
oning in an object-oriented model with the same ex-
pressivity as free ALT -schemata was already shown
in (Calvanese, De Giacomo, & Lenzerini, 1995). We
briefly sketch the idea underlying the proof, which ex-
ploits the correspondence with PDLs: Concepts of DLs
correspond to formulae of PDLs, roles correspond to
programs, and (almost) every constructor of DLs has
its counterpart in PDLs.

We can reduce the problem of reasoning on a free ALT -
schema to the problem of verifying the satisfiability of
a formula of rfcpdl, which is basic PDL augmented
with the converse operator on programs (corresponding
to inverse roles), local functionality on both direct and
inverse atomic programs (which corresponds to func-
tional restrictions, to which existential quantifications
are reduced by “reifying” basic roles) and the repeat
constructor (which corresponds to well-foundedness).
The details of the reduction can be found in (Calvanese,
1996b).

Proposition 4 Given a free ALT -schema S and a
concept expression E, one can construct in polynomial
time in |S| + |E| an rfcpdl-formula fS,E such that
fS,E is satisfiable if and only if E is consistent in S.

In order to prove the desired decidability result,
however, we cannot exploit known decision procedures
for PDLs, since the decidability of rfcpdl is open. To
show decidability of rfcpdl we reduce satisfiability of
a formula to nonemptiness of the language accepted by
a finite automaton on infinite objects derived from the
formula (Thomas, 1990). This is a standard technique
that provides tight upper bounds for various modal
and temporal logics (Emerson & Jutla, 1989; Vardi
& Wolper, 1994) and logics of programs (Vardi, 1985;
Vardi & Wolper, 1986; Vardi & Stockmeyer, 1985), and
we extend it to rfcpdl. It is based on the tree model
property which holds also for rfcpdl. In particular,
the automaton we obtain from a rfcpdl formula f is
a hybrid automaton Hf := (Tf ,Wf ), that combines an
automaton on infinite trees Tf of exponential size in |f |,
with an automaton on infinite words Wf of polynomial
size in |f | and which handles the repeat sub-formulae.
Exploiting the results described in (Emerson & Jutla,
1989), the nonemptiness problem for such a hybrid tree
automaton can be solved in deterministic time that is

polynomial in the number of states of Tf and exponen-
tial in the number of states of Wf .

This allows us to establish the desired upper bound
for satisfiability in rfcpdl, and therefore for unres-
tricted model reasoning in ALT . By the well known
EXPTIME lower bound for reasoning on free FL−-
schemata6 the complexity bound is tight.

Theorem 5 Unrestricted concept consistency and
concept subsumption in free ALT -schemata are
EXPTIME-complete.

5 REASONING WITH RESPECT

TO FINITE MODELS

In this section we present a technique for reasoning
with respect to finite models in L-schemata. The
method extends the one proposed in (Calvanese et al.,
1994) to reason on primitive ALUNI-schemata, and is
based on the same idea of constructing from a schema
a system of linear inequations, and relating the exist-
ence of finite models of the schema to the existence
of particular solutions of the system. The method we
present decides concept consistency (and therefore also
subsumption) in free ALCQI-schemata. Due to the
presence of arbitrary free inclusion assertions, and the
higher expressivity of the underlying language (in par-
ticular the presence of existential quantification) the
construction of the system of inequations is much more
involved than for primitive ALUNI-schemata.

We describe the method for reasoning on free ALCNI-
schemata and sketch then how it must be extended
to deal with qualified number restrictions. We use
the term literal, ranged over by L, to denote either
a concept name or a concept name preceded by the
symbol “¬”. It is easy to see that each free schema
can be transformed in linear time into an equivalent
normalized schema, where each assertion has the form
L �̇ E, and E has one of the forms

L1 | L1 ⊔ L2 | ∀R.L1 | ∃R.L1 | ∃≥mR | ∃≤nR.

Therefore, in the following we assume to deal with free
normalized ALCNI-schemata.

5.1 EXPANSION OF A SCHEMA

We generalize now the definition of expansion of a
schema introduced in (Calvanese et al., 1994) to free
ALCNI-schemata. Let S := (C,P, T ) be such a

schema. We call a set D̂ ∈ 2C a compound concept,

6FL− is the language obtained from AL by dropping
atomic negation.



and an element Q̂ ∈ P×2C×2C a compound role. D̂

ranges over compound concepts and Q̂ over compound
roles. A compound assertion has one of the forms

D̂ �̇ ∃≥mR, D̂ �̇ ∃≤nR, D̂ �̇ ∃R.L.

For a negative literal L = ¬C, when we write L ∈ D̂

we mean C 6∈ D̂.

Intuitively, the instances of a compound concept D̂ are
all those objects of the domain that are instances of all
concepts in D̂ and are not instances of any concept not
in D̂. A compound role (P, D̂1, D̂2) is interpreted as
the restriction of role P to the pairs whose first com-
ponent is an instance of D̂1 and whose second compon-
ent is an instance of D̂2. More formally, the semantics
of compound concepts and roles is given by extending
the interpretation function as follows:

D̂I :=
⋂

C∈D̂

CI \
⋃

C∈(C\D̂)

CI

(P, D̂1, D̂2)
I := P I ∩ (D̂I

1×D̂I
2 ).

Note that according to this definition two different
compound concepts have necessarily disjoint interpret-
ations.

We say that a compound concept D̂ ∈ 2C is S-
consistent, if for every L ∈ D̂,

– if (L �̇ L′) ∈ T , then L′ ∈ D̂, and

– if (L �̇ L1 ⊔ L2) ∈ T , then L1 ∈ D̂ or L2 ∈ D̂.

We say that a compound role (P, D̂1, D̂2) ∈ P×2C×2C

is S-consistent, if

– D̂1 and D̂2 are S-consistent,

– for every L ∈ D̂1, if (L �̇ ∀P .L′) ∈ T , then L′ ∈ D̂2,
and

– for every L ∈ D̂2, if (L �̇ ∀P−1.L′) ∈ T , then L′ ∈

D̂1.

Intuitively, compound concepts and roles that are not
consistent necessarily have an empty extension in all
models of the schema.

The expansion Ŝ := (C,P, D̂, Q̂, T̂ ) of S is defined as
follows:

• D̂ is the set of all S-consistent compound concepts.

• Q̂ is the set of all S-consistent compound roles.

• T̂ is the smallest set of compound assertions such
that for every D̂ ∈ D̂:

– if for some L ∈ D̂ there is an assertion (L �̇

∃≥mR) ∈ T , then T̂ contains the compound as-

sertion D̂ �̇ ∃≥mmax R, where mmax := max{m |

∃L ∈ D̂ : (L �̇ ∃≥mR) ∈ T };

– if for some L ∈ D̂ there is an assertion (L �̇

∃≤nR) ∈ T , then T̂ contains the compound asser-

tion D̂ �̇ ∃≤nmin R, where nmin := min{n | ∃L ∈

D̂ : (L �̇ ∃≤nR) ∈ T }.

– if for some L ∈ D̂ there is an assertion (L �̇

∃R.L′) ∈ T , then T̂ contains the compound as-

sertion D̂ �̇ ∃R.L′.

It is easy to see that the size of the expansion is ex-
ponential in the size of the original schema and that it
can also be effectively constructed in exponential time.

In (Calvanese et al., 1994) it is shown that for primitive
ALUNI-schemata a system of linear inequations can
be directly constructed from the compound assertions
in the expansion, such that particular solutions of this
system correspond to finite models of the schema. Un-
fortunately, for free ALCNI-schemata this approach
does not work directly, and this is due to the pres-
ence of assertions of the form L �̇ ∃R.L′. One could
think to handle such assertions by constructing the ex-
pansion as specified above, simply coding existential
quantifications inside compound assertions and leav-
ing their treatment to the system of inequations (as
done for number restrictions).

The intuitive reason why this simple approach does
not lead to the desired results, is that it relies on the
uniformity of all objects that are instances of the same
compound concept. When setting up the system of in-
equations we are in fact transforming local constraints
on the number of connections that a single object may
have into global constraints on the total number of
connections of a certain type. The necessary differ-
entiation is introduced by constructing the expansion.
Once this is done all instances of the same compound
concept can be regarded as equivalent. The approach
works for the case of ALUNI-schemata, where the
concept expressions cannot distinguish between dif-
ferent instances of the same compound concept. If
we use existential quantification, however, due to the
increased expressivity it is not sufficient anymore to
split the schema into compound concepts to obtain a
uniform behaviour of the instances. This leads us to
introduce the notion of biexpansion of a schema, where
we make a more fine-grained separation based also on
the existence of connections of certain types.

5.2 BIEXPANSION OF A SCHEMA

In order to define the biexpansion of a schema we
need some additional terminology. Let P− := {P− |
P ∈ P} and R := P ∪ P−. We use BC,P to denote

2C×(22P

)R. An element of BC,P is called a bicom-

pound concept, and it is constituted by a pair (D̂, ϕ) in



which the first element is a compound concept, and the

second element is a function ϕ : R → 22C

that asso-
ciates to each role and inverse role a set of compound
concepts. We introduce two functions that allow us to
refer to the components of bicompound concepts:

– The function cc : BC,P → 2C returns the first com-

ponent D̂ of a bicompound concept (D̂, ϕ).

– The function ccs : BC,P×R → 22C

returns for a

bicompound concept B̃ := (D̂, ϕ) and a role R

the set of compound concepts assigned to R by the
second component ϕ of B̃.

An element of P×BC,P×BC,P is called a bicompound

role. B̃ and Ũ range over bicompound concepts and
bicompound roles respectively.

The intuition behind the definition of bicompound con-
cepts and roles is the following: If cc(B̃) = D̂, then

all instances of B̃ are instances of D̂. Let o be such
an instance. Then for each compound concept D̂′ in
ccs(B̃, R), there is an instance o′ of D̂′ connected to
o via role R, while for the compound concepts not
in ccs(B̃, R) there is no such instance. In analogy to

compound roles, a bicompound role (P, B̃1, B̃2) is in-
terpreted as the restriction of role P to the pairs whose
first component is an instance of B̃1 and whose second
component is an instance of B̃2.

A bicompound assertion has one of the forms

B̃ �̇ ∃≥mR, B̃ �̇ ∃≤nR.

The semantics of bicompound concepts and roles is
again defined by extending the interpretation function,
where for simplicity of notation we make use of concept
expressions built by applying the ALCNI-constructors
to both concepts and compound concepts:

B̃I := (cc(B̃))I ∩

⋂

R∈R




⋂

D̂∈ccs(B̃,R)

(∃R.D̂)I ∩
⋂

D̂∈2C\ccs(B̃,R)

(¬∃R.D̂)I




(P, B̃1, B̃2)
I := P I ∩ (B̃I

1 ×B̃I
2 )

This definition, together with the fact that different
compound concepts have disjoint extensions, implies
that two different bicompound concepts also have dis-
joint extensions. The same observation holds for two
different bicompound roles (P, B̃1, B̃2) and (P, B̃′

1, B̃
′
2)

that refer to the same role P . Also, given the extensions
of all bicompound concepts and bicompound roles, it
is immediate to obtain the extensions of concepts and
roles.

We say that a bicompound concept B̃ ∈ BC,P is S-
consistent, if

– cc(B̃) is S-consistent,

– for every R ∈ R, for every D̂ ∈ ccs(B̃, R), D̂ is
S-consistent,

– for every R ∈ R, for every L ∈ cc(B̃), if (L �̇

∃R.L′) ∈ T , then there is a D̂ ∈ ccs(B̃, R) such

that L′ ∈ D̂, and

– for every R ∈ R, for every L ∈ cc(B̃), if (L �̇

∀R.L′) ∈ T , then for all D̂ ∈ ccs(B̃, R) it holds

that L′ ∈ D̂.

We say that a bicompound role (P, B̃1, B̃2) ∈
P×BC,P×BC,P is S-consistent, if

– B̃1 and B̃2 are S-consistent, cc(B̃2) ∈ ccs(B̃1, P ),

cc(B̃1) ∈ ccs(B̃2, P
−),

– for every L ∈ cc(B̃1), if (L �̇ ∀P .L′) ∈ T , then

L′ ∈ cc(B̃2), and

– for every L ∈ cc(B̃2), if (L �̇ ∀P−.L′) ∈ T , then

L′ ∈ cc(B̃1).

Again, S-consistency reflects the assertions that con-
stitute the schema, and only S-consistent bicompound
concepts and roles can be populated in some model of
S.

The biexpansion S̃ = (C,P, B̃, Ũ , T̃ ) of S is defined as
follows:

• B̃ is the set of all S-consistent bicompound concepts.

• Ũ is the set of all S-consistent bicompound roles.

• T̃ is the smallest set of bicompound assertions such
that for every B̃ ∈ B̃:

– if for some L ∈ cc(B̃) there is an assertion (L �̇

∃≥mR) ∈ T , then T̃ contains the bicompound as-

sertion B̃ �̇ ∃≥mmax R, where mmax := max{m |

∃L ∈ cc(B̃) : (L �̇ ∃≥mR) ∈ T }.

– if for some L ∈ cc(B̃) there is an assertion (L �̇

∃≤nR) ∈ T , then T̃ contains the bicompound as-

sertion B̃ �̇ ∃≤nmin R, where nmin := min{n |

∃L ∈ cc(B̃) : (L �̇ ∃≤nR) ∈ T }.

It is easy to see that the size of the biexpansion is in
general double exponential in the size of the original
schema, and it can also be effectively constructed in
double exponential time.

5.3 CHARACTERIZATION OF FINITE

MODEL REASONING

We are now ready to define a system ΨS of linear
inequations whose solutions of a certain type are re-
lated to the finite models of a schema S. Let S̃ =



(C,P, B̃, Ũ , T̃ ) be the biexpansion of S. Then ΨS

contains one unknown Var(X̃) for each bicompound

concept or role X̃ in B̃ ∪ Ũ , and consists of the follow-
ing linear homogeneous inequations:

• For each B̃ ∈ B̃, for each P ∈ P, for each D̂ ∈
ccs(B̃, P ) the inequation

Var(B̃) ≤
∑

(P,B̃,B̃2)∈Ũ | cc(B̃2)=D̂

Var((P, B̃, B̃2)).

• For each B̃ ∈ B̃, for each P ∈ P, for each D̂ ∈
ccs(B̃, P−) the inequation

Var(B̃) ≤
∑

(P,B̃1,B̃)∈Ũ | cc(B̃1)=D̂

Var((P, B̃1, B̃)).

• For each bicompound assertion (B̃ �̇ ∃≥mR) ∈ T̃
the inequation

m ·Var(B̃) ≤ S(B̃, R), where

S(B̃, P ) :=
∑

(P,B̃,B̃2)∈Ũ

Var((P, B̃, B̃2)),

S(B̃, P−) :=
∑

(P,B̃1,B̃)∈Ũ

Var((P, B̃1, B̃)).

• For each bicompound assertion (B̃ �̇ ∃≤nR) ∈ T̃
the inequation

n ·Var(B̃) ≥ S(B̃, R).

It is now possible to relate a solution of ΨS to a fi-
nite model of S, in which each bicompound concept
and bicompound role has a number of instances that
is given by the value that the solution assigns to the
corresponding unknown. Since in a model of S each
bicompound role that refers (in its second or third com-
ponent) to a bicompound concept that has an empty
extension, also has an empty extension, this condi-
tion reflects in an additional requirement that the solu-
tion must satisfy. A solution of ΨS is acceptable, if,
whenever it assigns value 0 to an unknown correspond-
ing to a bicompound concept B̃, then it assigns also
value 0 to all unknowns corresponding to bicompound
roles that have B̃ as their second or third component.
We can now state the main theorem concerning finite
concept consistency.

Theorem 6 A concept C ∈ C is finitely consistent in
S if and only if

ΨC
S := ΨS

⋃




∑

B̃∈B̃ | C∈cc(B̃)

Var(B̃) ≥ 1





admits an acceptable nonnegative integer solution.

As shown in (Calvanese, 1996b), by applying linear
programming techniques one can decide the existence
of acceptable nonnegative integer solutions in polyno-
mial time in the size of the system. Since ΨS can be
constructed in time which is at most double exponen-
tial in |S|, and since in free ALCNI-schemata we can
easily reduce both consistency of an arbitrary concept
expression and concept subsumption to consistency of
a single concept name, we obtain the following worst
case upper bound.

Theorem 7 Finite concept consistency and concept
subsumption in free ALCNI-schemata can be decided
in worst case deterministic double exponential time.

The method as described above cannot deal directly
with qualified number restrictions, since the differ-
entiation introduced by bicompound concepts is too
coarse. In fact, we need to make a separation in bicom-
pound classes based not only on the existence but also
on the number of links of a certain type. It turns out
that it is in fact sufficient to consider only intervals of
numbers of links, where the ranges of these intervals
are given by the numbers that effectively appear in the
schema. In this way it is still possible to keep the size
of the resulting “extended” biexpansion double expo-
nential in the size of the schema. The resulting “exten-
ded” bicompound assertions can then again be coded
by means of a system of linear inequations, and we can
prove the counterpart of Theorem 6 for the system de-
rived from a free ALCQI-schema. We omit further
details and state only the final result.

Theorem 8 Finite concept consistency and concept
subsumption in free ALCQI-schemata can be decided
in worst case deterministic double exponential time.

6 CONCLUSIONS

In this paper we have discussed the issues concerning
finite model reasoning at the intensional level in ex-
pressive DLs that lack the finite model property. Two
distinct ways of dealing with finiteness have been pro-
posed:

1. We have introduced in the language a specific
constructor to express well-foundedness, and have
shown how known methods for reasoning with re-
spect to arbitrary models can be extended to deal
with it. This provides an EXPTIME decision
procedure for concept consistency and subsump-
tion.



2. We have developed a technique to reason with re-
spect to finite models on schemata of the most
general form expressed in a DL capable of cap-
turing most known known data models. The pro-
posed algorithm works in worst case deterministic
double exponential time.

We are currently extending our work in several direc-
tions. A major point is the extension of the reasoning
techniques to deal also with extensional knowledge, i.e.
with assertions stating properties of specific objects.
In the unrestricted case, the reasoning technique for
ALT discussed in Section 4 can be directly integrated
with the work in (De Giacomo, 1996), still obtaining
an EXPTIME upper-bound. In the finite case, the
proposed technique can be applied under specific as-
sumptions which are rather restrictive but common in
DBs. However, a general method for finite model reas-
oning in expressive DLs on a schema together with
assertions on individuals is still open.

We aim also at increasing the expressivity of the
schema definition language while still preserving decid-
ability. Concerning point 1 above, we have mentioned
in Section 3 that the well-founded constructor is equi-
valent to a particular type of least-fixpoint expression.
A natural extension would be to allow arbitrary nested
fixpoints as in the µ-calculus (Kozen, 1983) together
with inverse roles and number restrictions. Concern-
ing point 2, it can be shown that the reasoning method
developed for ALCQI can be extended to deal with
some of the constructors of ALT , and in particular
basic roles (i.e. union, intersection, and difference of
role names and inverse roles) and role value maps on
basic roles. Qualified number restrictions turn out to
be indispensable for this. If the addition of reflexive
transitive closure preserves decidability also in the fi-
nite case is still open.
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