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Abstract. Description Logics (DLs) provide the formal foundation for ontology
languages, and they have been advocated as formalisms for modeling the domain
of interest in various settings, including the Semantic Web, data and information
integration, and ontology-based data access. An important requirement there is the
ability to answer complex database-like queries, while taking into account both ex-
tensional and intensional domain knowledge. The task of answering queries has
been investigated intensively in the last years for a variety of DLs, and consider-
ing both data complexity, i.e., the complexity measured in the size of the exten-
sional information only, and combined complexity. On the one hand, it has been
shown to be in general (exponentially) more difficult than the standard reasoning
tasks of concept satisfiability and subsumption; on the other hand a broad range
of techniques have been developed. We overview here some of the key techniques
developed in the last years for query answering over DL ontologies, ranging from
rewriting based approaches for lightweight DLs, to tableaux algorithms, and tech-
niques based on automata on infinite trees for very expressive DLs. The associated
results, accompanied by matching lower bounds, have contributed to shaping the
computational complexity picture for ontology-based query answering.

1 Introduction

Description Logics [4] (DLs) are a class of logics that are particularly well suited for
representing structured knowledge. They have been developed starting from the early
1980s in order to formalize early days knowledge representation formalisms, such as
Semantic Networks and Frames, which lacked not only well understood computational
properties, but despite their name even a formal semantics. Since then DLs have evolved
into a large collection of variants that, in their various forms, subsume essentially all
class-based representation formalisms used in Databases, Artificial Intelligence, and
Software Engineering. DLs follow the quite common approach used in knowledge rep-
resentation of modeling the domain of interest in terms of concepts, which denote sets
of objects, and relations between objects belonging to certain concepts. We consider
here “traditional” DLs, which are equipped only with binary relations, called roles, but
many variants of DLs allowing for the use of relations of arbitrary arity have also been
considered in the literature [47,15,14]. Starting from atomic concepts and roles, com-
plex expressions can be constructed inductively by means of suitable concept and role
forming operators. Such expressions are then used in an ontology to assert knowledge
about the domain, both at the intensional level, in the TBox of the ontology, and at the
extensional level, in the ABox of the ontology. Typically, the TBox consists of a set
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of inclusion assertions between concepts and between roles, where each such assertion
states that the set of instances of one concept/role is included in the set of instance of an-
other concept/role. The ABox instead contains facts about individual domain elements,
asserting that some individual belongs to a concept, or that some pair of individuals is
related by a role.

A distinguishing feature of DLs is the fact that quantification is restricted by the
syntax of the logic (which is variable-free) to be guarded. A consequence is that DL
concept expressions essentially can only be used to represent properties that are en-
coded by starting from an instance of the concept and following the roles in a tree-like
navigation. Formally, this aspect is captured by the fact that DLs (in general) satisfy
some form of tree-model property: if an ontology is satisfiable, then it admits a model
that is constituted by a collection1 of structures that are essentially2 tree-shaped (when
viewing objects as nodes, and relations between objects as edges connecting them). On
the one hand, the tree-model property, which DLs share with modal logics and with
many variants of program logics [50], accounts for many of the good computational
properties of DLs, which, despite being first-order formalism, admit decidable and in
many cases efficient inference. On the other hand, the restriction that is at the basis of
the tree-model property brings about an intrinsic limitation in expressive power. This
makes it impossible in DLs to express inter-relationships between objects that would
correspond to following different navigation paths across the data. E.g., in a DL one
could not express a concept denoting those individuals for which the house in which
they live is located in the same city as the company in which they work. While this kind
of restriction is considered acceptable when encoding knowledge at the intensional level
in a TBox, it makes DLs not well-suited as a formalism for expressing queries, where
in general one is interested in complex inter-relationships between objects.

For this reason, since the late 1990s, researchers have studied the setting where infor-
mation needs expressed over knowledge encoded in an ontology are formulated not only
in terms of concept or role expressions, but also in terms of more complex queries in
the style of those used in databases [35,15]. In such a setting, where the presence of an
ontology accounts for incomplete information, query answering is a form of logical im-
plication, as opposed to model checking, which can be seen as the logical counterpart
of query evaluation. For this reason, answering arbitrary (domain independent) FOL
queries (corresponding to the core of SQL) over an ontology turns out to be immedi-
ately undecidable. Just consider evaluating the query q(x) = A(x)∧ϕ over the ontology
with an empty TBox and whose ABox just contains A(c), where ϕ is an arbitrary FOL
formula in which A does not appear; then c is in the answer to the query iff ϕ is valid.

This motivates why in the context of DLs, restricted classes of queries have been con-
sidered, which still allow for expressing sufficiently complex interrelationships between
data, but do not incur in the computational problems caused by arbitrary FOL queries.
A prominent such class of queries are conjunctive queries (CQs) [22], corresponding

1 The ABox accounts for an arbitrary graph-shaped but finite portion of the model, and each
object interpreting an individual of the ABox can be seen as the root of a possibly infinite tree
originating from that object.

2 Depending on the constructs of the DL, we might have to account for multiple role-labeled
edges between nodes, or for special edges that point back to the ABox part.
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to select-project-join SQL queries, and unions thereof (UCQs). Such queries account
for the most common type of queries used in the relational setting, and also have found
applications in other settings of incomplete information, such as data integration and
data exchange [34,25]. DLs, as opposed to relational databases, allow one to represent
knowledge in which the underlying data has a rather loose structure, such as the one
encountered nowadays in graph databases. Indeed, in the setting of DLs, it became of
interest to consider also more flexible mechanisms for querying such kind of data, as
the one offered by variants of regular path queries [10,1], which allow one to retrieve
pairs of objects connected by a path in the data that matches a regular expression over
the set of roles (i.e., edge labels in the graph).

In the following, we discuss the challenges that arise when addressing the problem of
answering queries over DL ontologies. Given the large amount of parameters that char-
acterize the problem, and the variety of results that have been obtained in the area, our
aim is not to be comprehensive, and we refer to [40,38] for recent overviews of query
answering in ontologies. Instead, we aim at illustrating three different types of tech-
niques that have been introduced in the literature, and that aimed at addressing different
requirements for the problem of query answering over DL ontologies. After introducing
in Section 2 some technical preliminaries on DLs and queries that are necessary for the
subsequent development, we first illustrate in Section 3 a technique for efficient query
answering in lightweight DLs that lends itself for an efficient implementation. Then,
in Section 4 we present an adaptation of tableaux algorithms traditionally adopted for
DL inference towards query answering in expressive DLs. The technique allows one
to obtain optimal complexity bounds in terms of data complexity, i.e., when the com-
plexity of the problem is measured in terms of the size of the ABox only. Finally, in
Section 5, we present an approach based on automata on infinite trees, that leads to
decidability and optimal complexity results (thought not in data complexity) for DLs
and query languages that are among the most expressive ones for which decidability of
query answering has been established so far.

2 Description Logic Ontologies and Queries

In DLs, the domain of interest is modeled by means of concepts, denoting classes of
objects, and roles (i.e., binary relationships), denoting binary relations between objects.

Syntax of Description Logics. Arbitrary concepts and roles are obtained starting from
atomic ones by applying suitable concept and role forming constructs, where the set of
allowed constructs characterizes each specific DL. We introduce here the quite expres-
sive DL ALCOIQHbselfreg , abbreviated simply as DL, which is a super-language of the
various DLs that we consider in this work3. Specifically, DL is an expressive DL in
which concepts and roles are formed according to the following syntax:

C,C′ −→ A | C � C′ | ∀R.C | ¬C | � nS.C | {a} | ∃S.Self
P −→ p | p−

S, S′ −→ P | S ∩ S′ | S \ S′ | S ∪ S′

R,R′ −→ T | S | R ∪R′ | R ◦R′ | R∗ | id(C)

3 DL is equivalent to the DL ZOIQ [20].
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where A denotes an atomic concept, p an atomic role, S, S′ simple roles, C, C′ ar-
bitrary concepts, and R, R′ arbitrary roles, and a an individual. DL is obtained from
the basic DL language AL (attributive language) [4], in which one can express concept
intersection C � C′ and value restriction ∀R.C, by adding several concept and role
forming constructs, each indicated by a letter or a sub/super-script in the name of the
DL. Such constructs are negation ¬C of arbitrary concepts (indicated by the letter C
in ALCOIQHbselfreg ), qualified number restrictions � nS.C (indicated by Q), nomi-
nals {a} (indicated by O), inverse roles p− (indicated by I), boolean combinations of
atomic and inverse roles (indicated by b), the self-construct (indicated by the superscript
self ), and regular expressions over roles (indicated by the subscript reg ). We can also ex-
press the top concept 
 as an abbreviation for A�¬A, for some concept A, the bottom
concept ⊥ as ¬
, union C1 � C2 as ¬(¬C1 � ¬C2), and qualified existential quantifi-
cation on roles ∃R.C as ¬∀R.¬C. We observe that, in order to preserve decidability of
inference, number restrictions are applied only to simple roles, i.e., atomic roles p, their
inverses p−, or boolean combinations thereof (see, e.g., [5,11] for the consequences of
using more complex roles in number restrictions).

As in most DLs, a DL ontology is a pair O = 〈T ,A〉, where T , the TBox, is a
finite set of intensional assertions, and A, the ABox, is a finite set of extensional (or,
membership) assertions. Here we consider TBoxes consisting only of inclusion asser-
tions between concepts and between simple roles4. An inclusion assertion has the form
C � C′, with C and C′ arbitrary DL concepts, or S � S′, with S and S′ simple roles.
Intuitively, it states that, in every model of the TBox, each instance of the left-hand side
expression is also an instance of the right-hand side expression. We note that the letter
H in the name of ALCOIQHbselfreg accounts for the presence in the logic of role inclu-
sions, by means of which one can express role hierarchies. The ABox consists of a set
of extensional assertions, which are used to make statements about individuals. Each
such assertion has the form A(a), p(a, b), a ≈ b, or a �≈ b, with A and p respectively
an atomic concept and an atomic role occurring in T , and a, b individuals.

Semantics of Description Logics. We now turn to the semantics of DL, which is given
in terms of interpretations. An interpretation I = (ΔI , ·I) consists of a non-empty in-
terpretation domain ΔI and an interpretation function ·I , which assigns to each concept
C a subset CI of ΔI , to each role R a binary relation RI over ΔI , and to each individ-
ual a an element aI ∈ ΔI , in such a way that the conditions specified in Figure 1 are
satisfied5. Unless stated otherwise, we don’t make here the unique name assumption,
i.e., we allow different individuals to be interpreted as the same domain element.

The semantics of a DL ontology O = 〈T ,A〉 is the set of models of O, i.e., the set
of interpretations satisfying all assertions in T and A. It remains to specify when an
interpretation satisfies an assertion. An interpretation I satisfies an inclusion assertion
C � C′ (resp., R � R′), if CI ⊆ C′I (resp., RI ⊆ R′I), a membership assertion

4 The DLs underlying the Web Ontology Language OWL 2, standardized by the W3C [7], fea-
ture additional kinds of TBox assertions, which allow one to state, e.g., the symmetry, reflex-
ivity, or transitivity of a role. We do not consider such kinds of assertions here.

5 We have used “◦” to denote concatenation of binary relations, and “∗” to denote the reflexive-
transitive closure of a binary relation.
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AI ⊆ ΔI

(C � C′)I = CI ∩ C′I

(∀R.C)I = { o | ∀o′. (o, o′) ∈ RI → o′ ∈ CI }
¬CI = ΔI \ CI

(� nR.C)I = { o | �{o′ ∈ CI | (o, o′) ∈ RI} ≤ n }
{a}I = {aI}

∃S.SelfI = { o | (o, o) ∈ SI}

pI ⊆ ΔI ×ΔI

(p−)I = {(o, o′) |(o′, o) ∈ P I}
(S ∩ S′)I = SI ∩ S′I

(S \ S′)I = SI \ S′I

(T)I = ΔI ×ΔI

(R ∪R′)I = RI ∪R′I

(R ◦ R′)I = RI ◦R′I

(R∗)I = (RI)∗

Fig. 1. Interpretation of DL concepts and roles

A(a) (resp., p(a, b)) if aI ∈ AI (resp., (aI , bI) ∈ pI), an assertion of the form a ≈ b
if aI = bI , and an assertion of the form a �≈ b if aI �= bI .

The basic reasoning task in DL is that of logical implication, i.e., checking whether
a TBox or ABox assertion is implied by an ontology, i.e., holds in every model of
the ontology. All other ontology-level inference tasks, such as checking whether an
ontology is satisfiable (i.e., admits a model), or whether a concept is satisfiable with
respect to an ontology, can easily be reduced to logical implication. Like in many other
expressive DLs, reasoning in DL, is decidable in deterministic exponential time, and
actually EXPTIME-complete, see, e.g., [4].

We consider here various sub-languages of DL. The logics ALC[O][I][Q]H[bselfreg ]
are obtained fromDL by possibly dropping some of theO, I, andQ constructs, or all of
boolean combinations, regular expressions over roles, and the self-construct. Moreover,
in the lightweight DL DL-LiteR [13], inclusion assertions have one of the forms:

B � B′ B � ¬B′ P � P ′ P � ¬P ′

Here, roles P , P ′ are either an atomic role p or the inverse p− of an atomic role, and
basic concepts B, B′ are constructed according to the following syntax:

B,B′ −→ A | ∃P

where we use ∃P as an abbreviation for ∃P .
. Intuitively, a basic concept denotes
either an atomic concept A, or the projection of a role p on its first component (∃p) or
second component (∃p−). Despite its simplicity, DL-Lite is able to capture the essential
features of most conceptual modeling formalisms, such as UML Class Diagrams or
Entity-Relationship schemata (see, e.g., [12]).

Queries. We introduce now positive two-way regular path queries (P2RPQs), which
are a quite general class of queries that subsumes most of the query formalisms that
have been considered in the context of query answering under incomplete information.
A P2RPQ q(�x) has the form ∃�y.ϕ, where �x and �y are tuples of variables and ϕ is a
formula built using ∧ and ∨ from atoms of the form C(v) and R(v, v′), where v, v′ are
variables from �x, from �y, or individuals, C is a (possibly complex) concept, and R is a
(possibly complex) DL role. We call �x the answer (or distinguished) variables, and �y
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the existential variables of q. A Boolean query is one where �x is the empty tuple 〈〉, i.e.,
all variables in the query are existential ones.

A P2RPQ consisting of a single role atom is a two-way regular path query (2RPQ),
while one consisting of a conjunction of role atoms is a conjunctive 2RPQ (C2RPQ).
When we do not allow for the use of inverse roles, we obtain the one-way variants of the
above query languages, i.e., PRPQs/CRPQs/RPQs. When we further restrict P2RPQs
so as to forbid the use of regular expressions in role atoms, we obtain the class of posi-
tive queries (PQs), and when we forbid also the use of disjunction, we obtain the well
known class of conjunctive queries (CQs) [22,2]. A unions of CQs (UCQs) is a disjunc-
tion of CQs with the same answer variables. We observe that the possibility of using
regular role expressions in the query atoms of (P/C)(2)RPQs significantly increases the
expressive power of the query language, since it allows one to express complex navi-
gations in the models of the given ontology, similar to those possible with (C)(2)RPQs
studied in the setting of graph databases [26,16,17,18].

Given a P2RPQ q(�x) = ∃�y.ϕ and an interpretation I, let π be a total function from
the variables and individuals occurring in q to ΔI such that π(a) = aI for each indi-
vidual a occurring in q. We write I, π |= C(v) if π(v) ∈ CI , and I, π |= R(v, v′)
if (π(v), π(v′)) ∈ RI . Let γ be the Boolean expression obtained from ϕ by replacing
each atom α in ϕ with true, if I, π |= α, and with false otherwise. If γ evaluates to
true, we say that π is a match for q in I, denoted I, π |= q. When there is some match
for q in I, we also say that q can be mapped to I.6 The answers to q(�x) in I, is the
set ans(q, I) = {π(�x) | I, π |= q} of tuples of elements of ΔI to which the answer
variables of q can be mapped by some match for q in I. Given an ontology O and a
query q(�x), a certain answer to q over O is a tuple �a of individuals in O such that
�aI ∈ ans(q, I), for every model I of O. Note that, while an answer to a query over
an interpretation I is a set of elements of ΔI , a certain answer is a tuple of individuals
appearing in O. We denote with cert(q,O) the set of certain answers to q over O.

For a Boolean query q(), we say that I satisfies q(), written I |= q(), if there is some
match for q() in I. We have that cert(q(),O) is either the empty tuple of individuals
〈〉 (representing true), when I |= q() for every model I of O, or the empty set ∅
(representing false). In the former case, i.e., when cert(q,O) = {〈〉}, we say that O
entails q, denoted O |= q.

Query evaluation consists in computing, given an ontologyO and a P2RPQ q(�x), the
set cert(q,O) of certain answers. The corresponding decision problem is the recogni-
tion problem for query answering, in which one wants to check whether a given a tuple
�a of individuals is in cert(q,O). When q is a Boolean query, the corresponding task is
query entailment, which consists in verifying whether O |= q. In fact, the recognition
problem for query answering can be straightforwardly reduced to query entailment by
considering the Boolean query obtained by substituting the distinguished variables of
the query with the given tuple of individuals.

6 When we view the query q as a relational structure in which the variables snd constants are the
domain elements, then a match for q in an interpretation I is actually a homomorphism from
q to I (cf. [22] for the case of CQs).
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3 Query Answering by Rewriting in Lightweight DLs

We illustrate now the approach to query answering based on query rewriting, which was
first introduced for answering UCQs over DL-Lite ontologies through the PerfectRef
algorithm [13], and then extended to several other DLs [41,42,44,32], including also
more expressive members of the DL-Lite family [3]. Such DLs share with DL-Lite some
crucial properties that are necessary to make a rewriting based approach efficient. We
illustrate now the approach for the case of UCQs over DL-LiteR ontologies. We first
recall that, in the case where the ontology is unsatisfiable, the answer to any UCQ is the
set of all tuples of individuals appearing in the ontology. Therefore, we focus for now
on the case where the ontology is satisfiable, and come back to satisfiability afterwards.

The key idea at the basis of the rewriting approach is to strictly separate the process-
ing done with respect to the intensional level of the ontology (i.e., the TBox) from the
processing done by taking into account the extensional level (i.e., the ABox, or data):
(1) the query is processed and rewritten into a new query, based on the inclusion asser-
tions in the TBox; (2) the TBox is discarded and the rewritten query is evaluated over
the ABox, as if the ABox was a simple relational structure/database. More precisely,
given a UCQ q over O = 〈T ,A〉, the positive inclusion assertions of T , i.e., those
inclusion assertions that contain no negation in the right-hand side, are compiled into q,
thus obtaining a new query q′. Such new query q′ is then evaluated over A, thus essen-
tially reducing query answering to query evaluation over a database instance. Since the
size of q′ does not depend on the ABox, the data complexity of the whole query answer-
ing algorithm is the same as the data complexity of evaluating q′. A crucial property
for DL-Lite is that, in the case where q is a UCQ, the query q′ is also a UCQ. Hence,
the data complexity of the whole query answering algorithm is in AC0, which is the
complexity of evaluating a FOL query over a relational database.

Canonical Model. The rewriting based approach relies in an essential way on the
canonical model property, which holds for DL-Lite and for the horn variants of many
other DLs [33,24]. Such property ensures that every satisfiable ontology O admits a
canonical model that is the least constrained model among all models of O, and that
can be homomorphically embedded in all other models. This in turn implies that the
canonical model correctly represents all the models of O with respect to the problem of
answering positive queries (and in particular, UCQs). In other words, for every UCQ q,
we have that cert(q,O) is contained in the result of the evaluation of q over the canon-
ical model7. Intuitively, the canonical model for a DL-Lite ontology O = 〈T ,A〉 con-
tains the ABox A, and in addition might contain existentially implied objects, whose
existence is enforced by the TBox assertions with ∃P in the right-hand side. For ex-
ample, if the TBox contains an assertion Student � ∃attends, expressing that every
student should attend something (presumably a course), and the ABox contains the fact
Student(john), then the canonical model will contain a fact attends(john, on), where on
is a newly introduced object.

7 Note that, since the domain of the canonical model contains the individuals of the ABox, hence
the evaluation of a query over such model can indeed return a set of individuals.



8 D. Calvanese

A1 � A2 . . . , A2(x), . . . � . . . , A1(x), . . .
∃p � A . . . , A(x), . . . � . . . , p(x, ), . . .

∃p− � . . . , A(x), . . . � . . . , p( , x), . . .
A � ∃p . . . , p(x, ), . . . � . . . , A(x), . . .
A � ∃p− . . . , p( , x), . . . � . . . , A(x), . . .

∃p1 � ∃p2 . . . , p2(x, ), . . . � . . . , p1(x, ), . . .
p1 � p2 . . . , p2(x, y), . . . � . . . , p1(x, y), . . .

· · ·

Fig. 2. Rewriting of query atoms in DL-LiteR

First-Order Rewritability. We point out that the canonical model is in general infinite,
hence it cannot be effectively computed in order to solve the query answering problem
by actually evaluating the input query q over it. Instead, each CQ qi in q is rewritten into
a UCQ ri in such a way that, whenever qi has a match in some portion of the canonical
model, then there will be a CQ among those in ri that has a corresponding match in the
ABox part of the canonical model. Informally, the rewriting algorithm initializes a set
r of CQs with the CQs in the input query q, and processes each yet unprocessed query
ri in r by adding to r also all rewritings of ri. For each atom α in ri, it checks whether
α can be rewritten by using one of the positive inclusions in the TBox, and if so, adds
to r the CQ obtained from ri by rewriting α. The rewriting of an atom uses a positive
inclusion assertion as rewriting rule, applied from right to left, to compile away the
knowledge represented by the positive inclusion itself. For example, using the inclusion
A1 � A2, an atom of the form A2(x) is rewritten to A1(x). Alternatively, we can
consider this rewriting step as the application of standard resolution between the query
and the inclusion A1 � A2, viewed as the (implicitly universally quantified) formula
A1(x) → A2(x). Other significant cases of rewritings of atoms are depicted in Figure 2,
where each inclusion assertion in the left-most column accounts for rewriting the atom
to the left of� into the atom to the right of it. We have used “ ” to denote a variable that
occurs only once in the CQ (counting also occurrences in the head of the CQ). Besides
rewriting atoms, a further processing step applied to ri is to consider each pair of atoms
α1, α2 occurring in the body of ri that unify, and replace them with a single atom,
also applying the most general unifier to the whole of ri. In this way, variables that in ri
occur multiple times, might be replaced by an “ ”, and hence inclusion assertions might
become applicable that were not so before the atom-unification step (cf. the rewriting
rules in Figure 2 requiring the presence of “ ”).

The above presented rewriting technique realized through PerfectRef, allows us
to establish that answering UCQs over satisfiable DL-LiteR ontologies is first-order
rewritable, i.e., the problem of computing certain answers over a satisfiable ontology
can be reduced to the problem of evaluating a FOL query over the ABox of the ontology
viewed as a database (with complete information). Specifically, let rew(q, T ) denote the
UCQ obtained as the result of applying PerfectRef to a UCQ q and DL-LiteR TBox T .
Then, for every ABox A such that 〈T ,A〉 is satisfiable, we have that

cert(q, 〈T ,A〉) = ans(rew(q, T ),A)
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where ans(rew(q, T ),A) denotes the evaluation of the UCQ rew(q, T ) over the ABox
A viewed as a database (i.e., a first-order structure).

Ontology Satisfiability. The rewriting of a UCQ q with respect to a TBox T computed
by PerfectRef depends only on the set of positive inclusion assertions in T , while dis-
jointness assertions (i.e., inclusion assertions containing a negated basic concept on the
right-hand side) do not play any role in such a process. Indeed, the proof of correctness
of PerfectRef [13], which is based on the canonical model property of DL-LiteR, shows
that these kinds of assertions have to be considered only when verifying the ontology sat-
isfiability. Once satisfiability is established, they can be ignored in the query rewriting
phase. In fact, unsatisfiability of a DL-LiteR ontology is due to the presence of disjoint-
ness assertions and their interaction with positive inclusions. Such interaction can itself
be captured by constructing a Boolean UCQ encoding the violation of disjointness asser-
tions, rewriting such a UCQ with respect to the positive inclusions, and checking whether
its evaluation over the ABox returns true. This in turn shows that also the problem of
checking satisfiability of a DL-LiteR ontology is first-order rewritable [13].

Complexity of Query Evaluation. Summarizing the above results, and considering
that evaluating a FOL query (and hence a UCQ) over a database is in AC0 in data com-
plexity, one obtains that answering UCQs over DL-LiteR ontologies has the same data
complexity as evaluating UCQs in plain databases. By analyzing the overall rewriting-
based query answering technique, and by exploiting a correspondence between the DL-
Lite family and FOL with unary predicates [3], we are able obtain also tight complexity
bounds in the size of the TBox (schema complexity) and of the overall input (combined
complexity).

Theorem 1 ([13,3]). Answering UCQs over DL-LiteR ontologies is in AC0 in data
complexity, NLOGSPACE-complete in schema complexity, and NP-complete in com-
bined complexity.

While the above results sound very encouraging from the theoretical point of view,
there still remain significant challenges to be addressed to make rewriting based tech-
niques effective also in real world scenarios, where the TBox and/or the data underly-
ing the ABox are very large, and/or queries have a large number of atoms. Indeed, also
in the case where one admits rewritings expressed in languages different from UCQs
(e.g., arbitrary FOL queries, or non-recursive Datalog), it has recently been shown that
the smallest rewritings can grow exponentially with the size of the query [28]. This
has led to an intensive and sustained effort aimed at developing techniques to improve
query answering over ontologies, such as alternative rewriting techniques [42,46], tech-
niques combining rewriting with partial materialization of the extensional level [31],
and various optimization techniques that take into account also extensional constraints
on the underlying data, or a mapping layer to relational data sources, i.e., the so-called
Ontology-Based Data Access (OBDA) setting [43,45]

4 Data Complexity for Query Entailment in Expressive DLs

When a DL contains (explicit or implicit) forms of disjunction, there is no single model
representing all possible models for the purpose of query answering. Hence, approaches
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that exploit the canonical model property, e.g., those based on query rewriting, are not
directly applicable in this case. We illustrate now an alternative query answering tech-
nique that builds upon the tableaux-based techniques that have proved very successful
for reasoning in expressive DLs [6,30,29,37].

Tableaux Algorithms for Ontology Reasoning. We illustrate first the idea underlying
the use of tableaux algorithms for checking satisfiability of a DL ontology O = 〈T ,A〉,
and show then how this approach can be adapted for query entailment. The tableaux al-
gorithm tries to build a model of O by starting from the assertions in A, and completing
them according to what is required by T . In doing so it builds non-deterministically a
forest-shaped relational structure (hence, the algorithm actually maintains a set of struc-
tures), that we call here completion forest. The structure is forest-shaped, since each
individual in the ABox A is the root of a tree generated by applying tableaux-style ex-
pansion rules to the facts in the completion forest. Essentially, each rule is associated
to one of the constructs of the DL, has a precondition, expressed as one or more facts
to which the rule is applied, and possibly comes with additional conditions related to
applicability of the rule, or to blocking (necessary to ensure termination). As the result
of the rule application, the set of facts in the completion forest is expanded, or more in
general, changed, possibly by introducing new individuals. To deal, e.g., with incom-
pleteness caused by the presence of disjunction, or with at-most restrictions that might
require the identification of individuals, some of the rules are non-deterministic, and
cause the generation of more than one new completion forest from the current one.

When no more rules can be applied, and no obvious contradiction (called a clash)
is present in the current completion forest, the algorithm terminates, and the clash-free
completion forest witnesses a model of the ontology O (soundness of the algorithm).
Instead, when each of the non-deterministically generated completion forests contains
a clash, it means that O does not admit any model, hence is unsatisfiable (completeness
of the algorithm). In order to avoid infinite repetition of rule application, and hence
ensure termination of the algorithm, suitable blocking conditions need to be applied.
Intuitively, the nodes of a completion forest are labeled with sets of concepts, and a rule
application is considered blocked for a node x if in the tree there is a predecessor of
x labeled in a way that is “compatible” with x. The precise notion of “compatibility”
between two nodes depends on the constructs of the considered DL, and might also
involve looking at pairs of adjacent nodes, rather than at single nodes, see, e.g., [6].

Tableaux Algorithms for Query Entailment. As shown for the first time in [35] for
the system CARIN, tableaux algorithms can be adapted to deal also with query entail-
ment. We illustrate here the approach presented in [39] for entailment of a PQ q in an
ontology O expressed in one of ALCOIH, ALCOQH, or ALCIQH. As for the case
of satisfiability, the technique makes use of completion forests, each of which is meant
to capture a set of models of the ontology O. Actually, at each step of the algorithm,
each of the models of O is represented by one of the completion forests in the set main-
tained non-deterministically by the algorithm. More specifically, when a tableaux rule
is applied to a completion forest F , each of the models represented by F is preserved
in one of the completion forests generated as a result of the rule application. There-
fore, checking whether O |= q equals checking whether F |= q, for each completion
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forest F . The crux of the correctness of the technique lies in the fact that, for largely
enough expanded F , one can check whether F |= q effectively via a syntactic mapping
of the variables in q to the nodes in F . Thus, to witness that O �|= q, it is sufficient to
(non-deterministically) construct a large enough forest F to which q cannot be mapped.

As customary with tableaux-style algorithms, the algorithm makes use of suitable
blocking conditions on the rules to ensure termination of forest expansion. The blocking
conditions adopted for ALCOIH, ALCOQH, and ALCIQH are inspired by those in
[35] for CARIN, but are able handle on the one hand nominals present in ALCOIH and
ALCOQH, and on the other hand the fact that ALCIQH does not have the finite model
property. Lack of this property means that reasoning with respect to arbitrary models
is different from reasoning with respect to finite models only, and implies that O �|= q
might hold, but this might be witnessed only by an infinite model. As a consequence,
expansion forests cannot be considered themselves as models of O, but rather are finite
representations of possibly infinite structures obtained by unraveling the completion
forest. A further complication comes from the fact that in the blocking conditions of the
tableaux rules it is not sufficient anymore to consider single nodes (or pairs of adjacent
nodes) as for satisfiability [6]. Instead, one needs to search in the completion forest for
the repetition of subtrees, whose depth depends on the number of atoms in the query q.
This leads to an additional exponential blowup in the computational complexity of the
algorithm with respect to the tableaux algorithms for satisfiability in the same logics.

We also note that [39] presents a single algorithm for checking query entailment in
ALCOIH, ALCOQH, and ALCIQH, which includes tableaux rules for all of the
constructs in the three logics. However, due to the subtle interaction between nominals,
inverse roles, and number restrictions, termination of the algorithm is guaranteed only
for TBoxes expressed in ALCOIH, ALCOQH, or ALCIQH.

Complexity of Query Entailment. Interestingly, while the above described tableaux
algorithm for checking O |= q is not computationally optimal in combined com-
plexity, a careful analysis shows that the construction of completion forests, and the
check whether q can be mapped to each such forest, can both be carried out by a non-
deterministic algorithm that runs in polynomial time in the size of the ABox (and the
number of individuals appearing in nominals). Hence, the overall algorithm is coNP
in data complexity. This is also computationally optimal, since checking query entail-
ment for CQs over an ontology whose TBox contains a single assertion of the form
A1 � A2 � A3 is already coNP-hard in data complexity [14].

Theorem 2 ([39]). Given an ALCOIH, ALCOQH, or ALCIQH ontology O and a
PQ q, deciding whether O |= q is:

– in coN3EXPTIME in combined complexity.

– in coN2EXPTIME in combined complexity for a fixed q (under the assumption that
numbers appearing in number restrictions are encoded in unary).

– coNP-complete in data complexity.
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5 Query Entailment in Very Expressive DLs

We address now query entailment for the case where the ontology and/or the query may
contain roles built as regular expressions over direct and inverse roles, or their Boolean
combinations.

Automata Techniques for Reasoning over Ontologies. For many very expressive DLs,
including those which allow for the use of regular expressions over roles, the standard
reasoning task of checking concept satisfiability (possibly with respect to a TBox) is
naturally solvable by tree-automata, thanks to the tree model property of such logics:
each satisfiable concept C has a tree-shaped model [50,52] in which nodes are labeled
with sets of concepts, and adjacent nodes in the tree are connected by one or more
roles. Intuitively, such a tree-shaped model is obtained by unraveling an arbitrary model,
introducing new nodes in the tree whenever the same node is encountered multiple
times during the unraveling. Hence, one can construct a tree-automaton that accepts a
tree representing a tree-shaped model, by naturally encoding in the transition function
of the automaton the conditions that the DL constructs impose on adjacent nodes of
the model/tree. Checking for the existence of a model amounts to checking for non-
emptiness of the tree-automaton. A crucial observation is that, even for those logics
that have the finite model property, the unraveling process produces an infinite tree, so
that we need to resort to automata on infinite trees [48].

When also an ABox A is present this approach fails, since the assertions in A may
arbitrarily connect individuals, and thus destroy the tree-structure. On the other hand,
while a satisfiable DL ontology O = 〈A, T 〉 may lack a tree-shaped model, it always
has a forest-shaped canonical model, in which the individuals in A can be arbitrarily
connected, but each individual is the root of a tree-shaped model of T . This property
is usually sufficient to adapt algorithms for concept satisfiability so as to decide also
ontology satisfiability. In particular, automata-based algorithms have been adapted, e.g.,
using the pre-completion technique [49], in which after a reasoning step on the ABox,
automata are used to verify the existence of a tree-shaped model rooted at each ABox
individual.

Automata Techniques for Query Entailment. However, a pre-completion based ap-
proach would not lend itself well for query entailment, where one needs to account also
for the interaction between the variables in query atoms and the ABox individuals to
which these variables have to be mapped. This holds especially in the case where the
query itself might contain atoms that are regular expressions over roles, as in RPQs
and their extensions. Therefore, we discuss here briefly a different approach to query
entailment for very expressive DLs and queries, based on the idea of representing forest-
shaped interpretations directly as trees in which the root is a dummy node, and all in-
dividuals appearing in the ABox and in nominals form the children of the root. From
each of these first-level nodes, a possibly infinite tree departs. Adopting this kind of rep-
resentation allows us to deal in a uniform way using tree automata both with the TBox
and ABox constituting the ontology, and with the query [19,20,21].

Specifically, we illustrate an approach to check query entailment O |= q, that is ap-
plicable when q is a P2RPQs and O is an ontology expressed in any sublanguage of
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DL in which only two of the three constructs of nominals (O), inverse roles (I), and
number restrictions (Q) are present [20]. We use DL− to denote such a logic. To de-
cide whether O |= q, it is sufficient to decide whether O has a tree-shaped (canonical)
model in which q has no match. To check this using tree automata, we build an automa-
ton AO�|=q that accepts all trees that represent a model of O in which q has no match.
Roughly speaking, AO�|=q is obtained by intersecting two automata:

– AO , which is a tree automaton that accepts the trees representing a model of O.
We make use of two-way alternating tree automata [51]: on the one hand, such au-
tomata can traverse a tree both downwards and upwards, which turns out to be con-
venient to deal with inverse roles; on the other hand, such automata are alternating,
which means that they are equipped both with ∧-transitions and with ∨-transitions,
which allows one to naturally encode in the transition function of the automaton
the structural conditions imposed by concept and role expressions.

– A¬q , which accepts the trees representing an interpretation that admits no match
for q. To obtain A¬q , we first construct an automaton Aq that accepts a tree T if
and only if q has a match in the interpretation represented by T . To construct Aq,
we need to treat the existential variables appearing in q as additional concept sym-
bols, and represent them explicitly in the tree accepted by the automaton. Then, to
construct A¬q, we need to project away such additional symbols, before comple-
menting the automaton, which results in an (inevitable) exponential blowup.

Hence, deciding query entailment reduces to checking whether AO�|=q accepts the
empty language.

The details of the constructions of the above described automata are quite involved.
For the constructions, the proof of their correctness, and the computational complexity
analysis, we refer to [21] for the case when DL− does not include nominals (which
corresponds to the DL ZIQ of [20]), and to [20] for the cases when DL− includes
nominals (ZOI and ZOQ).

Theorem 3 ([19,21,20]). Given an DL− ontology O and a PQ q, deciding whether
O |= q is in 2EXPTIME in combined complexity (under the assumption that numbers
appearing in number restrictions are encoded in unary).

The above bound is tight, since query entailment is already 2EXPTIME-hard for the
following cases:

– CQs over ontologies expressed in ALCI [36] or ALCHreg [23];
– CRPQs or PQs over ontologies expressed in ALC [8].

Notice that the automata-theoretic approach above does not provide us any bound on
data complexity (that is better than the one for combined complexity). In fact, it remains
to be investigated whether in this approach it is possible to single out the contribution
coming from the ABox and the nominals in the construction of the automata and the
final emptiness check.

The above automata-based technique does also not work for the case of full DL, i.e.,
when the logic contains both nominals, inverses, and number restrictions, since in such
a case the tree model property fails, and tree automata do not seem suitable anymore as
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a technical tool. In fact, decidability of entailment for PQs over ALCOIQ ontologies
has been established in [27] using model theoretic arguments, which do not provide any
complexity upper bound. However, the problem is still open for logics including also
regular expressions over roles (or alternatively, transitive roles also in the query, in line
with what can be expressed in the Web Ontology Language OWL [7]).

Finally, we mention recent work that has considered the problem of query entailment
also over lightweight DLs, for variants of queries containing regular expressions [9],
and for their extension with nesting [8].

6 Conclusions

In this work, we have provided an overview of three prominent techniques that have
been used in recent years to address the challenging problem of query answering and
query entailment in DLs. Specifically, we have discussed: (1) a technique based on
query rewriting suitable for UCQs over lightweight DLs, which provides optimal com-
plexity bounds due to first-order rewritability; (2) a technique based on tableaux suitable
for PQs over expressive DLs, which provides optimal bounds in data complexity, but
not in combined complexity, and is not able to deal with regular expressions over roles
in the ontology or the query; (3) a technique based on automata on infinite trees, which
is able to deal with very expressive ontology and query languages containing regular ex-
pressions over roles, and provides optimal complexity bounds in combined complexity,
but not in data complexity.

The research on query answering and query entailment is still very active, and the
problem continues to provide challenges. On the one hand, from the theoretical point
of view several decidability and complexity questions are still open. On the other hand,
more work is required to implement query answering and query entailment algorithms
for the more expressive ontology and query languages. And both for lightweight and
for expressive languages, improvements in efficiency are needed, so at to make these
techniques usable in real world scenarios.
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