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Abstract. The computational complexity of reasoning on pure concept ex-
pressions has been characterized completely for all relevant description lo-
gics. On the contrary, reasoning in the presence of schema axioms is not so
well understood and far from being settled completely. An important class
of schemata is that of primitive schemata (in which the schema axioms ex-
press only necessary conditions) possibly containing cycles. In this paper we
provide, for a relevant class of description logics, a complete characterization
of computational complexity of reasoning in these types of schemata, both in
the presence and in the absence of cycles. The results are obtained by devising
reasoning procedures, establishing direct reductions to show lower bounds,
and introducing a general technique by which the constructor for existential
quantification can be removed without influencing the result of reasoning.

1 INTRODUCTION
Description logics were originally introduced as a formalization
of Frame based systems and Semantic Networks. They allow one
to express structured knowledge by means of concepts and roles
(which represent sets of objects and binary relations respectively) and
provide mechanisms to reason on such structured descriptions. The
typical reasoning tasks considered are: Determining if a concept is
consistent (i.e. doesnot necessarilydenote the empty set) anddeterm-
ining subsumption between concepts (i.e. if one concept necessarily
denotes a subset of another one).
Initially, research concentrated on the restricted problem of reas-

oning on concept expressions, without taking into account a schema
containing concept definitions and/or explicit inclusion assertions.
The study of this problem was motivated by the following observa-
tion: Under the assumption that the axioms in the schema contain no
cyclic referencesbetweenconcepts, the problemof conceptsubsump-
tion with respect to such a schema can be reduced to subsumption
between pure expressions. This is achieved simply by unfolding the
axioms in the schema. Although this can in the worst case lead to an
exponential increase in the size of the concepts [16], this seems not
to happen in practical cases. The computational complexity of reas-
oning on concept expressions has been exactly characterized for all
relevant description logics [14, 19, 15], and this problem can now be
regarded as solved.
However, although the assumption of acyclicity is common to

many terminological systems, it is unrealistic in practice, and cycles
are definitely necessary for a correct modeling in many application
domains. This is further confirmed by the fact that their use is allowed
in most database models. Cycles not only require a special treatment
by reasoning procedures and greatly increase the complexity of reas-
oning [1, 2, 17], but raise also the problem of which semantics to ad-
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opt to interpret them [17]. So called descriptive semantics accepts all
interpretations that satisfy the axioms. For this reason, under descript-
ive semantics a cyclic schema does not provide definitions, and al-
ternative semantics,which are basedonfixpoint definitionshavebeen
proposed to overcome this problem [17, 18, 12]. Following [4] we
argue, however that a schema represents a set of constraints on the
domain to be modeled, and therefore we should adopt descriptive se-
mantics which interprets axioms precisely as constraints.
These considerations motivate also the interest in reasoning on

primitive schemata, i.e. schemata containing only primitive concept
specifications (which state just necessary conditions) and no defini-
tions (which state both necessary and sufficient conditions). In fact,
the constraints that can be expressed in most semantic and object-
oriented data models correspond naturally to primitive concept spe-
cifications, and as shown in [10, 3], reasoning in these formalisms can
correctly be captured by reasoning on primitive schemata.
Deduction on schemata is not so well understood and far from be-

ing settled in all relevant cases. Cyclic definitions are investigated
in [1, 17], where for a simple logic containing only conjunction and
universal quantification, subsumption in possibly cyclic schemata
is shown to be already PSPACE-complete for fixpoints semantics
and in PSPACE for descriptive semantics (In fact, in [17] more
expressive logics are considered). For much more powerful logics
EXPTIME-completenessof schema level reasoning is established in
[11, 8]. Primitive schemata, on the other hand, have been investigated
only recently, motivated by the tight correspondence with database
models. The impact of the assumption that the schema contains no
definitions is not well understood. In particular, the known reasoning
procedures cannot take advantageof the fact that the schema is primit-
ive and treat it as an arbitrary schema possibly containing definitions.
Also, the known lower bounds are the ones that follow trivially from
the lower bounds established for reasoning on concept expressions.
Exceptions are the results established in [6, 10, 4], which deal expli-
citly with primitive schemata.We discuss the results in [6, 4] relevant
for this paper in Section 3. [10] shows decidability in deterministic
exponential time of reasoning on primitive schemata in an express-
ive logic that allows to represent database models and frame based
systems.
In this paper we present a systematic study of the complexity of

deduction on primitive schemata expressed in the basic description
logics of the -family [15], namely and its sub-languages.
To this end we provide three distinct technical contributions: (1) We
develop an algorithm for reasoning in polynomial space in acyclic
schemata in the presence of disjunction. (2) We show various lower
bounds by direct reductions. (3) We introduce a general technique by
which the constructor for existential quantification can be eliminated
from schematawithout influencing the result of deductions.The com-
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DL Schema empty acyclic general
(subsum.) PTIME PTIME PTIME

PTIME coNP PSPACE
coNP coNP PSPACE
NP PSPACE EXPTIME

PSPACE PSPACE EXPTIME

Table 1. Complexity of concept consistency in primitive schemata

bination of these three contributions allows us to characterize com-
pletely the complexity of reasoning in all considered logics, with re-
spect to both acyclic and general schemata. Section 2 provides the
notational and definitional background,while the technical results are
presented in Section 3.

2 BACKGROUND
Description logics allow one to express structured knowledge by
means of concept and role expressions. Concept expressions (also
called simply concepts) can be considered as unary predicates which
are interpreted as sets of objects, whereas roles are binary predicates
interpreted as binary relations over the domain of objects. Complex
concepts and roles (ranged over by and respectively) can be built
starting from a set of concept names (ranged over by , ) and role
names (ranged over by ) by applying the constructors that charac-
terize the logic. A systematic presentation of the class of description
logics we deal with in this paper, namely -logics, can be found for
example in [15], and we refer to this paper for the denotation of the
logics and formal definitions of syntax and semantics.
Given a description logic , an -schema introduces concept and

role namesand states conditions that objects have to satisfy in order to
be instances of certain concepts. Formally, an -schema is a triple

, where is a set of concepts names, a set of role names,
and a set of axioms that have the form

(primitive concept specification)
(concept definition),

where , is a concept containing only names in , and
for each concept there is at most one definition. A schema containing
only primitive concept specifications is called primitive. A cycle in
a schema is defined as follows. We say that directly uses if for
some axiom or in , appears in . Let uses denote
the transitive closure of “directly uses”. Then contains a cycle if
there is a concept name that uses itself. A schema possibly containing
a cycle is called general.
An axiom states necessary conditions for an object to be

an instance of , while states both necessary and sufficient
conditions. Formally, an interpretation satisfies (resp.
) if (resp. ), and an interpretation of that

satisfies all axioms in is called a model of . A concept is said
to be consistent in if admits a model such that , and a
concept is subsumed by a concept in , if for every
model of .
Notice that we haveadopted descriptivesemantics, which seems to

be the most appropriate one for the interpretation of schemata [4, 17].
In the following we assume to deal only with primitive schemata.

3 COMPLEXITY RESULTS
In this section we analyze the complexity of reasoning on primitive
schemata, both acyclic and general, expressed in and its relev-

ant sub-logics. The results we establish allow us to fill in all entries
in Table 1 that were unsettled, obtaining tight complexity bounds in
all cases. In particular, the completeness (resp. upper bound, lower
bound) results for entries marked with “ ” (resp. “ ”, “ ”) were
open and are established here. We have also included for comparison
a column showing the complexity of pure consistency, i.e. of consist-
ency of concept expressions with respect to an empty schema.
For -schemata concept consistencyis trivial, since con-

tains no combination of constructs that can give rise to a contradic-
tion. Therefore any concept in an -schema is consistent. An
immediate consequence of the polynomial algorithm for query sub-
sumption given in [6] is that concept subsumption in can be
decided in polynomial time even with general schemata.
In the following, for lack of space,we concentrate on concept con-

sistency only. However, it is possible to show that the correspond-
ing complexity bounds hold also for the case of subsumption. We
assume that schemata are normalized, i.e. all concepts that appear
on the right hand side of the axioms in the schema are of the form

. . . This represents no limitation
since we can bring all concepts in negation normal form, and by in-
troducing at most a linear number of new concept names and axioms,
eliminate conjunctionand the nesting of constructorswithout influen-
cing consistency.Moreover, we can restrict our attention to the case
where the concept to check for consistency is a single concept name,
since a generic concept is consistent in a schema
iff is consistent in , where
is a new concept name.

3.1 Direct upper bounds
In [4] an algorithm is given for verifying concept consistency in
schemata in a slight extension of . We briefly sketch this method
for the caseof -schemata.First of all, notice that since all concepts
in the schema are normalized (and there is no disjunction), we can as-
sume that the schema is ISA-complete, i.e. if we view “ ” in the ax-
ioms as a partial order between concept expressions, then the axioms
are closed under transitivity. Given such a schema ,
the algorithm is based on the construction of a graph whose nodes are
subsets of and whose edges are labeled by roles in . There is an
edge labeled with from a node to a node iff

1. there is a concept such that , and
2. . for some .

If for a node condition (1) is verified we say that is active for .
A node is said to be a conflict node if it contains concept names
such that for some , and are in .
Such graph can be put in correspondencewith an interpretation as

follows: A nodecorrespondsto an object that is an instanceof all con-
cepts in the node. An edge labeled by between two nodes and

represents the fact that in a model of the object corresponding
to necessarily has a -successor which corresponds to , i.e. is
an instance of all concept names in . Therefore, the conjunction of
concepts in a node is consistent iff in the graph there is no path
from to a conflict node. The entire graph is clearly exponential in
the size of the schema, but a path to a conflict node can be detec-
ted by a nondeterministic algorithm using only polynomial space by
computing a successor node directly from the schema and the current
node.Moreover, for an acyclic schemathe length of a path is bounded
linearly by the number of concept names. This shows that concept
consistency is in coNP for acyclic -schemata and in PSPACE for
general -schemata.

Knowledge Representation 304 D. Calvanese



consistent( : set of concept names, : -schema): boolean
begin

;
repeat

;
isa complete(choice( ));

Consistent consistent choice( )
until Consistent or last choice( );
return Consistent

end;
consistent choice( : set of concept names,

: -schema, : -schema): boolean
begin
ConsChoice no conflict( );
if ConsChoice then
for each in active roles( ) do
ConsChoice ConsChoice and

consistent(successors( )
return ConsChoice

end;

Figure 1. Concept consistency in acyclic -schemata

We now show how the reasoning technique for can be exten-
ded to deal also with disjunction, providing an algorithm that decides
concept consistency in acyclic -schemata in polynomial space.
The idea underlying our algorithm is that in the presence of disjunc-
tion one can traverse the graph bymaking nondeterministic choices at
each node. The choice involves deciding, for each axiom containing
a disjunction on the right side, which of the disjuncts to consider for
determining the ISA-completion. This determines also if the node is a
conflict node, and the successor nodes for each role. Given a node
representing a conjunction of concept names, if there is a choice
such that is not a conflict node (with respect to the ISA-complete
schema determined by the choice), and the successor nodes for all
roles are themselves consistent, then is consistent in the schema.
Figure 1 shows a procedure that implements this idea. It takes as

input a set of concept names and an acyclic- -schema and
answers true iff the conjunction of concepts in is consistent in .
Procedureconsistent tries the choices in succession(where is the
number of axioms involving disjunction), generating for each -
schema returned by choice the ISA-completion, and then calling con-
sistent choice to verify if the choice is the one that allows to satisfy
the conjunction of concepts in . Observe that isa complete works
in polynomial time, since the schema returned by choice contains no
disjunctions. Procedure consistent choice verifies first if is a con-
flict node (with respect to the schema obtained from the choice), and
then generates for each role active for the successornode, and veri-
fies recursively if this node is consistent.

Proposition 1 Let be an acyclic -schema and
a conjunction of concepts is . Then is consistent in iff

consistent true.

Since the schema is acyclic we can apply the same argument used
in [4] to show that the length of a chain of successor nodes is linear
in the size of . Therefore, when executing procedure consistent, we
have at most a linear number of nestings of recursive calls, and the
space taken up by the activation stack is polynomial.

Theorem 2 Concept consistency in acyclic -schemata can be
decided in worst case polynomial space in the size of the schema.

3.2 Direct reductions to show lower bounds
As already mentioned, in [4] it is shown that when moving from

to (which allows to express inconsistent concepts) verify-
ing concept consistency becomes intractable. We come back in Sec-
tion 3.3 to the idea underlying this result and want first to sketch an
alternative proof of coNP-hardnessfor concept consistencyin acyclic

-schemata, which is based on a direct reduction from validity of
propositional formulae in DNF. The idea introduced in this reduction
can also be immediately exploited to give a direct proof of PSPACE-
hardness of concept consistency in acyclic -schemata. More
important, the insight gained in this way is fundamental to show
PSPACE-hardness of reasoning on general -schemata.
We first give some definitions and discuss some simple proper-

ties of -schemata. A sequence of concept
names is a -chain in , if contains the axioms

. , for . A -chain is called a -chain. Let
, , be -chains in . The

set is active in , if for each there is
an such that contains the axiom .
Intuitively, if a schema contains an active set of chains, then in

every model of the schema each object that is an instance of all ini-
tial concepts of the chains in requires the existence of a sequence
of objects that are connected through the roles of the chains and are
instances of successive concepts in the chains. This does not hold if
the set of chains is not active, and we can say that the generation of
objects along the chains can be blocked at some point. All reductions
that we provide are basedon the construction of a set of chainswhose
activation depends on whether the problem we encode has a positive
answer or not. In fact, the reductions we give show that the complex-
ity of reasoning on schemata lies precisely in the detection of sets of
active chains.
We show coNP-hardness of concept consistency in acyclic -

schemataby a reduction from validity in DNF. Let
be a set of clauses, where each clause is a set of literals over the pro-
positional letters . We call a truth value assignment
to the letters of a -assignment. We construct now an -schema

such that a certain concept of is consistent iff is valid.
consists of two parts (which depends only on ) and (which
encodes the clauses).

is defined by
, , and

contains the following axioms:

For each ,

. .

. . (1)

For each , ,

. .

. .

For each , ,

The interesting property of this schema is that in every model
of with , for every possible -assignment there is
an object such that for all the following holds:

, iff true, and , iff false. This
property can be exploited for the reduction of validity as follows. We
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encode the clauses of in such a way that if there is a -assignment
that does not satisfy (i.e. in every clause there is at least one lit-

eral not satisfied by ) then a certain set of chains corresponding
to becomes active. Additionally, we enforce a contradiction in the
schema if we try to populate the final concepts of these chains with a
common instance. The axioms in ensure that if we try to populate

we are indeed forced to generate for each a common instance
of all initial concepts in the chains of , and therefore generate a
contradiction if does not satisfy . On the other hand, if is valid,
then there is no set of active chains that forces a contradiction and
is consistent in .

, which encodes the clauses in the desired way
is defined by , ,
and contains for each , the following axioms:

. .
if if

We can now specify the set of chains corresponding to a -
assignment , as the set of -chains that start at , where “ ”
stands for “ ” if true, and for “ ” if false. It is not
difficult to see that is active iff does not satisfy .
By connecting the two schemata and and adding an ax-

iom that forces a contradiction if a certain concept is forced to be
populated, we obtain the schema that realizes the desired reduc-
tion. is defined by ,

, and with obtained by adding to the
following axioms:

and for each ,

. .

. .

Theorem 3 Let be a propositional formula in DNF, and the
schema obtained from as specified above. Then is consistent in

iff is valid.

Corollary 4 Concept consistency in acyclic -schemata is coNP-
hard.

The idea exploited for the previous reduction can be extended in
a straightforward way to show PSPACE-hardness of reasoning in
acyclic -schemata. The result is established by reducing valid-
ity of quantified boolean formulae (QBF for short) to concept consist-
ency. Validity of QBFs is a well known PSPACE-complete problem,
and the hardness result holds already for the restricted case where
the propositional part is in DNF, which is the one we consider here.
We use a reformulation of the problem similar to the one presented
in [19], where a QBF . is constituted by a quantifier pre-
fix , and a set of clauses in DNF over

.
The key observation to our proof lies in the fact that by using dis-

junction we can replace schema with a schema with the fol-
lowing property: Eachmodel of in which is populatedcorres-
ponds to a set of -assignments that is canonical for . Sincewe give
later an alternative proof of the same hardness result we omit further
details.

Theorem 5 Concept consistency in acyclic -schemata is
PSPACE-hard.

In order to showPSPACE-hardnessof concept consistencyin gen-
eral -schemata we use again a reduction from validity of QBFs.
However, differently from , in order to handle existential quan-
tifiers in the prefix of the formula, we cannot directly exploit the
method basedon the generation of objects that correspond to truth as-
signments. Instead, we make use of the possibility to simulate a bin-
ary -bit counter by meansof a cyclic -schema. The schemacon-
tains concepts , , representing values and of
the bits, roles , and for the following ax-
ioms:

. . .

. .
. .

We have chosen to represent the least significant bit by and .
If in amodel of this schema the concepts contain a com-
mon instance, then for each number between and there
is an object which is a common instance of the concepts that give
the binary representation of . We express the fact that the existence
of an object corresponding to a certain number is enforced by saying
that the count proceeds till that number.
Given a QBF . , where contains quantifiers, we

embed the chains of schema that encode the clauses of in the
counter. The idea is that these chains should block the count if there
is a setA of -assignments canonical for and for which all assign-
ments in A satisfy . If such a set does not exist the count proceeds
to the end and a contradiction is enforced. Therefore all sets A have
to be tried in succession. If a letter is universally quantified in ,
then each setA containspairs of assignments that assign the sameval-
ues to and a different value to . Since both assignments
that constitute such a pair have to satisfy , if is valid the count for
both has to be blocked. Therefore, we insert the two chains corres-
ponding to in parallel in the schema, which ensures the generation
of two different objects that separately activate the count. Conversely,
if is existentially quantified, then the sets A come in pairs contain-
ing the same assignments except for the value assigned to by the
assignments that correspond each other in the two sets. Therefore we
have to try the two sets in successionandwe insert the two chains that
encode in succession in the schema, one connected to , and the
other connected to . This ensures that they are both traversed as
the count proceeds and can separately contribute to block it. For the
full details of the schema that implements the desired reduction
we refer to [7], and we state here only the final result.

Theorem 6 Let be a QBF and the cyclic -schema obtained
from . contains a distinguishedconcept name , and is con-
sistent in iff is valid.

Corollary 7 Concept consistency in general- -schemata is
PSPACE-hard.

3.3 Eliminating existential quantification
In [4] it is shown that verifying concept consistency in -schemata
is coNP-hard. The result is established by exploiting a reduction
from subsumption between concept expressions in (which
was shown coNP-complete in [13]) to concept consistency in -
schemata. The reduction is based essentially on the elimination of ex-
istential quantification from an concept containing a single role
by introducing suitable axioms in the schema.
The elimination of existential quantification can easily be general-

ized to schemata and to an arbitrary number of roles. It proves useful
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both as a theoretical tool to show complexity results, and as a method
to exploit reasoning techniques developed for logics without existen-
tial quantification, for their more expressive variants which feature
this constructor.
For a normalized -schema we define the

schema obtained from by -elimination:

.
For a role , let . appears in . Then

.
is obtained from by substituting each axiom

. with . and

. with . . .
where

We observe that the number of new roles introduced in is lin-
ear in the number of axioms in , and that the size of is at most
quadratic in the size of . Althoughwe have replaced each qualified
existential quantification with an unqualified one on a different role,
the interaction between universal and existential quantification is still
captured correctly. In fact, the following theorem holds.

Theorem 8 Let be an -schema and the schema obtained
from by -elimination. A concept is consistent in iff it is con-
sistent in .

We obtain immediately that reasoning on -schemata can be
reduced to reasoning on -schemata, and from Theorem 2 a new
upper bound for reasoning on acyclic -schemata.

Corollary 9 Concept consistency in -schemata is coNP-
complete for acyclic schemata and PSPACE-complete for general
schemata.

Corollary 10 Concept consistency in acyclic -schemata can be
decided in worst case polynomial space in the size of the schema.

We get also a further confirmation of the fact that the complexity
source introduced by (acyclic) axioms is of the same nature as the one
introduced byexistential quantification, and results precisely from the
interplay between (unqualified) existential quantification and univer-
sal quantification.

-elimination allows us also to show lower bounds for reason-
ing on -schemata, by exploiting the lower bounds for . In
particular, from PSPACE-hardness of concept consistency in acyclic

-schemata (which follows immediately from the hardness result
for proved in [19]), by applyingTheorem8we obtain an altern-
ative proof of Theorem 5. From EXPTIME-completeness of reason-
ing on general -schemata [5], we obtain the same completeness
result for reasoningon general -schemata, ofwhich the hardness
part was open.

Corollary 11 Concept consistency in general -schemata is
EXPTIME-hard.

4 CONCLUSIONS
Both in databases and in knowledge representation, reasoning on
schemata is of fundamental importance and this paper represents the
first systematic investigation of the issues related to its computa-
tional complexity. We have analyzed the complexity of reasoning on
primitive schemata for the relevant class of description logics be-
low . Three separate technical contributions are given: (1) A

method to reason on acyclic -schemata in polynomial space. (2)
Direct reductions that provide tight lower bounds for reasoning on

-schemata and acyclic -schemata. (3) A general technique
to eliminate the constructor for existential quantification. Applied to-
gether they allow us to characterize completely the computational
complexity of reasoning in all considered languages, both with re-
spect to acyclic and general schemata.
The present work can be extended in various directions. First, one

can study the impact on computational complexity of augmenting the
expressivity of the logic used to express the schema. Particularly im-
portant in this context is the addition of inverse roles, and first steps
in this direction are done in [4, 10]. Second, one can study heuristics
to reduce the computational complexity of reasoning under assump-
tions that are reasonable in practice and that are common in databases,
following e.g. the ideas given in [9].
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