
SMO
System Management Ontology

Description Logic Formalization of CIM

Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, Daniele Nardi

Research Report N. 1 March 8, 2001

Abstract

Common Information Model (CIM) has the goal of providing a suitable approach for modeling
systems and networks using the object-oriented paradigm. In this document we illustrate how to
map CIM onto an expressive Description Logics, called DLRifd , so as to obtain a rigorous logical
framework for representing and reasoning on managed systems. The document is organized as
follows. We first give an overview of both CIM and the Description Logic DLRifd . We then
illustrate the formalization of CIM in terms of DLRifd . Finally, we present an example of how
such a formalization works, by showing how the CIM Core model and the CIM Common model
is expressed in DLRifd .

Product Research Report N. 1

Date March 8, 2001

Number of pages 18

Authors Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, Daniele Nardi

Affiliation Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy
lastname @dis.uniroma1.it

1 Introduction

Common Information Model (henceforth denoted by CIM) is a model based on UML (Unified
Modeling Language). CIM was defined by DMTF (Distributed Management Task Force). The
purpose of CIM is to provide a rigorous approach for modelling systems and networks using the
object-oriented paradigm. More precisely, CIM is based on the specification of class diagrams
in UML. CIM has got a Meta Schema made up of constructs borrowed from UML. Following
the specifications of the Meta Schema other schemas are constructed, which form the basis for
a sort of vocabulary for analyzing and describing managed systems. It should be pointed out
that CIM is not bound to any particular implementation.

CIM offers three conceptual layers: the Core Model, the Common Model and the Extension
Schemas. The Core Model and the Common Model together form the CIM Schema.

(i) The Core Model is an information model that captures basic notions which are applicable
to all areas of management (e.g., logical device or system component).

(ii) The Common Model is an information model that expresses concepts related to specific
management areas, but still independent of a particular technology or implementation.
The common areas defined in the Common Model are: Systems, Devices, Applications,
Networks, Physical.

(iii) Extension Schemas are made up of classes that represent managed objects that are tech-
nology specific additions to the Common Model.

In this overview we will focus our attention on CIM Meta Schema, with the goal of mapping
the constructs of the Meta Schema onto those of Description Logics, in order to have a rigorous
logical framework for representing and reasoning on managed systems.

This document is organized as follows: in Section 2 we give an overview of CIM, and in
Section 3 an overview of DLRifd . In Section 4 we illustrate the formalization of CIM in terms
of DLRifd . Finally, in Section 5 we present an example of how such a formalization works, by
showing how the CIM Core model and the CIM Common model is expressed in DLRifd .

2 CIM Meta Schema

In this section we examine CIM in detail, describing each basic construct and its meaning.

2.1 Classes, properties and methods

A class in CIM is a construct which represents sets of objects with common structural fea-
tures and semantics. As in UML, in CIM a diagram is denoted by a rectangle divided into
compartments, as shown in Figure 1.

Person

Surname: string

Age(datetime): int
AcceptsSalary(int): bool

class name compartment

attributes compartment

methods compartment

Name: string

Figure 1: Representation of a class in CIM

In the class name compartment we indicate the name of the class, which has to be unique
in the whole schema.

1

Person

Student Employee

Figure 2: A class hierarchy in CIM

In the attributes compartment we declare the attributes of the class. An attribute is de-
noted by a name (possibly followed by the multiplicity, between square brackets) and a type,
which indicates the domain to which the values of the attribute are to belong. For example
Date[3]:datetime means that the class has got three values of type datetime (and labeled with
Date). In CIM attributes are single-valued, i.e. to each field we associate only one value of the
correspondent domain, if not otherwise specified.

In the methods compartment we declare the methods of the class, which describe the oper-
ations that can be performed on the objects of the class, i.e. the behavioural features of the
class itself. The syntax of a method definition is of the usual form method-name(parameter-
list):(return-type-list). A method may return a tuple of values, i.e., an element of the cartesian
product of a collection of sets T1, . . . , Tk.

As in UML, in CIM we can define class hierarchies, represented in the usual way, as shown
in Figure 2. A subclass inherits all properties and methods of the father class (superclass); with
respect to UML, in CIM we have a further restriction stating that multiple inheritance is not
allowed, i.e. a subclass can have at most one superclass.

2.2 Associations

An association in CIM is a relation between two or more classes; an association is always
represented by a class. A relation R between two classes C1 and C2 is represented as in Figure 3;
r1 and r2 are the role names of C1 and C2 respectively; the role names specify the role that each
class plays within the relation R. The cardinality constraint a. .b specifies that each instance of
class C1 can participate at least a times and at most b times to relation R; c. .d has an analogous
meaning for class C2.

a. .bC1 C2

R

r1 r2

c. .d

Figure 3: Association in CIM

Example 1 In Figure 4 we model ownership of houses; a person can own 0 or more houses (the

2

owner

Ownership

DateOfPurchase: Datetime

Person House
1. .1 0. .∗

Figure 4: Example of association in CIM

symbol ∗ means ∞), while a house has to be owned by exactly one person, which is denoted by
the role owner.

2.3 Aggregations

An aggregation in CIM is a binary relationship between two classes. An aggregation is a part-
whole relationship, specifying that each instance of a class is made up of a set of instances of
another class. An aggregation is denoted as shown in Figure 5, where the diamond indicates
the containing class, opposed to the contained class. The cardinality constraints have the same
meaning as in associations. Also in aggregation it is possible to define role names which denote

A B

a
ml. .mu nl. .nu

Figure 5: Aggregation in CIM

Family Person

membership

0. .1 1. .∗

Figure 6: Example of aggregation in CIM

the role each class plays in the aggregation.

Example 2 In figure 6 we have persons belonging to families; a family can have 1 or more
persons, while a person belongs to at most one family.

2.4 Overriding

In CIM it is possible to explicitly override with a method of a subclass a method of the corre-
sponding superclass. This override relation in CIM has to be declared explicitly.

2.5 Schemas

A CIM schema is a set of classes, associations, and aggregations representing information about
a fragment of real world. Within a single schema, class names have to be unique. A class have
to belong to exactly one schema.

3

2.6 Qualifiers

In CIM it is possible to add information to a schema by using qualifiers. For example, a qualifier
can specify required properties of a class. In general, qualifiers are used in CIM to express in an
informal way information which cannot be expressed by other constructs of CIM Meta Schema.
More investigation is needed on qualifiers in order to come up with a proposal on how to express
them in Description Logics.

3 Description Logic DLRifd

The goal of this section is to give an overview on the Description Logic DLRifd introduced in
[4], which is able to capture a great variety of data models with many forms of constraints [3, 6].

3.1 Syntax

The basic elements of DLRifd are concepts (unary relations), and n-ary relations. We assume to
deal with a finite set of atomic relations and atomic concepts, denoted by P and A, respectively.
We use R to denote arbitrary relations (of given arity between 2 and nmax), and C to denote
arbitrary concepts, respectively built according to the following syntax:

R ::= >n | P | (i/n : C) | ¬R | R1 uR2

C ::= >1 | A | ¬C | C1 u C2 | (≤ k [i]R)

where i denotes a component of a relation, i.e., an integer between 1 and nmax, n denotes the
arity of a relation, i.e., an integer between 2 and nmax, and k denotes a non-negative integer.
We consider only concepts and relations that are well-typed, which means that (i) only relations
of the same arity n are combined to form expressions of type R1uR2 (which inherit the arity n),
and (ii) i ≤ n whenever i denotes a component of a relation of arity n.

We introduce the following abbreviations:

• C1 t C2 for ¬(¬C1 u ¬C2);

• C1⇒C2 for ¬C1 t C2;

• (≥ k [i]R) for ¬(≤ k−1 [i]R);

• ∃[i]R for (≥ 1 [i]R);

• ∀[i]R for ¬∃[i]¬R.

Moreover, we abbreviate (i/n : C) with (i :C) when n is clear from the context.
A DLRifd TBox (or schema) is constituted by a finite set of inclusion assertions, where each

assertion has one of the forms:

R1 v R2 C1 v C2

with R1 and R2 of the same arity.
Besides inclusion assertions, DLRifd TBoxes allow for assertions expressing identification

constraints and functional dependencies.
An identification assertion on a concept has the form:

(id C [i1]R1, . . . , [ih]Rh)

where C is a concept, each Rj is a relation, and each ij denotes one component of Rj . Intuitively,
such an assertion states that no two different instances of C agree on the participation to

4

>In ⊆ (∆I)n

P I ⊆ >In
(i/n : C)I = {t ∈ >In | t[i] ∈ CI}

(¬R)I = >In \RI

(R1 uR2)I = RI
1 ∩RI

2

>I1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 u C2)I = CI
1 ∩ CI

2

(≤ k [i]R)I = {a ∈ ∆I |]{t ∈ RI
1 | t[i] = a} ≤ k}

Figure 7: Semantic rules for DLRifd (P , R, R1, and R2 have arity n)

R1, . . . , Rh. In other words, if a is an instance of C that is the ij-th component of a tuple tj of
Rj , for j ∈ {1, . . . , h}, and b is an instance of C that is the ij-th component of a tuple sj of Rj ,
for j ∈ {1, . . . , h}, and for each j, tj agrees with sj in all components different from ij , then a
and b coincide.

A functional dependency assertion on a relation has the form:

(fd R i1, . . . , ih → j)

where R is a relation, h ≥ 2, and i1, . . . , ih, j denote components of R. The assertion imposes
that two tuples of R that agree on the components i1, . . . , ih, agree also on the component j.

Note that unary functional dependencies (i.e., functional dependencies with h = 1) are ruled
out in DLRifd , since these lead to undecidability [4]. Note also that the right hand side of a
functional dependency contains a single element. However, this is not a limitation, because any
functional dependency with more than one element in the right hand side can always be split
into several dependencies of the above form.

3.2 Semantics

The semantics of DLRifd is specified through the notion of interpretation. An interpretation
I = (∆I , ·I) of a DLRifd TBox T and a set of constants C (to be used in queries) is constituted
by an interpretation domain ∆I and an interpretation function ·I that assigns

• to each concept C a subset CI of ∆I

• to each relation R of arity n a subset RI of (∆I)n

such that the conditions in Figure 7 are satisfied. In the figure, t[i] denotes the i-th component
of tuple t. We observe that >1 denotes the interpretation domain, while >n, for n > 1, does not
denote the n-Cartesian product of the domain, but only a subset of it, that covers all relations
of arity n. It follows, from this property, that the “¬” constructor on relations is used to express
difference of relations, rather than complement.

• An interpretation I satisfies an inclusion assertion R1 v R2 (resp. C1 v C2) if RI
1 ⊆ RI

2

(resp. CI
1 ⊆ CI

2).

• An interpretation I satisfies the assertion (id C [i1]R1, . . . , [ih]Rh) if for all a, b ∈ CI and
for all t1, s1 ∈ RI

1 , . . . , th, sh ∈ RI
h we have that:

a = t1[i1] = · · · = th[ih],
b = s1[i1] = · · · = sh[ih],
tj [i] = sj [i], for j ∈ {1, . . . , h},

and for i 6= ij





implies a = b

5

• An interpretation I satisfies the assertion (fd R i1, . . . , ih → j) if for all t, s ∈ RI , we have
that:

t[i1] = s[i1], . . . , t[ih] = s[ih] implies t[j] = s[j]

3.3 Reasoning tasks

Several reasoning services are applicable to DLRifd TBoxes. The most important ones are
TBox satisfiability (unsatisfiability) and logical implication. An interpretation that satisfies all
assertions in a TBox T is called a model of T . A TBox T is satisfiable (unsatisfiable) if there
exists a model of T (there are no model of T). An assertion α is logically implied by T if all
models of T satisfy α. We recall that logical implication and TBox unsatisfiability are mutually
reducible.

One of the distinguishing features of DLRifd is that it is equipped with algorithms for
checking satisfiability and logical implication. Such reasoning tasks are in fact EXPTIME-
decidable [4].

3.4 Discussion

It can be shown that DLRifd is able to capture a great variety of data models with many forms
of constraints. For example, we obtain the entity-relationship model (including is-a relations
on both entities and relations) in a straightforward way [2], and an object-oriented data model
(extended with several types of constraints), by restricting the use of existential and univer-
sal quantifications in concept expressions, by restricting the attention to binary relations, and
by eliminating negation, and disjunction. The following observations point out the kinds of
constraints typically used in databases and software engineering that can be expressed using
DLRifd .

• Assertions directly express a special case of typed inclusion dependencies, namely the one
where no projection of relations is used.

• Unary inclusion dependencies are easily expressible by means of the ∃[2]P construct. For
example, ∃[2]P1 v ∃[3]P2 is a unary inclusion dependency between attribute 2 of P1 and
attribute 3 of P2.

• Existence and exclusion dependencies are expressible by means of ∃ and ¬, respectively.

• Functional dependencies are directly expressible by means of functional dependencies as-
sertions. The only functional dependencies that are not admitted in DLRifd are unary
functional dependencies in the context of non-binary relations. This is because they lead
to undecidability of reasoning. Note also, that the presence of such functional dependen-
cies is considered as an indication of bad design in the framework of the relational data
model (see [1], Chapter 11). In fact, a unary functional dependency in the context of an
n-ary relation (with n > 2) represents a hidden relationship between the arguments of the
relation, which may cause several modeling problems.

• The possibility of defining identification constraints substantially enriches the modeling
power of DLs. In particular, it is possible to show that, even if only binary relations are
allowed in a DL, then the use of identification constraints permits simulating the presence
of n-ary relations in such a logic. For example, a relation with arity 3 can be modeled by
means of a concept and 3 binary relations. Number restrictions are used to state that every
instance of the concept participates in exactly one instance of the binary relation, and a
suitable identification assertion states that the combination of the three binary relations
form a key for the concept. Obviously, DLRifd further increases the modeling power

6

by allowing the explicit use of n-ary relations, and the possibility of imposing functional
dependencies in the context of relations.

• The possibility of constructing complex expressions provides a special form of view defi-
nition. Indeed, the two assertions P v R, R v P (where R is a complex expression) is
a view definition for P . Notably, views can be freely used in assertions (even with cyclic
references), and, therefore, all the above discussed constraints can be imposed not only on
atomic relations, but also on views. These features make our logic particularly suited for
expressing inter-schema relationships in the context of information integration [5], where
it is crucial to be able to state that a certain concept of a schema corresponds (by means
of inclusion or equivalence) to a view in another schema.

4 Formalization in Description Logics

To formalize any CIM schema in Description Logics we take advantage of the expressive power
of DLRifd . We point out that in this document we don’t consider the meta-level constructs of
CIM (e.g. qualifiers); our aim is to give a formal semantics to CIM by formalizing each basic
construct of CIM Meta-Schema into Description Logics.

A CIM schema is formalized in a DLRifd TBox which expresses a set of constraints over a
suitable set of DLRifd concepts and roles. The concepts and roles with which we formalize a
CIM schema are derived in the following way. We partition DLRifd class and relation names
into more specific sets: given a CIM schema, the sets of symbols that we use in our framework
are the following:

(a) Set of base types T : this set contains the concepts representing the base types (e.g. integer
or boolean). For each base type in a CIM schema we introduce a concept in T with the
same name.

(b) Set of classes Ccl: this set contains the concepts representing CIM classes (but it does not
contain DLRifd concepts representing associations). For each CIM class representing a set
of objects (and not an association) we have a class in Ccl with the same name.

(c) Set of classes representing associations Cas: this set contains the concepts representing
CIM associations. We introduce a concept in Cas for each CIM association; the concept
and the association have the same name.

(d) Set of association role names Ras: this set contains the relations which we use to model
CIM associations; as we will see later, the relations in Ras take their name from the role
names in the corresponding CIM association. In particular, for each role name appear-
ing in a CIM association we introduce a DLRifd binary relation in our framework; each
association is thus modelled by a class and a set of binary relations in Ras.

(e) Set of aggregations Rag: this set contains the relations used to model CIM aggregations.
For each CIM aggregation we introduce a binary relation in Rag with the same name.

(f) Set of attributes A: this set contains the relations used to model attributes of CIM classes.
We have a binary relation in A for each attribute appearing in a class of the CIM schema;
the name of the relation is the same as that of the attribute.

(g) Set of methods M: this set contains the relations which model the methods in CIM classes.
For each method with n parameters appearing in a CIM class of the schema we introduce a
relation inM. Given a methof M , the name of the corresponding relation in our framework
is the name M concatenated by the pair [x, y] as a subscript, where y is the number of
parameters of M , k is the number of elements forming the tuples returned by M , and

7

x = y + k + 1. The number of arguments of the relation corresponding to M is y + k + 1,
since we want to have:

• an argument for the class where the method is defined,

• one argument for each type of the result, and

• one argument for each parameter.

(h) Set of role names N : this set contains the symbols used to denote the roles of classes
participating in aggregations, and it is identical to the set of role names appearing in the
CIM schema. The symbols in N are not actually part of the DLRifd syntax; they are a
syntactic addition which adds a convenient way to denote roles.

So we have that the set of concepts in our framework is given by

C = T ∪ Ccl ∪ Cas,

while the set of relations is
R = M∪A∪Rag ∪Ras.

Now we expose how we can formalize each basic construct of the CIM Meta Schema in
DLRifd .

4.1 Classes, properties and methods

A CIM class is mapped onto a DLRifd concept; this is obvious, if we think that both CIM
classes and DLRifd roles represent sets of individuals.

To formalize attributes we have to think of an attribute a of a class C, whose values belong
to the data type T, as a function

a : C −→ T.

What we want to do is to assign a type T to the attribute a. We want to specify that, given
an object c ∈ CI , for each t such that (c, t) ∈ aI we have t ∈ T I , or equivalently: there is
no element (c, t) ∈ aI of relation a such that t /∈ T I . We can express this by using universal
quantification in the following way:

C v ∀[1](a ⇒ (2 : T)) (1)

with C ∈ Ccl ∪ Cas, T ∈ T , a ∈ A. We remind that the above assertion is equivalent to
C v ¬∃[1](a u ¬(2 : T)).

If the attribute is single-valued (i.e. a is a function), we have to add to the right side of the
assertion 1, the conjunct

(≤ 1 [1]a).

If we want a to be a non optional attribute we have to add to the right side of the assertion 1,
the conjunct

∃[1]a.

It may happen that a is a key for C, i.e. there is no pair of elements in CI that share the same
attribute a with the same value in T I . In this case we add the following assertion:

(id C [1]a) (2)

In a similar way, we are able to specify that a set of attributes {a1, . . . , an}, with n ≥ 2, is a key
for C; in this case we have the assertion

(id C [1]a1, [1]a2, · · · [1]an) (3)

8

Note that we have disregarded the option of declaring the attribute a with a DLRifd assertion
of the form a v (1 : C)u (2 : T). Indeed, this could cause problems because two different classes
could have the same attribute a.1

In a similar way, we formalize methods of a class C. Suppose that C has a method

m(T1, T2) : (T3, T4).

This notation indicates that the method has two parameters of type T1 and T2 respectively and
a return type T3 × T4. We formalize m as a relation of arity 5 between the class C and the
types T1, T2, T3, T4 ∈ C. We say that m has arity 5, i.e., represents a relation among 5 types
(the first of which is C). Obviously, another class C ′ could have a method named m. In our
framework we do want to make a distinction between methods which have different arity and
number of arguments. So the name for m in our framework is m[5,2] ∈ M, i.e. the name of the
method followed by its arity and the number of its arguments. Therefore we have the following
assertion:

C v ∀[1](m[5,2] ⇒ ((2 : T1) u (3 : T2) u (4 : T3) u (5 : T4))) (4)

This assertion specifies that method m of class C is a relation between C, T1, T2, T3, T4. We also
need to specify that all the methods named m[5,2] in our framework specify functions and not
relations in general. This is done by adding to our TBox the following functional dependency
assertions:

(fd m[5,2] 1, 2, 3 → 4)
(fd m[5,2] 1, 2, 3 → 5)

(5)

4.2 Subclasses and superclasses

When we have a class C that is a superclass of class D, this is immediately formalized in DLRifd

in terms of an assertion of the form

D v C (6)

with C,D ∈ Ccl ∪ Cas.
We remark that in CIM multiple inheritance is not supported, which means that a class can

be a subclass of at most one superclass.

. . .S1 S2 Sn

C

Figure 8: A typical class hierarchy in CIM

A particular case of subclassing is the one of generalization hierarchy. An example of such hi-
erarchy is illustrated in Figure 8, in which C is a superset of each Si, and S1, . . . , Sn are mutually
disjoint. The relationship among such classes can be expressed by the following assertions:

S1 v C
· · ·
Sn v C
Sk v ¬Sk+1 u . . . u ¬Sn for each k ∈ {1, . . . , n− 1}

(7)

1Obviously, we want an attribute name not to be necessarily unique in the whole schema

9

A Ba

Figure 9: Aggregation in CIM

4.3 Associations and aggregations

Associations and aggregations in CIM both represent relations. The difference between the two
is that in CIM, an association is always modeled as a class. Moreover, in general associations
are n-ary relations, while aggregations are binary relations. In general, an aggregation like that
in Figure 9 is formalized into the following assertion:

a v (1 : A) u (2 : B) (8)

with a ∈ Rag e A,B ∈ Ccl ∪ Cas.
Note that the distinction between the contained class and the containing class is not lost.

Indeed, we introduce the following convention: the first argument of the relation is the containing
class.

A1 r1

A2

An

r2

rn

C

. . .

Figure 10: Association in CIM

An association like that in Figure 10 can be modelled by as a set of n binary relations which
we will denote with the name of the roles of the association C, which are r1, . . . , rn ∈ Ras. We
want to ensure the possibility of using the same role name in different association. In order to
obtain this possibility, we avoid declaring r1, . . . , rn globally; on the contrary, we think of C as
a class having n attributes of types A1, . . . , An respectively. Thus we have the assertion

C v ∀[1](r1 ⇒ (2 : A1)) u (≤ 1 [1]r1) u ∃[1]r1 u
∀[1](r2 ⇒ (2 : A2)) u (≤ 1 [1]r2) u ∃[1]r2 u

...
∀[1](rn ⇒ (2 : An)) u (≤ 1 [1]r1) u ∃[1]rn

(9)

where (≤ 1 [1]ri) (with i ∈ {1, . . . , n}) specifies that attributes are to be single-valued, and
∃[1]ri (with i ∈ {1, . . . , n}) specifies that the class C has got to have all r1, . . . , rn (this is
obvious because the class models the relation and not a set of instances). Moreover, we use the
assertion

(id C [1]r1, [1]r2, . . . , [1]rn) (10)

to specify that each instance of C represents a distinct tuple in (A1, . . . , An).

10

4.4 Cardinality constraints in associations and aggregations

A B

a

nl. .nu

Figure 11: Cardinality constraints in aggregation

A1 A2

C

D2

D1

r

r

s2

s1

nl1. .nu1

nl2. .nu2

Figure 12: Cardinality constraints in aggregation

As we did in CIM, we may have restrictions over the number of instances of a class that
are allowed to participate to a given association or aggregation. With the expressive power of
DLRifd we are able to enforce these cardinality constraints in a straightforward way. Let us
examine the cases of aggregation and association separately.

Aggregation Suppose we have a cardinality constraint like that in Figure 11; we simply add
to the TBox the assertions

A v (≥ nl [1]a) u (≤ nu [1]a) (11)

This assertion does not generate conflicts with other aggregations, as we suppose that each
aggregation name is unique in the schema.

Association According to the CIM specification, we impose cardinality constraints on binary
associations only. The way we enforce cardinality constraints in associations is similar to
the way we do with aggregations. The difference is that a role name in an association is
not unique in the schema. Suppose we have a situation like that in Figure 12. In this
case we have that r ∈ Ras expresses both the binary relation between C and A1 and
the binary relation between C and A2. At the same time, the cardinality constraints
over the participation of C to the two relations are different in general. This is not a
problem anyway, as we are able to enforce cardinality constraints over the participation
to r u (1 : A1) and r u (1 : A2), thus distinguishing between the two different associations.
In conclusion, we have the following assertions:

C v (≥ nl1 [2](r u (1 : A1))) u (≤ nu1 [2](r u (1 : A1))) (12)
C v (≥ nl2 [2](r u (1 : A2))) u (≤ nu2 [2](r u (1 : A2))) (13)

11

4.5 Role names

The decision of representing an aggregation by a binary DLRifd relation leads some implications;
first of all, we note that role names are lost. In our framework role names are replaced by an
integer i (whose value can be only 1 or 2), which specifies whether the corresponding argument
is the first or the second in the aggregation.

Now, we want to preserve the role names in our framework. Therefore we take advantage of
the set of role names N introducing, for each atomic relation R of arity k, a role name function

fR : {1, . . . , k} −→ N ∪ {ε}.

The function fR returns, given an integer i between 1 and k (the arity of the relation), the role
name associated to the i-th role, if it has one, ε if the role has no name.

When we compose two relations with the the operator u (we recall that the relations have
got to have the same arity), role name are preserved if both overlapping roles have the same
name in N ; otherwise, the role names are lost. Formally:

fR1uR2(i)
{

fR1(i) if fR1(i) = fR2(i)
ε otherwise

(14)

The negation of a relation R of arity k retains all the role names of the original relation. This
choice could seem insensible at a first glance, but it ensures for example that matching role names
are preserved when we do the union of relations (like R1 t R2 = ¬(¬R1 u ¬R2)). Formally we
have:

f¬R(i) = fR(i) for each i ∈ {1, . . . , k} (15)

We impose fR to be injective for every relation R; instead, we would have the same name for
more than one role, within the same relation.

4.6 Overriding

In CIM it is possible to override properties or methods of a superclass. In our framework we do
not want to hide in a subclass properties and methods of the corresponding superclass. On the
contrary, we want the method/property of the subclass to be a restriction of the corresponding
method belonging to the superclass.

Example 3 For example, if D v C and C has a method m(T1, T2) : T3, D automatically
inherits the method m[4,2]. Thus we have the following assertions in our TBox:

D v C
C v ∀[1](m[4,2] ⇒ (2 : T1) u (3 : T2) u (4 : T3))

(16)

We also have in our TBox the following assertion related to the method name m[5,2]:

(fd m[4,2] 1, 2, 3 → 4)

Moreover, we are able to specify that the restriction of m[5,2] to D is injective with the following
assertions:

(fd m[4,2] u (1 : D) 1, 4 → 2)
(fd m[4,2] u (1 : D) 1, 4 → 3)

(17)

Note that the last two assertions specify properties of m[4,2] u (1 : D).

12

4.7 Inheritance

It is easy to observe that in our framework inheritance is naturally supported among classes in
Ccl ∪ Cas. In fact when we have an assertion C1 v C2, where C1, C2 ∈ C, every relation having
C2 as i-th argument is automatically allowed to accept C1 instead of C2. As a consequence,
each attribute or method of C2, and each aggregation and association involving C2 is inherited
by C1.

Similarly, inheritance among classes in Cas is correctly modelled in DLRifd .

4.8 Specification of additional knowledge

We discuss here a number of aspects that can be taken into account when formalizing CIM in
Description Logics.

Disjointness Both UML and CIM are not completely clear about disjointness of classes. In
other words, it is left unspecified whether two classes that are not related by the is-a
relation are disjoint or not. In our formalization, we follow this approach:

1. If not specified otherwise, two classes may have common instances, i.e., they are not
disjoint.

2. If we want to impose the disjointness of two classes, say C and D, this should be
done explicitly by means of the assertion:

C v ¬D

Negative information Disjointness of classes is just one example of negative information. Nei-
ther UML nor CIM gives special attention to modeling other forms of negative information.
Again, by exploiting the expressive power of DLRifd , we can add negative information to
the CIM schema by introducing suitable assertions. For example, we can enforce that each
instance of a class C has no value for attribute a by means of the assertion:

C v ∀[1](a ⇒ (2 :⊥))

Analogously, one can assert that no instance of C is involved in a given aggregation or
association.

Complete information By default, a generalization hierarchy is open, in the sense that there
may be instances of the superclass that are not instances of any of the subclasses. This
allows for extending the schema more easily, in the sense that the introduction of a new
subclass does not change the semantics of the superclass. However, in specific situations,
it may happen that in a generalization hierarchy, the superclass C is a covering of the
subclasses C1, . . . , Cn. When this is the case, we can simply include the assertion:

C v C1 t · · · t Cn

The above assertion is a form of modeling complete information: we have complete knowl-
edge about the class C in terms of its subclasses. Other forms of complete information
can be modeled by exploiting the expressive power of DLRifd . For example that a certain
attribute is valid only for a specified set of classes can be modeled by suitably using union
of classes (t).

Keys Although there is no explicit notion of key in UML (nor CIM), we can exploit the ex-
pressive power of DLRifd in order to associate keys to classes.

13

5 Example: CIM Core Model

We illustrate the formalization of CIM by means of Description Logics with an example; we
express CIM Core Model, as represented in Figure 13, by means of a siutable DLRifd TBox.

Element

Figure 13: Representation of CIM Core Model

14

5.1 Alphabet

The DLRifd TBox with which we formalize CIM Core Model is built using the following alphabet
(see Section 4):

Ccl = {CIM Setting, CIM Configuration, CIM ManagedSystemElement,
CIM PhysicalElement, CIM Product, CIM LogicalElement,
CIM System,CIM LogicalDevice, CIM Service, CIM ServiceAccessPort}

Cas = {CIM Dependency, CIM ElementSetting, CIM ElementConfiguration,
CIM Realizes, CIM HostedAccessPoint, CIM ServicaAccessBySAP,
CIM HostedService}

T = {string, datetime}
A = {Caption, Description, InstallDate, Name,Status}

Ras = {Dependent, Antecedent, Setting,
Element, Configuration}

Rag = {CIM SettingContext,CIM Component, CIM DependencyContext, }
CIM SystemComponent,CIM ProductPhysicalElement

M = {SetPowerState[4,2]}
N = {Setting, Context, GroupComponent,PartComponent}

5.2 Classes

The only class in Figure 13 that has got attributes is CIM ManagedSystemElement; the attributes
are modelled by the following assertions:

CIM ManagedSystemElement v ∀[1](Caption ⇒ (2 : string))
CIM ManagedSystemElement v ∀[1](Description ⇒ (2 : string))
CIM ManagedSystemElement v ∀[1](InstallDate ⇒ (2 : datetime))
CIM ManagedSystemElement v ∀[1](Name ⇒ (2 : string))
CIM ManagedSystemElement v ∀[1](Status ⇒ (2 : string))

As specified in the CIM Core Model White Paper, Version 2.4, the class CIM ManagedSystemElement
has got a method (not shown in Figure 13 whose signature is as follows:

SetPowerState([IN] PowerState: uint16, [IN]Time: datetime):uint32

To model this method we use the name SetPowerState[4,2] and the assertion

CIM ManagedSystemElement v
∀[1](SetPowerState[4,2] ⇒

((2 : PowerState) u (3 : datetime) u (4 : uint32)))

Additionally, we need in our TBox the assertion specifying that SetPowerState[4,2] is a function,
i.e.

(fd SetPowerState[4,2] 1, 2, 3 → 4)

The cardinality restriction over the participation of classes to associations and aggregations

15

is expressed by the assertions

CIM Setting v (≥ 1 [2]CIM ElementSetting)
CIM ManagedSystemElement v (≤ 1 [2]CIM SystemComponent)

CIM ServiceAccessPoint v (≥ 1 [2](Antecedent u (1 :CIM HostedAccessPoint))) u
(≤ 1 [2](Antecedent u (1 :CIM HostedAccessPoint)))

CIM Service v (≥ 1 [2](Antecedent u (1 :CIM HostedService))) u
(≤ 1 [2](Antecedent u (1 :CIM HostedService)))

5.3 Associations

CIM ElementSetting v ∀[1](Element ⇒ (2 : CIM ManagedSystemElement)) u
∀[1](Setting ⇒ (2 :CIM Setting)) u
(≤ 1 [1]Element) u ∃[1]Element u
(≤ 1 [1]Setting) u ∃[1]Setting

CIM ElementConfiguration v ∀[1](Element ⇒ (2 : CIM ManagedSystemElement)) u
∀[1](Configuration ⇒ (2 :CIM Configuration)) u
(≤ 1 [1]Element) u ∃[1]Element u
(≤ 1 [1]Configuration) u ∃[1]Configuration

CIM Dependency v ∀[1](Antecedent ⇒ (2 : CIM ManagedSystemElement)) u
∀[1](Dependent ⇒ (2 :CIM ManagedSystemElement)) u
(≤ 1 [1]Antecedent) u ∃[1]Antecedent u
(≤ 1 [1]Dependent) u ∃[1]Dependent

CIM Realizes v ∀[1](Antecedent ⇒ (2 : CIM PhysicalElement)) u
∀[1](Dependent ⇒ (2 :CIM LogicalDevice)) u
(≤ 1 [1]Antecedent) u ∃[1]Antecedent u
(≤ 1 [1]Dependent) u ∃[1]Dependent

CIM HostedService v ∀[1](Antecedent ⇒ (2 : CIM System)) u
∀[1](Dependent ⇒ (2 :CIM Service)) u
(≤ 1 [1]Antecedent) u ∃[1]Antecedent u
(≤ 1 [1]Dependent) u ∃[1]Dependent

CIM HostedAccessPoint v ∀[1](Antecedent ⇒ (2 : CIM System)) u
∀[1](Dependent ⇒ (2 :CIM ServiceAccessPoint)) u
(≤ 1 [1]Antecedent) u ∃[1]Antecedent u
(≤ 1 [1]Dependent) u ∃[1]Dependent

CIM ServiceAccessBySAP v ∀[1](Antecedent ⇒ (2 : CIM Service)) u
∀[1](Dependent ⇒ (2 :CIM ServiceAccessPoint)) u
(≤ 1 [1]Antecedent) u ∃[1]Antecedent u
(≤ 1 [1]Dependent) u ∃[1]Dependent

16

(id CIM ElementSetting [1]Element, [1]Setting)
(id CIM ElementConfiguration [1]Element, [1]Configuration)

(id CIM Dependency [1]Antecedent, [1]Dependent)
(id CIM Realizes [1]Antecedent, [1]Dependent)

(id CIM HostedService [1]Antecedent, [1]Dependent)
(id CIM HostedAccessPoint [1]Antecedent, [1]Dependent)

(id CIM ServiceAccessBySAP [1]Antecedent, [1]Dependent)

5.4 Aggregations

CIM SettingContext v (1 : CIM Configuration) u (2 : CIM Setting)
CIM DependencyContext v (1 : CIM Configuration) u (2 : CIM Dependency)

CIM Component v (1 : CIM ManagedSystemElement) u
(2 : CIM ManagedSystemElement)

CIM SystemComponent v (1 : CIM System) u (2 : CIM ManagedSystemElement)
CIM ProductPhysicalElement v (1 : CIM Product) u (2 : CIM PhysicalElement)

5.5 Inclusion Relationships

In this example we have inclusion assertions only between classes; these relations are expressed
by the followind DLRifd assertions:

CIM PhysicalElement v CIM ManagedSystemElement

CIM LogicalElement v CIM ManagedSystemElement

CIM System v CIM LogicalElement

CIM LogicalDevice v CIM LogicalElement

CIM Service v CIM LogicalElement

CIM ServiceAccessPoint v CIM LogicalElement

6 Example: CIM Common Model

Extension of CIM Core Model are modelled adding assertions to the TBox which models the
Core Model. As an example, we examine a fragment of the Devices common area of CIM
Common Model, shown in Figure 14 (note that CIM LogicalDevice is already present in CIM
Common Model).

We therefore add a suitable set of assertions to the CIM Core Model TBox. We choose the
arbitrary role names r1, r2, rC, rD for the missing roles in associations CIM DeviceConnection and
CIM DeviceConnection.

CIM DeviceConnection v ∀[1](r1 ⇒ (2 : CIM LogicalDevice)) u
∀[1](r2 ⇒ (2 : CIM LogicalDevice))

CIM ControlledBy v ∀[1](rC ⇒ (2 : CIM Controller)) u
∀[1](r2 ⇒ (2 : CIM LogicalDevice))

Finally, we add the inclusion assertion

CIM Controller v CIM CIMLogicalDevice.

17

r1

r2

rD

rC

CIM LogicalDevice

CIM Controller

CIM DeviceConnection

CIM ControlledBy

Figure 14: Fragment of Devices common area of CIM Common Model

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley
Publ. Co., Reading, Massachussetts, 1995.

[2] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Structured objects: Model-
ing and reasoning. In Proc. of the 4th Int. Conf. on Deductive and Object-Oriented Databases
(DOOD’95), volume 1013 of Lecture Notes in Computer Science, pages 229–246. Springer-
Verlag, 1995.

[3] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidability of
query containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD SIGART
Symp. on Principles of Database Systems (PODS’98), pages 149–158, 1998.

[4] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Identification constraints
and functional dependencies in description logics. Submitted for publication, 2001.

[5] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and Riccardo
Rosati. Description logic framework for information integration. In Proc. of the 6th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages 2–13, 1998.

[6] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-based representation
formalisms. J. of Artificial Intelligence Research, 11:199–240, 1999.

18

