
Local Constraints in Semistructured Data Schemas

Andrea Cal̀ı, Diego Calvanese, Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy

{cali,calvanese,lenzerini}@dis.uniroma1.it

Abstract. Recently, there have been several proposals of formalisms for modeling semistruc-

tured data, which is data that is neither raw, nor strictly typed as in conventional database

systems. Semistructured data models are graph-based models, where graphs are used to rep-

resent both databases and schemas. We study the basic problem of schema subsumption,

which amounts to check whether all databases conforming to a schema also conform to an-

other schema, in the presence of constraints, which are used to enforce additional conditions

on databases. In particular, we study the relationship between various constraint languages

and the basic property of locality, which allows one to check subsumption between schemas

in polynomial time in the number of nodes of the schemas. We show that locality holds when

both numeric constraints and disjunction are added to a simple constraint language. On the

other hand, locality is lost when we consider constraints both on outgoing and incoming

edges of databases.

1 Introduction

The ability to represent data whose structure is less rigid and strict than in conventional databases

is considered a crucial aspect in modern approaches to data modeling, and is important in many

application areas, such as web information systems, biological databases, digital libraries, and data

integration [21, 1, 5, 20, 16, 17].

Semistructured data is data that is neither raw, nor strictly typed as in conventional database

systems [1]. Recently, several formalisms for modeling semistructured data have been proposed,

such as OEM (Object Exchange Model) [2], and bdfs (Basic Data model For Semistructured

data) [5]. In such formalisms, data is represented as graphs with labeled edges, where information

on both the values and the schema of data are kept.

In particular, bdfs is an elegant graph-based data model, where graphs are used to represent

both databases and schemas, the former with edges labeled by data, and the latter with edges

labeled by formulae of a suitable logical theory. The notion of a database g conforming to a schema

S is given in terms of a special relation, called simulation, between the two graphs. Roughly

speaking, a simulation is a correspondence between the edges of g and those of S such that,

whenever there is an edge labeled a in g, there is a corresponding edge in S labeled with a formula

satisfied by a. The notion of simulation is less rigid than the usual notion of satisfaction, and

suitably reflects the need of dealing with less strict structures of data.

For several tasks related to data management, it is important to be able to check subsumption

between two schemas, i.e., to check whether every database conforming to one schema always

conforms to another schema. In [5] an algorithm for checking subsumption in bdfs is presented

and its complexity is analyzed.

In bdfs all the properties of the schema are expressed in terms of the structure of the graph,

and the possibility of specifying additional constraints, such as existence of edges, is precluded.

The problem of extending bdfs with different types of constraints has first been studied in [7, 8].

The basic idea is to express constraints in terms of formulae associated to nodes of the schema.

In [7, 8] several languages for expressing constraints are presented and the complexity of the basic

inference tasks (namely checking consistency, conformance, and subsumption) for such languages is

studied. In particular, so called locality of constraints is identified as a crucial property that allows

one to perform the basic inference tasks by means of several local checks, and thus retains efficiency

with respect to the total size of the schemas. A simple constraint language with the property of

locality, called Lsl , is presented, which allows one to express existence and uniqueness of outgoing

edges with certain properties.

In this paper we investigate the relationship between the expressive power of constraint lan-

guages and the ability to retain locality, thus keeping the complexity of the basic inference tasks

over schemas tractable. In particular, we study the following extensions of the constraint language

Lsl :

– We add to Lsl more complex forms of numeric constraints, than simple existence and uniqueness

constraints, in the spirit of cardinality constraints typically used in conceptual data models [3,

18, 22, 4] and knowledge representation formalisms [15]. We show that this extension preserves

locality, and hence that subsumption can be verified in time polynomial in the total number of

nodes of the two schemas. However, differently from the case of Lsl , a single local check may

require exponential time in the size of a constraint.

– In addition to numeric constraints, we add the possibility to express disjunctions of constraints,

thus obtaining a full propositional constraint language. Such extension has the same compu-

tational complexity as for the case without disjunction. In particular, we show that locality

holds, although we have to resort to more involved techniques.

– We extend Lsl with the ability to express constraints not only on outgoing edges but also

on incoming edges, in line with expressive representation formalisms both for traditional

databases [11, 10] and for semistructured data [12, 19]. Although at a first glance such ex-

tension does not seem to influence locality, we show that locality is actually lost. We show also

that in this case the finite model property does not hold, i.e., a schema may admit only infinite

databases.

2 Framework

We present now the formal model for semistructured data introduced in [5] and its extension with

constraints studied in [7, 8], which are at the basis of our investigation.

2.1 Basic Data model For Semistructured data (bdfs)

The data model introduced in [5], which we call bdfs (Basic Data model For Semistructured

data), is an edge-labeled graph model for semistructured data where edge-labels are formulae of a

first-order language LT . The language LT is built over a set of predicates, including the equality

predicate “=”, and contains one constant for each element of a fixed (not necessarily finite) universe

U . Schemas and databases in bdfs always refer to a complete and decidable theory T on U . In

other words, for each closed formula F ∈ LT , either T |= F or T |= ¬F , and it is decidable to

check whether T |= F . We can consider T as (a possibly compact representation of) the set of first

order formulae which are true (or equivalently, valid) for the elements of U .

In bdfs, databases and schemas are modeled with rooted edge-labeled graphs. A rooted edge-

labeled graph is a pair (H, r), where H is an edge-labeled graph and r is a distinguished node of

H, called root, such that each node of H is connected to r through a directed path. Given a rooted

edge-labeled graph G = (H, r), we denote the root r with root(G), the set of nodes of H with

Nodes(G), and the set of edges of H with Edges(G). We denote an edge from node uf to node us

labeled by a with uf
a

−→ us.

Definition 1. Given a theory T , a schema for T is a rooted edge-labeled graph whose edges are

labeled with unary formulae of T . A database for T is a rooted edge-labeled graph whose edges are

labeled with constants of T .

In the following, for the sake of conciseness, we omit the explicit reference to the theory T and use

simply schema (resp., database) instead of schema for T (resp., database for T).

To establish if a database is coherent with a schema, or if a schema is more specific than another

schema, we define the notions of conformance and subsumption, which in turn are based on the

fundamental notion of simulation.

Definition 2. A simulation from a database g to a schema S is a binary relation � from Nodes(g)

to Nodes(S) such that, for each pair of nodes v in g and u in S with v�u the following holds: For

each edge v
c

−→ vs in g there exists an edge u
π

−→ us in S such that T |= π(c) and vs � us.

A database g conforms to a schema S, in notation g � S, if there exists a simulation � from

g to S such that root(g)� root(S).

Definition 3. A schema S1 is subsumed by a schema S2, in notation S1 ⊑ S2, if for every database

g we have that g � S1 implies g � S2. Two schemas S1 and S2 are equivalent, in notation S1 ≡ S2,

if both S1 ⊑ S2 and S2 ⊑ S1.

Notice that we can view each database as a schema, by considering a constant a labeling an

edge as an abbreviation for the unary formula λx.x = a. It is easy to see that a database g conforms

to a schema S, iff g, viewed as a schema, is subsumed by S [5]. Therefore, conformance is a special

case of subsumption and henceforth we concentrate on subsumption only.

In [5], an algorithm is presented for checking subsumption between two schemas. The algorithm

essentially looks for the greatest simulation between the nodes of the two schemas, and works in

time O(mO(1) · tT (m)), where m is the size of the two schemas and tT (x) is the time needed to

check whether a formula of size x is valid in T . As argued in [5], it is meaningful to consider T not

part of the input of the problem. Therefore, whenever tT (m) may be assumed to be independent of

m, tT (m) can be replaced by a constant (e.g., when the size m of the two schemas is considerably

smaller than the size of T).

Example 1. In Figure 1(a) we present a schema modeling a university divided in faculties, which

in turn are divided into departments; each faculty can have students, each department can have

professors, and each student can have a professor as tutor and a set of exams she has given.

Faculty

Department

u1

u2

u3 u4

u5 u6 u7

Exam Tutor Professor

Student

Literature

Maria
Aldo Greek lit

Latin
Greek

Carlo

Francesca Antonio Karen

Database conforming to SSchema S

Fig. 1. A schema modeling a university and a database conforming to it

2.2 Schemas with Constraints

To overcome several limitations of the basic bdfs model, e.g., the ability to enforce the existence

of edges, in [7, 8] it proposed to add to schemas the ability to express constraints. Constraints,

which are attached to the nodes of a schema, are expressed in a certain constraint language, and

impose additional conditions on the outgoing or incoming edges of the nodes of a database, wrt

those already imposed by the schema. Given a constraint language L, one can define when a node

u of a database satisfies a constraint γ of L, in notation u γ. Then the notion of simulation is

extended to take into account also constraints, by requiring that a node u in a database satisfies

the constraint associated to a node in the schema that u simulates.

Formally, given a constraint language L, a schema (for T) with L-constraints, simply called

L-schema, is an edge and node labeled graph, such that the graph ignoring node labels is a schema,

and node labels are constraints in L. We denote with C(u) the constraint in L labeling node u.

Definition 4. A simulation from a database g to an L-schema S is a binary relation � from

Nodes(g) to Nodes(S) such that, for each pair of nodes v in g and u in S with v � u:

1. For each edge v
c

−→ vs in g, there exists an edge u
π

−→ us in S such that T |= π(c) and vs�us.

2. v satisfies the constraint C(u).

Conformance, subsumption, and equivalence can be defined as for schemas without constraints,

considering the new definition of simulation. However, while in the absence of constraints every

schema has at least one database that conforms to it1, when we add constraints we also need to

consider the notion of consistency.

Definition 5. An L-schema is said to be consistent if there exists a database that conforms to it.

A node u of an L-schema S is said to be consistent if there exists a database that conforms to Su,

where Su is the L-schema identical to S except for the root, which is u.

As an example, consider the schema S, where S consists of a single node r and contains no

edges. The constraint is ∃edge(true) and expresses the existence of at least one outgoing edge. Such

a schema is inconsistent, since for a database node simulating r, the constraint C(r) imposes the

existence of an outgoing edge, but condition (1) of the simulation forbids the existence of such an

edge.

1 The empty database, which is the database consisting of a single node, conforms to every schema.

Syntax Semantics

v ⊤ Always

v ∃edge(p) ∃v
c

−→ vs ∈ Edges(g) | T |= p(c)

v ∄edge(p) ∄v
c

−→ vs ∈ Edges(g) | T |= p(c)

v ∃≤1edge(p) #{v
c

−→ vs ∈ Edges(g) | T |= p(c)} ≤ 1

v γ1 ∧ γ2 (v γ1) ∧ (v γ2)

Table 1. Syntax and semantics of Lsl (#X denotes the cardinality of set X)

The ability to check for consistency of nodes turns out to be important also for checking sub-

sumption, since inconsistent nodes need to be removed beforehand. On the other hand, since all

meaningful constraint languages allow one to construct an inconsistent schema, schema inconsis-

tency can be reduced to schema subsumption. Indeed, an L-schema S is inconsistent if and only if

it is subsumed by Sinc , where Sinc is an inconsistent schema.

2.3 Locality of Constraints

In [7, 8] several languages for expressing constraints are presented and the complexity of the basic

inference tasks (namely checking consistency, conformance, and subsumption) for such languages is

studied. In particular, so called locality of constraints is identified as a crucial property that allows

one to perform the basic inference tasks by means of several local checks, and thus retain efficiency

with respect to the total size of the schemas. A constraint C(u) labeling a node u of a schema is

said to be local when it forces conditions that are local to the nodes simulating u. In other words,

one can check whether u is consistent by considering only u with C(u) and the outgoing (and

incoming2) edges of u (taking as nodes attached to such edges fresh nodes with no constraint on

them), while ignoring all other nodes and edges in the database. A constraint language in which

all constraints are local is called local.

We present now the language Lsl , introduced in [7], for expressing simple types of local con-

straints. Such constraint language is at the basis of our investigation, and in Sections 3 and 4 we will

consider extensions of Lsl . Using constraints in Lsl one can impose the existence or non-existence

of an outgoing edge satisfying a certain formula, the fact that there is at most one outgoing edge

satisfying a certain formula, and conjunctions of such constraints. We call the constraints of Lsl

simple local constraints. Formally, a constraint in Lsl is constructed according to the following

abstract syntax:

γ ::= ⊤ | ∃edge(p) | ∄edge(p) | ∃≤1edge(p) | γ1 ∧ γ2

where p is a unary formula of T . The semantics of Lsl is given in Table 1, which specifies when a

node v of a database g satisfies a constraint γ, in notation v γ.

Example 2. Considering again the schema of Figure 1, we would like to additionally enforce the

following properties: (1) each faculty has at least one student and one department; (2) each student

has at most one tutor; (3) each department has at least one professor. This can be done by using

2 We will consider in Section 4 also constraints on incoming edges.

the following simple local constraints:

C(u1) = C(u5) = C(u6) = ⊤ C(u3) = ∃≤1edge(Tutor)

C(u2) = ∃edge(Student) ∧ ∃edge(Department) C(u4) = ∃edge(Professor)

We call constraints of the form ∄edge(p), which express nonexistence of an outgoing edge

satisfying p, negative constraints. We observe that negative constraints can be eliminated from an

Lsl -schema without altering the semantics of the schema. Indeed, for a node u of an Lsl -schema S

for which C(u) contains the conjunct ∄edge(p), we can remove ∄edge(p) from C(u), provided that

we conjoin all formulae labeling the outgoing edges of u with ¬p.

As shown in [7], to check whether a node u of an Lsl -schema is consistent, it is sufficient to

consider u with its constraint C(u) and the outgoing edges of u (while neglecting the constraints over

the successors of u). In particular, it is possible to construct from C(u) and the formulae r1, . . . , rℓ

labeling the outgoing edges of u a new formula πu of polynomial size in C(u) and r1, . . . , rℓ, such

that T |= πu if and only if u is consistent. Hence Lsl is local, and in [7] it is indeed shown that

consistency and subsumption for Lsl -schemas can be checked in polynomial time in the size of the

schemas. More precisely, the algorithm for verifying subsumption between two schemas S1 and

S2 first removes all inconsistent nodes from S1 and S2, and then tries to construct the greatest

simulation between the nodes of S1 and those of S2. Both the removal of inconsistent nodes and the

construction of the greatest simulation can be done by performing a number of validity checks that

is polynomial in the size of the two schemas, and for which the result of each check depends only on

a node and the adjacent edges. As shown in the next section for two meaningful extensions of Lsl ,

this property holds in general when the constraint language is local, i.e., one can use a polynomial

number of local validity checks to verify consistency and subsumption. The size of the formula to

check for validity will typically be small wrt the total size of the two schemas. Hence, the total cost

of subsumption can be kept low (e.g., polynomial) wrt the size of the two schemas, even when the

cost of performing a single validity check is high wrt the size of the involved constraint and edge

labels (e.g., the formula to check for validity is exponential in the constraint). For example, under

the reasonable assumption that both the size of each constraint attached to a node and the number

of outgoing edges for a node are logarithmic in the total size of a schema, checking subsumption

can be done in polynomial time in the size of the two schemas.

On the other hand, the lack of locality for a constraint language L is a strong indication for

intractability of the basic inference tasks on L-schemas and databases. For example, in [7] the

constraint language LALE is presented, for which it is precisely the lack of locality that makes

checking the consistency of an LALE -schema coNP-hard in the size of the schemas.

3 Local Constraints on Outgoing Edges

We now study two extensions of the constraint languages Lsl which we will prove to be local.

3.1 Extended Local Constraints

We now introduce a new constraint language Lext of so called extended local constraints, inspired

by cardinality constraints typically present in database models and Knowledge representation for-

malism [3, 18, 22, 4, 15]. The language Lext is defined by the abstract syntax

γ ::= ⊤ | ∃≤nedge(p) | ∃≥nedge(p) | γ1 ∧ γ2

Syntax Semantics

v ⊤ Always

v ∃≤nedge(p) #{v
c

−→ vs ∈ Edges(g) | T |= p(c)} ≤ n

v ∃≥nedge(p) #{v
c

−→ vs ∈ Edges(g) | T |= p(c)} ≥ n

v γ1 ∧ γ2 (v γ1) ∧ (v γ2)

Table 2. Syntax and semantics of Lext

where p is a unary formula of T , and n, called a numeric index, is a number in IN (we assume

0 ∈ IN) represented in unary.

The semantics of Lext is shown in Table 2. Notice that Lext extends Lsl , since ∃≤0edge(p) is

equivalent to ∄edge(p), and ∃≥1edge(p) is equivalent to ∃edge(p). We point out that Lext negative

constraints,which are those of the form ∃≤0edge(p), can be removed in the same way as for Lsl .

Example 3. Let us consider again the schema of Figure 1. We would like to enforce, in addition to

the properties specified in Example 2, also the property (4) a student cannot give more than 25

exams. This can be done by using constraints of Lext as follows:

C(u1) = C(u5) = C(u6) = ⊤ C(u3) = ∃≤1edge(Tutor) ∧ ∃≤25edge(Exam)

C(u2) = ∃≥1edge(Student) ∧ ∃≥1edge(Department) C(u4) = ∃≥1edge(Professor)

We now show that Lext is local and therefore we can check the consistency of an Lext -schema by

means of local checks for consistency of the nodes of the schema. Indeed, we present the function

cons, which checks a node u for consistency by means of local checks. Let u have ℓ outgoing edges,

labeled r1, . . . , rℓ, and let the constraint C(u) over u be

C(u) = ∃≤n1edge(p1) ∧ · · · ∧ ∃≤nsedge(ps) ∧ ∃≥m1edge(q1) ∧ · · · ∧ ∃≥mtedge(qt)

function cons(u: node, w: Lext -constraint): boolean

{ if t = 0 then return true;

if t > 0 and OutEdges(u, S) = ∅ then return false;

for K = 1 to
∑t

i=1 mi

if T |= ∃x1 · · · ∃xK(F ∧G ∧H) then return true;

return false;

}

where F , G, and H are the following formulae of T :

F =
∧

1≤i≤t

∨

1≤j1<···<jmi
≤K

∧

1≤k≤mi

qi(xjk)

G =
∧

1≤i≤s

∧

1≤j1<···<jni+1≤K

¬
∧

1≤k≤ni+1

pi(xjk)

H =
∧

1≤i≤K

∨

1≤j≤ℓ

rj(xi)

Theorem 1. Given a node u of an Lext -schema S, we have that u is consistent iff cons(u, C(u))

returns true. Moreover, cons(u, C(u)) runs in time polynomial in the number of conjuncts in C(u),

and in time exponential in the numeric indexes in C(u).

By exploiting cons we can construct the function rinext, which removes the inconsistent nodes

from an Lext -schema as follows:

function rinext(S: Lext -schema): Lext -schema

{ repeat

if there is a node u ∈ Nodes(S) that satisfies one of the following conditions:

• u is not reachable with a direct path starting from root(S);

• cons(u, C(u)) = false

then remove from S, u, all the edges outgoing from u, and all the edges incoming in u;

until root(S) is removed from S or no new node has been removed from S;

return S

}

Theorem 2. Given an Lext -schema S, we have that S is consistent iff rinext(S) does not remove

root(S). Moreover, rinext(S) runs in time polynomial in the number of nodes of S, and in time

exponential in the numeric indexes of the constraints labeling the nodes of S.

Theorem 2 provides a bound on schema consistency which is polynomial in the number of

nodes, but exponential in the size of the schema. We can also show that Lext -schema consistency

can be a checked by a nondeterministic algorithm which runs in polynomial time in the size of the

schema.

Theorem 3. Given an Lext -schema S, verifying the consistency of a node u of S can be done in

nondeterministic polynomial time in the size of C(u).

3.2 Propositional Local Constraints

We further extend the expressive power of extended local constraints by adding disjunction to Lext ;

we thus obtain a language endowed with all the operators of propositional logics (including nega-

tion, since, e.g., ∃≤nedge(p) is equivalent to ¬∃≥n+1edge(p)). The language Lprop of propositional

local constraints is defined by the following abstract syntax:

γ ::= ⊤ | ∃≤nedge(p) | ∃≥nedge(p) | γ1 ∧ γ2 | γ1 ∨ γ2

where p is a unary formula of T and n ∈ IN. The semantics of the new operator we introduced is

as follows:

Syntax Semantics

v γ1 ∨ γ2 (v γ1) ∨ (v γ2)

Example 4. Let us consider again the schema of Figure 1. We would like to enforce, in addition to

the properties specified in Example 3, also the property (5) each student who has given less than

5 exams must have a tutor. This can be done by using constraints of Lprop as follows:

C(u1) = C(u5) = C(u6) = ⊤ C(u2) = ∃≥1edge(Student) ∧ ∃≥1edge(Department)

C(u4) = ∃≥1edge(Professor) C(u3) = ∃≥5edge(Exam) ∨ (∃≥1edge(Tutor) ∧ ∃≤1edge(Tutor))

We will see that there are significant advantages if we put the constraints of Lprop in disjunctive

normal form (DNF), i.e., given a node u, we have

C(u) = C1 ∨ · · · ∨ Cν

where Ck, with 1 ≤ k ≤ ν, are clauses of the form

Ck = ∃≤n1edge(p1) ∧ · · · ∧ ∃≤nsedge(ps) ∧ ∃≥m1edge(q1) ∧ · · · ∧ ∃≥mtedge(qt)

Exploiting the fact that the constraints are in DNF, and that each clause of C(u) is a constraint

of Lext , we can use the function cons, which checks the consistency of nodes labeled with constraints

of Lext , to check the consistency of nodes of Lprop-schemas. Notice that for Lprop we cannot remove

the negative constraints as we did for Lsl and Lext . Instead, we can remove the negative constraints

clause by clause, as each clause of Lprop is a constraint of Lext . So, let rnec be the function that

removes the negative constraints from a clause.

The function which checks the consistency of an Lprop-schema by means of local checks is the

following, hence showing that Lprop is a local constraint language.

function rinprop(S: schema): schema

{ repeat

if there is a node u in S with C(u) = C1 ∨ · · · ∨ Cν ,

such that for each K ∈ {1, . . . , ν}, at least one of the following conditions is verified:

• u is not reachable starting from root(S) through a direct path;

• t ≥ 1 and cons(u, rnec(CK)) = false

where rnec(S,CK) = ∃≤n1edge(p1) ∧ · · · ∧ ∃≤nsedge(ps) ∧ ∃≥m1edge(q1) ∧ · · · ∧ ∃≥mtedge(qt),

then remove from S, u, all the edges outgoing from u, and all the edges incoming in u;

until root(S) is removed from S or no new node has been removed from S;

return S;

}

As for rinext, it can be shown that rinprop(S) runs in time polynomial in the number of

nodes of S, and in time exponential in the numeric indexes of the constraints labeling the nodes

of S.

We can prove that also for Lprop-schemas, the problem of checking node consistency is in NP.

The proof is very similar to that of Theorem 3.

3.3 Subsumption

We now discuss a general technique to check schemas for subsumption which can be applied

whenever the constraint language used in the schemas is local. Given two schemas S and S′, for

each pair of nodes u of S and u of S′ we try to build a fragment of database conforming to Su

and not conforming to S′
u′ (as usual, we neglect the constraints over the successors of u and u′).

If we can build such a fragment, we remove the pair of nodes. At the end, if (root(S), root(S′)) is

removed, we can in any case fix the fragments together to form a database which conforms to S

and does not conform to S′; this database is a counterexample for the subsumption between S and

S′, and its existence proves that S is not subsumed by S′. On the contrary, if (root(S), root(S′)) is

not removed, we can deduce that S ⊑ S′, since the relation from Nodes(S) to Nodes(S′) that we

have constructed can be used to extend every simulation from a database g to S to a simulation

from g to S′.

In order to make the local check described above, we can call the function cons, giving to

it a suitable combination of constraints as second argument. To check whether there exists a

fragment respecting C(u) that violates an atomic constraint ϕ, which is part of C(u′), we call

cons(u, C(u) ∧ ¬ϕ).

With this technique we can define two functions subsext and subsprop, which check the

subsumption between two Lext -schemas and two Lprop-schemas respectively. The two functions

are very similar; in particular, subsprop exploits the property that the Lprop-constraints are in

DNF, making clause by clause the same checks that subsext makes. The two functions make a

number of calls to cons which is polynomial in the total number of nodes of the two schemas.

Hence subsext(S1, S2) and subsext(S1, S2) run in time polynomial in the total number of nodes

of S1 and S2.

The only exponential dependence of the execution time of subsext(S1, S2) and subsext(S1, S2)

is that from the numeric indexes of the constraints of the nodes of S1 and S2. This is due to the

fact that the function cons builds formulae to be checked for validity, whose size is exponential in

the numeric indexes.

Theorem 4. Checking subsumption between two Lext -schemas or two Lprop-schemas S and S′

can be done in time polynomial in the total number of nodes of S and S′, and in time exponential

in the numeric indexes of the constraints labeling the nodes of the schemas.

4 Bidirectional Schemas

In the framework we have adopted till now (both with and without constraints) there is an evident

asymmetry in schemas between incoming and outgoing edges: both the notion of simulation and the

constraint languages we have considered essentially talk about outgoing edges only. We investigate

now the extension of the framework obtained by removing such an asymmetry, and considering

both outgoing and incoming edges in the same way. The ability to refer to links in both directions

substantially increases the expressive power of a representation formalism, and has been considered

important in traditional database models [11, 10], in knowledge representation formalisms [14, 10],

and in models and query languages for semistructured data [12, 19, 9]. Notably, XLink [19], the

linking language of XML, allows one to express bidirectional and backward links.

We consider so called bidirectional databases and schemas, which, as before, are edge-labeled

graphs with one distinguished node called root. Since we want to maintain a perfect symmetry

between edges traversed in both directions, we require that in bidirectional databases and schemas

all nodes be connected to the root by a semipath (instead of a path).

First of all we extend the notion of simulation to take into account both outgoing and incoming

edges.

Definition 6. A bidirectional simulation from a (bidirectional) database g to a (bidirectional)

schema S is a binary relation � from Nodes(g) to Nodes(S) such that, for each pair of nodes v in

g and u in S with v � u the following hold:

1. For each edge v
c

−→ vs in g there exists an edge u
π

−→ us in S such that T |= π(c) and vs�us.

2. For each edge vp
c

−→ v in g there exists an edge up
π

−→ u in S such that T |= π(c) and vp�up.

The notions of conformance, subsumption, and equivalence extend straightforwardly to bidirec-

tional databases and schemas, by considering bidirectional simulations instead of (unidirectional)

simulations. Interestingly, also the polynomial algorithms for conformance and subsumption given

in [5] can be extended to bidirectional databases and schemas while maintaining the same com-

plexity bounds.

Theorem 5. Checking subsumption between two bidirectional schemas S and S′ can be done in

polynomial time in the size of S and S′.

4.1 Bidirectional Schemas with Constraints

We consider now the extension of bidirectional schemas with constraints, by investigating both

languages whose constraints are on the outgoing edges only, and languages whose constraints are

on outgoing and incoming edges. Independently of the constraint language we consider, we can

extend simulations to take into account both constraints and incoming edges. More precisely,

for bidirectional schemas with constraints, the notion of simulation is defined by combining the

condition on constraints in Definitions 2 with the conditions on both incoming and outgoing edges

in Definition 6. Also, the notions of conformance, subsumption, equivalence, and consistency extend

straightforwardly to bidirectional schemas with constraints.

It is interesting to observe that, when we consider a constraint language that is local and

allows one to express constraints only on the outgoing edges, all techniques developed for inference

on unidirectional schemas with constraints can be extended to take into account bidirectional

databases and schemas (and hence bidirectional simulations). In particular, this holds both for

the language Lsl of simple local constraints introduced in Section 2.2 and for the more expressive

constraint languages Lext and Lprop discussed in Section 3.

Theorem 6. Checking subsumption between two bidirectional Lsl -schemas S and S′ can be done

in polynomial time in the size of S and S′.

Theorem 7. Checking subsumption between two bidirectional Lext -schemas or Lprop-schemas S

and S′ can be done in time polynomial in the number of nodes of S and S′, and exponential in the

numeric indexes (represented in unary) of the constraints labeling the nodes of S and S′.

4.2 Bidirectional Schemas with Bidirectional Constraints

Until now we have considered only schemas and constraint languages for which the constraints

are imposed only on the outgoing edges of a node. In the context of bidirectional databases and

schemas, it is quite natural to allow one to impose constraints also on the incoming edges of a node.

In other words, we are allowed to express bidirectional constraints on the schema. For example,

using such types of constraints one may require that a page representing a subsection of a document

is referenced in at least one page representing a section of a document.

Obviously, imposing constraints on incoming edges could also be done in unidirectional schemas.

However, there is no natural justification for the asymmetry resulting from the fact that these

Syntax Semantics

u ⊤ Always

u ∃edge(p) ∃u
c

−→ us ∈ Edges(g) | T |= p(c)

u ∃edge−(p) ∃up

c

−→ u ∈ Edges(g) | T |= p(c)

u ∃≤1edge(p) #{u
c

−→ us ∈ Edges(g) | T |= p(c)} ≤ 1

u ∃≤1edge−(p) #{up

c

−→ u ∈ Edges(g) | T |= p(c)} ≤ 1

u γ1 ∧ γ2 (u γ1) ∧ (u γ2)

Table 3. Syntax and semantics of Lbid

constraints do not interact with the conditions imposed by the simulation. Moreover some types of

constraints on incoming edges are trivially satisfied in unidirectional schemas by adding artificial

nodes which are not reachable from the root by a direct path.

We show that, even in the case where the constraint language is quite simple, by allowing

bidirectional constraints we lose several desirable properties of schemas (notably locality of con-

straints), and this has dramatic consequences on the complexity of consistency and subsumption.

We consider the constraint language Lbid , which generalizes Lsl with constraints on incoming

edges:

γ ::= ⊤ | ∃edge(p) | ∃edge−(p) | ∃≤1edge(p) | ∃≤1edge−(p) | γ1 ∧ γ2

where p is a formula of T . Without loss of generality we have not included in Lbid constraints of the

form ∄edge(p) and ∄edge−(p), since we can remove such constraints as done for Lsl . Constraints

of the form ∃edge(p) and ∃≤1edge(p) are called direct constraints, and constraints of the form

∃edge−(p) and ∃≤1edge−(p) are called inverse constraints. The semantics of Lbid is given in Table 3.

When only direct (or only inverse) constraints are present in an Lbid -schema, there is no in-

teraction between the edges of a database that need to be considered to verify whether different

constraints are satisfied. Hence, the consistency of a node can be verified independently from the

constraints present on the other nodes. This is no longer true when both types of constraints are

present. Indeed, for an Lbid -schema S, consider two nodes u1 and u2 with an edge u1
π

−→ u2. If

C(u1) imposes constraints on outgoing edges and C(u2) imposes constraints on incoming edges,

it is obvious that, in a database simulating S, satisfaction of C(u1) may in general depend on

satisfaction of C(u2).

Example 5. Consider the Lbid -schema S shown in Figure 2(a), and suppose that in T the formulae

p(cp), q(cq), and ¬∃x(p(x) ∧ q(x)) are valid. If we consider each node of S separately, we can

find for each one a set of constants that can be used to label edges of databases in such a way

that the constraints (considered separately) are satisfied. In Figure 2(b) three such fragments are

shown. However, in order to construct a database that conforms to S we have to merge the various

fragments together. Due to the interaction of the constraints on outgoing edges (for u1 and u2)

and incoming edges (for u3) this is not possible without violating any constraint. This holds for

the database fragments shown in Figure 2(b), but it is easy to see that in general it is not possible

to find a database that conforms to S in which there are nodes simulating each of u1, u2, and

u3. Therefore, all three nodes of S are not consistent together, while they are consistent when

considered separately.

v1

cp
v2

cq

v3

cpqp

u1 u2

u3

C(u1) = ∃edge(p)

C(u2) = ∃edge(q)

C(u3) = ∃edge−(p) ∧ ∃≤1edge−(p ∨ q)

(a) Schema S (b) Fragments of databases

Fig. 2. Schema in which bidirectional constraints interact, and fragments of databases

u C(u) = ∃edge(p) ∧ ∃edge(¬p) ∧ ∃≤1edge−(true)true

Fig. 3. Schema which admits only conforming databases that are infinite

Example 5 shows that Lbid is indeed not local, and hence methods for checking consistency

and subsumption based on local validity checks, such as those presented in Section 3, cannot be

applied in this case. Indeed, the problem of reasoning on Lbid schemas is still open.

A further consequence of the expressiveness of Lbid is that for Lbid -schemas the finite model

property does not hold. This means that there is an Lbid -schema such that every database con-

forming to it must have an infinite number of nodes, as shown by the following example.

Example 6. Consider a database g that conforms to the Lbid -schema S shown in Figure 3. Since

the root r of g has to simulate u, the constraints ∃edge(p) and ∃edge(¬p) in C(u) impose that

r has two outgoing edges to two nodes v1 and v2. Since v1 and v2 must again simulate u, they

must in particular satisfy ∃≤1edge−(true), and hence v1 and v2 cannot coincide3. By applying the

same argument as for r also to v1 and v2 one can see that g must necessarily contain an infinite

number of nodes. One the other hand, the infinite database consisting of a binary tree in which

each left edge is labeled with a constant satisfying p, and each right edge is labeled with a constant

satisfying ¬p conforms to S, showing that S is indeed consistent.

The lack of the finite model property is typical of representation formalisms that can express

functionality on links in both directions, and in general makes it necessary to adopt different

techniques for the cases where one wants to reason wrt finite databases only, or one wants to

consider arbitrary (possibly infinite) databases [13, 6].

5 Conclusions

We have studied the relationship between various extensions of constraint languages for semistruc-

tured data schemas and the basic property of locality, which allows one to check subsumption

between schemas in polynomial time in the number of nodes of the schemas. We have shown that

locality holds when both numeric constraints and disjunction are added to a simple constraint

language. On the other hand, locality is lost when we consider constraints both on outgoing and

incoming edges of databases.

We would like to point out that, while the results in this paper have been established in the

formal framework of the bdfs data model [5] based on the notion of simulation, all considerations

relative to locality hold also for other data models, such as OEM [2].

3 One of v1 or v2 could coincide with r, but not both.

References

1. S. Abiteboul. Querying semi-structured data. In Proc. of ICDT’97, pages 1–18, 1997.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel query language for

semistructured data. Int. J. on Digital Libraries, 1(1):68–88, 1997.

3. J. R. Abrial. Data semantics. In Data Base Management, pages 1–59. North-Holland Publ. Co.,

Amsterdam, 1974.

4. A. Borgida, R. J. Brachman, D. L. McGuinness, and L. Alperin Resnick. CLASSIC: A structural data

model for objects. In Proc. of ACM SIGMOD, pages 59–67, 1989.

5. P. Buneman, S. Davidson, M. F. Fernandez, and D. Suciu. Adding structure to unstructured data. In

Proc. of ICDT’97, pages 336–350, 1997.

6. D. Calvanese. Finite model reasoning in description logics. In Proc. of KR’96, pages 292–303, 1996.

7. D. Calvanese, G. De Giacomo, and M. Lenzerini. What can knowledge representation do for semi-

structured data? In Proc. of AAAI’98, pages 205–210, 1998.

8. D. Calvanese, G. De Giacomo, and M. Lenzerini. Modeling and querying semi-structured data. Network

and Information Systems, 2(2), 1999.

9. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Query processing using views for regular

path queries with inverse. In Proc. of PODS 2000, 2000.

10. D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data modeling. In

J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems, pages 229–264.

Kluwer Academic Publisher, 1998.

11. R. G. G. Cattell and D. K. Barry, editors. The Object Database Standard: ODMG 2.0. Morgan

Kaufmann, Los Altos, 1997.

12. J. Clark and S. Deach. Extensible Stylesheet Language (XSL). Technical report, World Wide Web

Consortium, 1999. Available at http://www.w3.org/TR/WD-xsl.

13. S. S. Cosmadakis, P. C. Kanellakis, and M. Vardi. Polynomial-time implication problems for unary

inclusion dependencies. J. of the ACM, 37(1):15–46, 1990.

14. G. De Giacomo and M. Lenzerini. Boosting the correspondence between description logics and propo-

sitional dynamic logics. In Proc. of AAAI’94, pages 205–212, 1994.

15. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In G. Brewka,

editor, Principles of Knowledge Representation, Studies in Logic, Language and Information, pages

193–238. CSLI Publications, 1996.

16. M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu. Catching the boat with strudel:

Experiences with a web-site management system. In Proc. of ACM SIGMOD, pages 414–425, 1998.

17. D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the World-Wide Web: A survey.

SIGMOD Record, 27(3):59–74, 1998.

18. J. Grant and J. Minker. Inferences for numerical dependencies. Theor. Comp. Sci., 41:271–287, 1985.

19. E. Maler and S. DeRose. XML Linking Language (XLink) – W3C working draft 03-march-1998.

Technical report, World Wide Web Consortium, 1998. Available at http://www.w3.org/TR/1998/WD-

xlink-19980303.

20. A. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web. Int. J. on Digital Libraries,

1(1):54–67, 1997.

21. D. Quass, A. Rajaraman, I. Sagiv, J. Ullman, and J. Widom. Querying semistructured heterogeneous

information. In Proc. of DOOD’95, pages 319–344. Springer-Verlag, 1995.

22. B. Thalheim. Fundamentals of cardinality constraints. In Proc. of ER’92, pages 7–23. Springer-Verlag,

1992.

