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Abstract

Recently, there have been several proposals of formalisms for modeling
semistructured data, which is data that is neither raw, nor strictly typed as
in conventional database systems. Semistructured data models are graph-based
models, where graphs are used to represent both databases and schemas. We
study the basic problem of schema subsumption, which amounts to check whether
all databases conforming to a schema also conform to another schema, in the pres-
ence of constraints, which are used to enforce additional conditions on databases.
In particular, we study the relationship between various constraint languages and
the basic property of locality, which allows one to check subsumption between
schemas in polynomial time in the number of nodes of the schemas. We show
that locality holds when both numeric constraints and disjunction are added to a
simple constraint language. On the other hand, locality is lost when we consider
constraints both on outgoing and incoming edges of databases.

1 Introduction

The ability to represent data whose structure is less rigid and strict than in conven-
tional databases is considered a crucial aspect in modern approaches to data model-
ing, and is important in many application areas [25, 1, 6, 23, 19, 20]. Semistructured
data are data that is neither raw, nor strictly typed as in conventional database sys-
tems [1]. Recently, several formalisms for modeling semistructured data have been
proposed, such as OEM (Object Exchange Model) [2], and bdfs (Basic Data model
For Semistructured data) [6]. In such formalisms, data are represented as graphs with
labeled edges, where information on both the values and the schema of data are kept.

In particular, bdfs is an elegant graph-based data model, where graphs are used
to represent both databases and schemas, the former with edges labeled by data, and
the latter with edges labeled by formulae of a suitable logical theory. The notion of
a database g conforming to a schema S is given in terms of a special relation, called
simulation, between the two graphs. The notion of simulation is less rigid than the
usual notion of satisfaction, and suitably reflects the need of dealing with less strict
structures of data.

For several tasks related to data management, it is important to be able to check
subsumption between two schemas, i.e., to check whether every database conforming
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to one schema always conforms to another schema. In [6] an algorithm for checking
subsumption in bdfs is presented and its complexity is analyzed.

The problem of extending bdfs with different types of constraints in terms of for-
mulae associated to nodes of the schema, has first been studied in [8, 9]. In particular,
so called locality of constraints is identified as a crucial property, which allows one
to perform the basic inference tasks (namely checking consistency, conformance, and
subsumption) by means of several local checks, and thus retain efficiency with respect
to the total size of the schemas. A simple constraint language with the property of
locality, called Lsl , is presented, which allows one to express existence and uniqueness
of outgoing edges with certain properties.

In this paper we investigate the relationship between the expressive power of con-
straint languages and the ability to retain locality, thus keeping the complexity of the
basic inference tasks over schemas tractable. In particular:

• We add to Lsl more complex forms of numeric constraints (see e.g., [3, 21, 27,
5, 18] and show that this extension preserves locality.

• We add disjunctions of constraints and show that locality is not lost.
• When locality holds, we present algorithms to check consistency and subsump-

tion of schemas which can be run in polynomial time wrt the number of nodes.
• We add to Lsl constraints also on incoming edges (see, e.g., [13, 12, 14, 22]), and

show that locality and the finite model property are lost.

2 Framework

The formal model for semistructured data introduced in [6] which we call bdfs (Basic
Data model For Semistructured data) and its extension with constraints studied in [8,
9] are at the basis of our investigation. bdfs is an edge-labeled graph model for
semistructured data where edge-labels are formulae of a first-order language LT . The
language LT is built over a set of predicates, including the equality predicate “=”,
and contains one constant for each element of a fixed (not necessarily finite) universe
U . Schemas and databases in bdfs always refer to a complete and decidable theory T
on U . In bdfs, databases are rooted graphs whose edges are labeled with constants
of T , and schemas are rooted graphs whose edges are labeled with unary formulae
of T . We consider the extension of bdfs with constraints, as introduced in [8, 9],
which allow one to overcome several limitations of the basic bdfs model, e.g., the
ability to enforce the existence of edges. Constraints, which are expressed in a certain
constraint language L, label the nodes of the schemas (denoted by L-schemas) and
impose additional conditions on the outgoing or incoming edges of the nodes of a
database.

To establish if a database is coherent with an L-schema, or if an L-schema is more
specific than another one, we define the notions of conformance and subsumption,
which in turn are based on the fundamental notion of simulation. A simulation from
a database g to an L-schema S is a binary relation � from the nodes of g to the nodes
of S such that, for each pair of nodes v in g and u in S with v �u the following holds:

4



1. For each edge v
c

−→ vs in g, there exists an edge u
π

−→ us in S such that
T |= π(c) and vs � us.

2. v satisfies the constraint labeling u (denoted by C(u)).

A database g conforms to a schema S, in notation g � S, if there exists a simulation
� from g to S such that root(g)� root(S). A schema S1 is subsumed by a schema S2,
in notation S1 ⊑ S2, if for every database g we have that g � S1 implies g � S2. Two
schemas S1 and S2 are equivalent, in notation S1 ≡ S2, if both S1 ⊑ S2 and S2 ⊑ S1.
Since each database can be considered as a schema, conformance is a special case of
subsumption and henceforth we concentrate on subsumption only.

Example 1 Figure 1(a) shows a schema modeling the departments of a university, in which
professors teach courses, and a student can have either a professor or a student as tutor. We point
out that course, prof, stu, tutor, and teaches are constants; a constant c labeling an edge of a
schema denotes the unary predicate λx.x = c. Figure 1(b) shows a conforming database.

u1

u2

u5
u3

u4

u6 u7

Name

teaches

course
prof tutor

tutor
teaches

db01
fred

tutor
bill

tutor

mary
tutor

ada

course

prof

Dept
computer science

CNumber
Name

stu stu
stustu

Figure 1: Schema and conforming database

Note that
the empty
database,
which is the
database con-
sisting of a
single node,
conforms to
every schema
without con-
straints. However, when we add constraints we also need to consider the notion of
consistency. An L-schema which has at least one conforming database is said to
be consistent. A node u of an L-schema S is said to be consistent if there exists a
database that conforms to Su, where Su is the L-schema identical to S except for the
root, which is u. Since all meaningful constraint languages allow one to construct an
inconsistent schema, schema inconsistency can be reduced to schema subsumption.

Following [6, 8, 9] we make the assumption that the theory T is not part of the
input to the reasoning problems addressed in the paper (namely, consistency and
subsumption), and that the validity of a formula of T can be checked in constant
time.

2.1 Locality of Constraints

In [8, 9] several languages for expressing constraints are presented and the complexity
of the basic inference tasks (namely checking consistency, conformance, and subsump-
tion) for such languages is studied. In particular, so called locality of constraints is
identified as a crucial property that allows one to perform the basic inference tasks by
means of several local checks, and thus retain efficiency with respect to the total size
of the schemas.

A constraint C(u) labeling a node u of a schema is said to be local when it forces
conditions that are local to the nodes simulating u. In other words, one can check
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whether u is consistent by considering only u with C(u) and the outgoing (and in-
coming1) edges of u (taking as nodes attached to such edges fresh nodes with no
constraint on them), while ignoring all other nodes and edges in the database. A
constraint language in which all constraints are local is called local.

Syntax Semantics

v  ⊤ Always

v  ∃edge(p) ∃v
c

−→ vs ∈ Edges(g) | T |= p(c)

v  ∄edge(p) ∄v
c

−→ vs ∈ Edges(g) | T |= p(c)

v  ∃≤1edge(p) #{v
c

−→ vs ∈ Edges(g) | T |= p(c)} ≤ 1

v  γ1 ∧ γ2 (v  γ1) ∧ (v  γ2)

Figure 2: The language Lsl (#X denotes the car-
dinality of set X)

Figure 2 shows syntax
and semantics of the language
Lsl [8] of simple local con-
straints, which is at the basis of
our investigation. Constraints
of Lsl can force the existence
and uniqueness of edges sat-
isfying a certain formula. In

Figure 2, p is a unary formula of T and v  γ means that v satisfies the constraint
γ.

We call constraints of the form ∄edge(p), which express nonexistence of an outgoing
edge satisfying p, negative constraints. We observe that negative constraints can be
eliminated from an Lsl -schema without altering the semantics of the schema. Indeed,
for a node u of an Lsl -schema S for which C(u) contains the conjunct ∄edge(p), we
can remove ∄edge(p) from C(u), provided that we conjoin all formulae labeling the
outgoing edges of u with ¬p.

Example 2 Referring to the schema of Figure 1, we would like to enforce the following proper-
ties:

(1) a course must have exactly one course number;

(2) a professor must teach at least one course;

(3) a professor or student must have exactly one name.

This can be done by using constraints of Lsl as follows:

C(u1) = C(u2) = C(u6) = C(u7) = ⊤
C(u3) = ∃edge(CNUmber) ∧ ∃≤1edge(CNumber)
C(u4) = ∃edge(course) ∧ ∃edge(Name) ∧ ∃≤1edge(Name)
C(u5) = ∃edge(Name) ∧ ∃≤1edge(Name)

As shown in [8], to check whether a node u of an Lsl -schema is consistent, it is
sufficient to consider u with its constraint C(u) and the outgoing edges of u (while
neglecting the constraints over the successors of u). Hence Lsl is local, and in [8] it
is indeed shown that consistency and subsumption for Lsl -schemas can be checked
in polynomial time in the size of the schemas. As shown in the next section for
two meaningful extensions of Lsl , when the constraint language is local, one can
always verify consistency and subsumption by performing a polynomial number of
local validity checks. The size of the formula to check for validity will typically be
small wrt the total size of the two schemas. Hence, the total cost of subsumption can
be kept low (e.g., polynomial) wrt the size of the two schemas, even when the cost of
performing a single validity check is high wrt the size of the involved constraint and

1We will consider in Section 4 also constraints on incoming edges.
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edge labels (e.g., the formula to check for validity is exponential in the constraint).
For example, under the reasonable assumption that both the size of each constraint
attached to a node and the number of outgoing edges for a node are logarithmic in
the total size of a schema, checking subsumption can be done in polynomial time in
the size of the two schemas.

On the other hand, the lack of locality for a constraint language L is a strong
indication for intractability of the basic inference tasks on L-schemas and databases.
For example, in [8] the constraint language LALE is presented, for which it is precisely
the lack of locality that makes checking the consistency of an LALE -schema coNP-hard
in the size of the schemas.

3 Local Constraints on Outgoing Edges

We now study two extensions of the constraint languages Lsl which we will prove to
be local.

3.1 Extended Local Constraints

We now introduce a new constraint language Lext of so called extended local con-
straints, inspired by cardinality constraints typically present in database models and
Knowledge representation formalism [3, 21, 27, 5, 18].

Syntax Semantics

v  ⊤ Always

v  ∃≤nedge(p) #{v
c

−→ vs ∈ Edges(g) | T |= p(c)} ≤ n

v  ∃≥nedge(p) #{v
c

−→ vs ∈ Edges(g) | T |= p(c)} ≥ n

v  γ1 ∧ γ2 (v  γ1) ∧ (v  γ2)

Figure 3: The language Lext

Syntax and semantics of
Lext are shown in Figure 3,
where p is a unary formula of
T , and n, called a numeric in-
dex, is a number in IN (we as-
sume 0 ∈ IN) represented in
unary. Notice that Lext extends Lsl , since ∃≤0edge(p) is equivalent to ∄edge(p), and
∃≥1edge(p) is equivalent to ∃edge(p).

Example 3 Let us consider again the schema of Figure 1. We would like to enforce, in addition
to the properties specified in Example 2, also the following properties:

(4) a professor must teach exactly 2 courses;

(5) a student or professor can have at most 3 students of whom he/she is tutor.

This can be done by adding the following constraints of Lext :

C(u4) = ∃≥2edge(teaches) ∧ ∃≤2edge(teaches) ∧ ∃≤3edge(tutor)

C(u5) = ∃≤3edge(tutor)

We now show that Lext is local and therefore we can check the consistency of
an Lext -schema by means of local checks for consistency of the nodes of the schema.
Indeed, we present the function cons, which checks a node u for consistency by means
of local checks. Let u have ℓ outgoing edges, labeled r1, . . . , rℓ, let the constraint C(u)
over u be

C(u) = ∃≤n1edge(p1) ∧ · · · ∧ ∃≤nsedge(ps) ∧ ∃≥m1edge(q1) ∧ · · · ∧ ∃≥mtedge(qt)
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and let M =
∑t

i=1 mi.

function cons(u: node, w: Lext -constraint): boolean
{ if t = 0 then return true;
if t > 0 and OutEdges(u, S) = ∅ then return false;
for K = 1 to M

if T |= ∃x1 · · · ∃xK(F ∧ G ∧ H) then return true;
return false;

}

where F , G, and H are the following formulae of T :

F =
∧

1≤i≤t

∨

1≤j1<···<jmi
≤K

∧

1≤k≤mi

qi(xjk
)

G =
∧

1≤i≤s

∧

1≤j1<···<jni+1≤K

¬
∧

1≤k≤ni+1

pi(xjk
)

H =
∧

1≤i≤K

∨

1≤j≤ℓ

rj(xi)

Theorem 1 Given a node u of an Lext -schema S, we have that u is consistent iff
cons(u, C(u)) returns true. Moreover, cons(u, C(u)) runs in time polynomial in the
number of conjuncts in C(u), and in time exponential in the numeric indexes in C(u).

Proof (sketch). The function cons queries the theory about the existence of K

constants (for K going from 1 to M), which can be used to label the outgoing edges of
a node simulating u, respecting the conditions imposed by C(u). In other words, cons
tries to build a fragment of database made up of a single node and up to M outgoing
edges, which conforms to the schema Su obtained from S by considering u as the root
(it is possible to show that one can neglect the constraints over the successors of u,
and still fix the fragments to a database conforming to Su). The cost is exponential
in the numeric indexes in C(u) because the size of F and G is exponential in those
indexes.

By exploiting cons we can construct the function rinext, which iteratively re-
moves the inconsistent nodes from an Lext -schema, as follows:

function rinext(S: Lext -schema): Lext -schema
{ repeat

if there is a node u ∈ Nodes(S) that satisfies one of the following conditions:
• u is not reachable with a direct path starting from root(S);
• cons(u, C(u)) = false

then remove from S: ⋆ the node u,
⋆ all the edges outgoing from u, and
⋆ all the edges incoming in u;

until root(S) is removed from S or no new node has been removed from S;
return S

}
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Theorem 2 Given an Lext -schema S, we have that S is consistent iff rinext(S) does
not remove root(S). Moreover, rinext(S) runs in time polynomial in the number of
nodes of S, and in time exponential in the numeric indexes of the constraints labeling
the nodes of S.

Proof (sketch). The function checks the nodes of S for consistency, calling the function
cons. It is easy to show that if root(S) is not removed, the fragments of database
conforming to each consistent node in S can always be fixed together to obtain a
database conforming to S. The claim follows from the fact that the function cons is
called a number of times which is polynomial in the number of nodes of S.

Theorem 2 provides a bound on schema consistency which is polynomial in the
number of nodes, but exponential in the size of the schema. We can also show that
Lext -schema consistency can be checked by a nondeterministic algorithm which runs
in polynomial time in the size of the schema.

Theorem 3 Given an Lext -schema S, verifying the consistency of a node u of S can
be done in nondeterministic polynomial time in the size of C(u).

Proof (sketch). Let u have ℓ outgoing edges, labeled r1, . . . , rℓ, let the constraint
C(u) over u be

C(u) = ∃≤n1edge(p1) ∧ · · · ∧ ∃≤nsedge(ps) ∧ ∃≥m1edge(q1) ∧ · · · ∧ ∃≥mtedge(qt)

and let M =
∑t

i=1 mi. Then we guess a number K ∈ {1, . . . , M} and try to construct
a database fragment that conforms to u consisting of a node with K outgoing edges.
To do so, we guess for each of the K outgoing edges, whether the constant labeling
the edge should satisfy or not each of the predicates p1, . . . , ps, q1, . . . , qt. Once we
have done the guess we can check whether the numeric constraints are satisfied by
simply counting the constants that satisfy each of the predicates p1, . . . , ps, q1, . . . , qt.
It remains to check whether the guess is consistent with the theory T . This can be
done by querying T for K times, to see if there are indeed K constants satisfying
p1, . . . , ps, q1, . . . , qt or their negation, according to the guess, and satisfying at least
one of the predicates r1, . . . , rℓ. Each time the formula that is passed to T is polyno-
mial in the size of C(u), and since the cost of querying T is assumed to be constant,
the whole procedure runs in polynomial time on a nondeterministic Turing machine.

3.2 Propositional Local Constraints

We further extend the expressive power of extended local constraints by adding dis-
junction to Lext ; we thus obtain the language Lprop of propositional local constraints
endowed with all the operators of propositional logics (including negation, since, e.g.,
∃≤nedge(p) is equivalent to ¬∃≥n+1edge(p)).
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Syntax Semantics

v  γ1 ∨ γ2 (v  γ1) ∨ (v  γ2)

Figure 4: The language Lprop

The syntax and semantics of the additional con-
straint in Lprop (wrt those in Lext) is shown in Fig-
ure 4.

Example 4 Let us consider again the schema of Fig-
ure 1. We would like to enforce, in addition to the properties specified in Example 3, also the
following property:

(6) each professor who teaches more than one course cannot have more than one student of
whom she is a tutor.

This can be done by using the following constraint of Lprop :

C(u4) = ∃≤3edge(tutor) ∧ ∃≤2edge(teaches) ∧

(∃≥1edge(teaches) → ∃≤1edge(tutor))

where a → b is a shorthand for ¬a ∨ b.

We will see that there are significant advantages if we put the constraints of Lprop

in disjunctive normal form (DNF), i.e., given a node u, we have

C(u) = C1 ∨ · · · ∨ Cν

where each Ck, with 1 ≤ k ≤ ν, is a clause of the form

Ck = ∃≤n1edge(p1) ∧ · · · ∧ ∃≤nsedge(ps) ∧ ∃≥m1edge(q1) ∧ · · · ∧ ∃≥mtedge(qt)

Exploiting the fact that the constraints are in DNF, and that each clause of C(u)
is a constraint of Lext , we can use the function cons, which checks the consistency
of nodes labeled with constraints of Lext , to check the consistency of nodes of Lprop-
schemas. Notice that for Lprop we cannot remove the negative constraints as we did
for Lsl and Lext . Instead, we can remove the negative constraints clause by clause, as
each clause of Lprop is a constraint of Lext . So, let rnec be the function that removes
the negative constraints from a clause.

The function which checks the consistency of an Lprop-schema by means of local
checks is the following, hence showing that Lprop is a local constraint language.

function rinprop(S: schema): schema
{ repeat

if there is a node u in S with C(u) = C1 ∨ · · · ∨ Cν ,
such that for each K ∈ {1, . . . , ν}, at least one of the following conditions
is verified:
• u is not reachable starting from root(S) through a direct path;
• t ≥ 1 and cons(u, rnec(CK)) = false

where rnec(S, CK) = ∃≤n1edge(p1) ∧ · · · ∧ ∃≤nsedge(ps) ∧
∃≥m1edge(q1) ∧ · · · ∧ ∃≥mtedge(qt),

then remove from S: ⋆ the node u,
⋆ all the edges outgoing from u, and
⋆ all the edges incoming in u;
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until root(S) is removed from S or no new node has been removed from S;
return S;

}

As for rinext, it can be shown that rinprop(S) runs in time polynomial in the
number of nodes of S, and in time exponential in the numeric indexes of the constraints
labeling the nodes of S.

We can prove that also for Lprop-schemas, the problem of checking node consistency
is in NP. The proof is very similar to that of Theorem 3.

3.3 Subsumption

We now discuss a general technique to check schemas for subsumption which can be
applied whenever the constraint language used in the schemas is local. Given two
schemas S and S′, for each pair of nodes u of S and u of S′, we verify by means of
a local check whether it is possible to build a fragment of database conforming to Su

and not conforming to S′
u′

2 (as usual, we neglect the constraints over the successors
of u and u′). If we can build such a fragment, we remove the pair of nodes. In order
to make the local check, we call the function cons, giving to it a suitable combination
of constraints as second argument. In particular, to check whether there exists a
fragment respecting C(u) that violates an atomic constraint ϕ, which is part of C(u′),
we call cons(u, C(u) ∧ ¬ϕ). At the end, we answer that S is subsumed by S′ if and
only if the pair (root(S), root(S′)) is not removed.

With this technique we can define two functions subsext and subsprop, which
check the subsumption between two Lext -schemas and two Lprop-schemas respectively.
The two functions are very similar; in particular, subsprop exploits the property
that the Lprop-constraints are in DNF, making clause by clause the same checks that
subsext makes.

Theorem 4 Checking subsumption between two Lext -schemas or two Lprop-schemas
S and S′ can be done in time polynomial in the total number of nodes of S and S′,
and in time exponential in the numeric indexes of the constraints labeling the nodes
of the schemas.

Proof (sketch). It is possible to show that (possibly multiple copies of) the various
fragments of databases conforming to Su and not conforming to S′

u′ , where (u, u′)
is a pair of nodes that has not been removed, can in any case be fixed together to
form a single database. If at the end of the algorithm, (root(S), root(S′)) has not
been removed, then this database conforms to S and does not conform to S′, thus
being a counterexample for the subsumption between S and S′. On the contrary,
if (root(S), root(S′)) is not removed, we can deduce that S ⊑ S′, since the relation
from Nodes(S) to Nodes(S′) that we have constructed can be used to extend every
simulation from a database g to S to a simulation from g to S′.

The two functions subsext and subsprop make a number of calls to cons which is
polynomial in the total number of nodes of the two schemas. Hence subsext(S1, S2)

2We remind that Su denotes the schema obtained from S by considering u as the root.
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and subsext(S1, S2) run in time polynomial in the total number of nodes of S1 and
S2.

The only exponential dependence of the execution time of subsext(S1, S2) and
subsext(S1, S2) is that from the numeric indexes of the constraints of the nodes of S1

and S2. This is due to the fact that the function cons builds formulae to be checked
for validity, whose size is exponential in the numeric indexes.

4 Bidirectional Schemas

We investigate now the extension of the framework obtained by removing the asymme-
try between outgoing and incoming edges, and considering both types of edges in the
same way. The ability to refer to links in both directions substantially increases the
expressive power of a representation formalism, and has been considered important in
traditional database models [13, 12], in knowledge representation formalisms [16, 12],
and in models and query languages for semistructured data [14, 22, 11]. Notably,
XLink [22], the linking language of XML, allows one to express bidirectional and
backward links.

We consider now bidirectional databases and bidirectional schemas, which are
rooted graphs in which each node is reachable from the root by a semipath (instead
of a path). To properly take into account both outgoing and incoming edges it is
necessary to extend the notion of simulation between a bidirectional database g and
a bidirectional schema S, by adding to the conditions holding for a simulation (see
Section 2) the following:

3. For each edge vf
c

−→ v in g, there exists an edge uf
π

−→ u in S such that
T |= π(c) and vf � uf .

The notions of conformance, consistency, and subsumption can be extended
straightforwardly to bidirectional databases and schemas, by considering bidirectional
simulations instead of (unidirectional) simulations. For the constraint languages Lsl ,
Lext , and Lprop , all the techniques and results we have found for inference on unidi-
rectional schemas can be extended to bidirectional databases and schemas (and hence
bidirectional simulations).

Syntax Semantics

u  ∃edge−(p) ∃up
c

−→ u ∈ Edges(g) | T |= p(c)

u  ∄edge−(p) ¬∃up
c

−→ u ∈ Edges(g) | T |= p(c)

u  ∃≤1edge−(p) #{up
c

−→ u ∈ Edges(g) | T |= p(c)} ≤ 1

Figure 5: The language Lbid

In the context of bidirec-
tional databases and schemas,
it is natural to allow one to im-
pose constraints also on the in-
coming edges of a node. We
consider the constraint lan-
guage Lbid , which extends Lsl with the constraints on incoming edges shown in Fig-
ure 5.

Example 5 Let us consider once more the schema of Figure 1. We want to enforce the following
properties:

(1) each course must be taught by exactly one professor;
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(2) each student can have at most one tutor.

We can do that by using the constraints of Lbid as follows

C(u3) = ∃≤1edge−(teaches) ∧ ∃edge−(teaches)

C(u5) = ∃≤1edge−(tutor)

v1

v2

v3

cp

cp

cq

(b) Fragments of databases

qp

u1 u2

u3

(a) Schema S

C(u1) = ∃edge(p)
C(u2) = ∃edge(q)
C(u3) = ∃edge−(p) ∧

∃≤1edge−(p ∨ q)

Figure 6: Consistent bidirectional schema

We show that for Lbid we lose
the ability to check the consis-
tency of nodes by means of local
checks. Indeed, in the presence of
Lbid -constraints the consistency of
a node can be affected by the con-
straints over other nodes. For ex-
ample, Figure 6 shows a schema S

and the fragments locally conform-
ing to its nodes (we suppose that in T the formulae p(cp), q(cq), and ¬∃x(p(x)∧ q(x))
are valid); it is evident that the fragments cannot be fixed together to form a database
conforming to S. This shows that Lsl is not local. Note that in the example, the
schema is consistent, and in particular, a database conforming to it is the one con-
sisting of two nodes conforming to u1 and u3 respectively, and connected by an edge
satisfying p. However, by using local checks it is not possible to identify the fragments
that are to be used to build a conforming database, if it exists. Moreover, there may
be many such choices in general.

u

true

C(u) = ∃edge(p) ∧ ∃edge(¬p) ∧
∃≤1edge−(true)

Figure 7: Schema violating the FMP

A further consequence of the ex-
pressiveness of Lbid is that for Lbid -
schemas the finite model property
does not hold [15, 7]. Indeed, every
database conforming to the Lbid -schema shown in Figure 7 must have an infinite num-
ber of nodes. This is due to the fact that in such a database, every node simulating
u requires the existence of other two3 new nodes, both simulating u.

The lack of the finite model property is typical of representation formalisms that
can express functionality on links in both directions, and in general makes it neces-
sary to adopt different techniques for the cases where one wants to reason wrt finite
databases only, or one wants to consider arbitrary (possibly infinite) databases [15, 7].

At the moment a lower bound to the complexity of checking consistency (and
subsumption) of Lbid -schemas is not known, though the lack of locality is a strong
indication of intractability. Another open problem is that of finding algorithms to
check consistency and subsumption of Lbid -schemas.

5 Conclusions and Discussion

We have studied the relationship between various extensions of constraint languages
for semistructured data schemas and the basic property of locality, which allows one

3Except for the root, which requires the existence of only one new node.
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to check subsumption between schemas in polynomial time in the number of nodes of
the schemas. We have shown that locality holds when both numeric constraints and
disjunction are added to a simple constraint language. On the other hand, locality is
lost when we consider constraints both on outgoing and incoming edges of databases.

In all cases where locality holds, the algorithms presented rely only on the ability
to do a local check of consistency of a node. Hence we have an algorithmic framework
which is completely modular with respect to the function which performs the local
consistency check.

We would like to point out that, while the results in this paper have been estab-
lished in the formal framework of the bdfs data model [6] based on the notion of
simulation, all considerations relative to locality hold also for other data models, such
as OEM [2].

Formalisms for specifying relationships between data in a flexible way have been
investigated extensively in the context of Description Logics (DLs) studied in knowl-
edge representation. The results established here for semistructured data models can
be recast in terms of DLs (assuming the underlying theory is expressible in a DL). To
correctly capture the notion of simulation one must resort to a greatest-fixpoint se-
mantics [24, 4, 8]. Moreover, disjunction is implicit in the bdfs model, and due to the
necessity to reify edges, qualified existential quantification and qualified functionality
restrictions (resp., qualified number restrictions) are needed to encode the existence
and functionality constraints (resp., numeric constraints) of a semistructured data
schema. Such a combination of constructs interpreted with a greatest-fixpoint seman-
tics has not been considered before in DLs, with the exception of very expressive DLs
with fixpoint constructs [26, 17, 10], which however have a much higher computational
complexity. Hence, the results established here represent a new contribution also wrt
to reasoning algorithms for DLs.
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