
Accessing Data Integration Systems through
Conceptual Schemas? (extended abstract)

Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
lastname @dis.uniroma1.it,

http://www.dis.uniroma1.it/~lastname

Abstract. Data integration systems provide access to a set of heteroge-
neous, autonomous data sources through a so-called global, or mediated
view. There is a general consensus that the best way to describe the global
view is through a conceptual data model, and that there are basically two
approaches for designing a data integration system. In the global-as-view
approach (GAV), one defines the concepts in the global schema as views
over the sources, whereas in the local-as-view approach (LAV) one char-
acterizes the sources as views over the global schema. While it is known
that query processing in LAV is a complex task, it is a common opinion
that it is much easier in GAV. In this paper we show the surprising re-
sult that, when the global schema is expressed in terms of a conceptual
data model, even a very simple one, query processing becomes difficult
in the global-as-view approach also. We demonstrate that the problem of
incomplete information arises in this case too, and we illustrate some basic
techniques for effectively answering queries posed to the global schema of
the data integration system.

1 Introduction

Data integration is the problem of combining the data residing at different sources,
and providing the user with a unified view of these data, called global (or, medi-
ated) schema [13, 14]. The user queries the global schema, ignoring the location
and structure of the data sources, and leaving to the system the task of merging
and reconciling the data at the sources.

Typically, sources adopt different ontologies, models, and systems for storing
data. The use of a conceptual data model has been advocated for providing an
appropriate abstraction of all the data residing at the sources [4, 19, 2]. In this
paper we follow this idea, and investigate the problem of query answering in data
integration systems where the global schema is expressed in terms of an extended
Entity-Relationship model.

With regard to the specification of the mapping between the global schema
and the sources, two basic approaches have been used to specify the mapping
between the sources and the global schema [13, 15, 16]. The first approach, called
global-as-view (also global-schema centric, or simply global-centric), requires that
the global schema is expressed in terms of the data sources. The second approach,

? An extended version of this paper was published in the Proc. of the 20th Int. Conf.
on Conceptual Modeling (ER 2001).



called local-as-view (or source-centric), requires the global schema to be speci-
fied independently from the sources. A comparison of the approaches is reported
in [21]. In this paper, we concentrate on the former approach, which is generally
considered sufficiently simple and effective for practical purposes.

Another important issue is the choice of the method for computing the answer
to queries posed in terms of the global schema. For this purpose, the system
should be able to re-express the query in terms of a suitable set of queries posed
to the sources, and assemble all the results into the final answer. It is well known
that processing queries in the local-as-view approach is a difficult task [20, 21, 12,
1, 11, 5, 6], similar to query answering with incomplete information [22]. On the
other hand, query processing looks much easier in the global-as-view approach,
where in general it is assumed that answering a query basically means unfolding
its atoms according to their definitions in terms of the sources [13]. While this
is a common opinion in the literature, we show that our framework poses new
challenges, specially related to the need of taking the semantics of the conceptual
global schema into account during query processing. We show that the idea of
adopting a conceptual data model for expressing the global schema makes query
processing more involved than in the simplified framework usually considered in
the literature. In particular, we present the surprising result that the semantics of
a data integration system is best described in terms of a set of databases, rather
than a single one, and this implies that, even in the global-as-view approach, query
processing is intimately connected to the notion of querying incomplete databases.
Then we formalize the notion of correct answer in a data integration system with
a conceptual global schema, and the presentation of a query processing strategy
that is able to provide all correct answers to a query posed to the system.

2 The Conceptual Data Model

We present the conceptual model which is at the basis of the integration framework
introduced in the next section. The model incorporates the basic features of the
Entity-Relationship (ER) model [8], extended with subset (or is-a) constraints
on both entities and relationships. Other characteristics that are not considered
in this paper for the sake of simplicity (e.g., domain of attributes, identification
constraints, etc.), can also be added without affecting the results in the next
sections.

Conceptual schemas in our approach are depicted in the usual graphical no-
tation of Entity-Relationship schemas, with the addition of is-a arcs. An is-a arc
from an entity (resp. relationship) box to another denotes that the instances of
the first entity (resp. relationship) are a subset fo those of the second.

An attribute A of an entity X can be mandatory or functional. If A is manda-
tory, then each instance of X must have a value for A. If A is functional, then
each instance of X has at most one value for A.

The language we use to express queries over a global schema expressed in our
conceptual model is that of conjunctive queries. Formally, a conjunctive query

(CQ) Q of arity n is written in the form

Q(x1, . . . , xn) ← conj (x1, . . . , xn, y1, . . . , ym)



where conj (x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms involving constants
and variables x1, . . . , xn, y1, . . . , ym from an alphabet of variables. The predicates
in the atoms are the so-called concepts of the conceptual schema, i.e., its entities,
relationships and attributes:

– Each entity E has an associated predicate E of arity 1. Intuitively, E(c) asserts
that c is an instance of entity E.

– Each attribute A for an entity E has an associated predicate A of arity 2.
Intuitively, A(c, d) asserts that c is an instance of entity E and d is the value
of attribute A associated to c.

– Each relationship R among the entities E1, . . . , En has an associated predicate
R of arity n.

– Each attribute A for a relationship R among the entities E1, . . . , En has an
associated predicate A of arity n + 1. Intuitively, A(c1, . . . , cn, d) asserts that
(c1, . . . , cn) is an instance of relationship R and d is the value of attribute A

associated to (c1, . . . , cn).

3 The Formal Framework for Data Integration

We set up a formal framework for data integration. Formally a data integration

system I is a triple 〈G,S,MG,S〉, where G is the global schema, S is the source
schema, and MG,S is the mapping between G and S.

We describe the characteristics of the various components of a data integration
system. The global schema G is expressed in the conceptual data model described
in the previous section. The source schema S is constituted by the schemas of the
source relations. Note that we assume that the sources are expressed as relational
data bases. This is not a strong limitation, since, in case of sources of different
type, we can assume that suitable wrappers present the data at the source in
relational form. The mapping MG,S between G and S is given by associating to
each concept C (either entity, relationship, or attribute) in the global schema a
query VC , of the same arity of the predicate associated to C, over the sources.
We do not pose any constraint on the language used to express the queries in the
mapping: we simply assume that the language is able to express computations
over relational databases.

In order to assign semantics to a data integration system I = 〈G,S,MG,S〉,
we start by considering a source database for I, i.e., a database D for the source
schema S. Based on D, we now specify which is the information content of the
global schema G. We call global database for I any database for G. A global
database B for I is said to be legal with respect to D, or, simply, legal for I with

respect to D, if:

– B is legal with respect to G,
– for each element e of G, the set of tuples eB that B assigns to e is coherent

with set of tuples computed by the associated query Ve over D, i.e., VD
e ⊆ eB.

The above definition implies that sources are considered sound : the data they
provide to the integration system satisfy the global schema, but are not necessarily
complete [11].



Enrolled

MemberPerson

Student University

Organization

age

Fig. 1. Global schema of Example 1

Example 1. Figure 1 shows the global schema G1 of a data integration system
I1 = 〈G1,S1,M1〉, where age is a functional attribute, Student has a mandatory
participation in the relationship Enrolled, Enrolled is-a Member, and University is-a
Organization. The schema models persons who can be members of one or more
organizations, and students who are enrolled in universities. Suppose that S1 is
constituted by s1, s2, s3, s4, s5, s6, s7, s8, and that the mapping M1 is as follows:

Person(x)← s1(x) Student(x)← s3(x, y) ∨ s4(x, z)
Organization(x)← s2(x) University(x)← s5(x)

Member(x, y)← s7(x, z), s8(z, y) Enrolled(x, y)← s4(x, y)
age(x, y)← s3(x, y) ∨ s6(x, y, z)

The semantics of a data integration system I with respect to a source database
D for I, denoted sem(I,D), is the set of global databases that are legal for I with
respect to D.

From this definition it is easy to see that, given a source database D, different
situations are possible. The first case is when no legal global database exists.
This happens, in particular, when the data at the sources retrieved by the queries
associated to the elements of the global schema do not satisfy the functional
attribute constraints. We assume that such a problem is solved by the queries
extracting data at the sources, that implement suitable data cleaning strategies
that ensures the satisfaction of all functional attribute constraints. The interested
reader is referred to [10] for more details of data cleaning techniques. The second
case occurs when several legal global databases exist. This happens, for example,
when the data at the sources retrieved by the queries associated to the global
relations do not satisfy the is-a relationships of the global schema. In this case, it
may happen that several ways exist to add suitable objects to the elements of G in
order to satisfy the constraints. Each such ways yields a legal global database. The
problem of incomplete information in the global-as-view approach is overlooked
in traditional data integration systems, which either express the global schema as
a set of plain relations, or consider the sources as exact (see, for instance, [7, 17,
3]).

Example 2. Referring again to Example 1, consider a source database D2, where
s1 stores p1 and p2, s2 stores o1, s5 stores u1, and s4 stores (t1, a1), and the
pairs (p1, o1) and (p2, u1) are in the join between s7 and s8. By the mappingM1,
it follows that in every legal database of I1, p1, p2 ∈ Person, (p1, o1), (p2, u1) ∈
Member, o1 ∈ Organization, t1 ∈ Student, u1 ∈ University. Moreover, since G1

specifies that Student has a mandatory participation in the relationship Enrolled,
in every legal database for I1, t1 must be enrolled in a certain university.

We conclude the section by defining the notion of query posed to the data
integration system. Since, given a source database D, several global databases



may exist that are legal for I with respect to D, we say that a tuple (c1, . . . , cn)
is considered an answer to the query only if it is a certain answer, i.e., it satisfies
the query in every database that belongs to the semantics of the data integration
system.

Example 3. Referring to Example 2, consider the query Q1 to I1:

Q1(x)← Member(x, y),University(y)

It is easy to see that {p2, t1} is the set of certain answers to Q1 with respect to
I1 and D2.

4 Answering Queries over the Global Schema

We present an algorithm for computing the set of certain answers to queries posed
to a data integration system. The key feature of the algorithm is to reason about
both the query and the conceptual global schema in order to infer which are the
certain answers to the query. Indeed, we show that a simple unfolding strategy
does not work in our setting.

Example 4. Consider again Example 3, and suppose we simply unfold the
query Q1 in the standard way, by substituting each atom with the query that
M1 associates to the element in the atom. Then we get the query q(x) ←
s7(x, z), s8(z, y), s5(y). If we evaluate this query over D2, we get {p2} as result,
thus missing the certain answer t1.

Next we illustrate our algorithm for computing all certain answers. The algo-
rithm is able to add more answers to those directly extracted from the sources, by
exploiting the semantic conditions expressed in the conceptual global schema. Let
I = 〈G,S,MG,S〉 be an integration system, let D be a source database, and let Q

be a query over the global schema G. From the query Q, the algorithm obtains a
new query expG(Q) over the elements of the global schema G in which the knowl-
edge in G that is relevant for Q has been compiled in. The rest of the processing
is quite obvious: expG(Q) is unfolded according toM, and the resulting unfolded
query unf MG,S

(expG(Q)) is evaluated over the source database D.
The expansion of the user query Q requires to find a way to compile into the

query the semantic relations holding among the concepts of the global schema
G. The basic idea to do so is that the relations among the elements in G can be
captured by a suitable rule base RG . To build RG , we introduce a new predicate
P ′, called primed predicate, for each predicate P associated to an element P

of G. Then, from the semantics of the ER schema we devise the following rules
(expressed in Logic Programming notation [18]):

– for each entity E, attribute A and relationship R in G, we have:

E′(x) ← E(x)
A′(x, y) ← A(x, y)
R′(x1, . . . , xn) ← R(x1, . . . , xn)



– for each is-a relation between E and Ei, or between R and Ri in an entity or
relationship definition of G, we have:

E′
i(x) ← E′(x)

R′
i(x1, . . . , xn) ← R′(x1, . . . , xn)

– for each attribute A for an entity E or a relationship R in an attribute defi-
nition in G, we have:

E′(x) ← A′(x, y)
R′(x1, . . . , xn) ← A′(x1, . . . , xn, y)

– for each relationship R involving an entity Ei as i-th component according to
the corresponding relationship definition in G, we have:

E′
i(xi) ← R′(x1, . . . , xi, . . . , xn)

– for each mandatory participation of an entity E in a relationship Rj in an
entity definition of G, we have:

R′
j(f1(x), . . . , x, . . . , fn(x)) ← E′(x)

where fi are fresh Skolem functions [18].
– for each mandatory attribute A for an entity E or a relationship R in an

attribute definition of G, we have:

A′(x, f(x)) ← E′(x)
A′(x1, . . . , xn, f(x)) ← R′(x1, . . . , xn)

where f is a fresh Skolem function.

Once we have defined such a rule base RG , we can use it to generate the query
expG(Q) associated to the original query Q. This is done as follows:

1. First, we rewrite Q by substituting each predicate P in the body of Q with
P ′. We denote by Q′ the resulting query. In the following we call “primed
atom” every atom whose predicate is primed.

2. Then we build a partial resolution tree for Q′ [9]. In the partial resolution
tree, a node is not expanded anymore either when no atom in the node unifies
with a head of a rule, or when the node it is subsumed by (i.e., is more specific
than) one of its predecessors. In the latter case, the node gets an empty node
as a child; intuitively this is because such a node cannot provide any answer
that is not already provided by its more general predecessor.

3. Finally we return as result the query expG(Q) formed as the union of all
non-empty queries in the leaves of the partial resolution tree.

The following three observations are crucial for characterizing both the termi-
nation and the correctness of our algorithm:

– It is possible to show that the termination of the construction of the tree, and
thus of the entire algorithm, is guaranteed.



– By exploiting results on partial evaluation of logic programs (see [9]), it can
be shown that expG(Q) is equivalent to the original query Q with respect
to the global schema G, that is, for each database B that is legal for G, the
evaluation of Q yields the same result as expG(Q), i.e., QB = (expG(Q))B.

– The query expG(Q) returned by the algorithm is a union of conjunctive queries.
Each disjunct of expG(Q) is a conjunctive query over the predicates of the
global schema, i.e., the elements that have an associated query over the sources
by virtue of the mapping.

The above observations imply that, if we evaluate unf MG,S
(expG(Q)) over the

source database D, we get exactly the set of certain answers of Q with respect to
I and D.

With regard to the characterization of the computational complexity of the
algorithm, it is possible to show that , if the queries associated by MG,S to the
elements of G can be evaluated in polynomial time in the size of the data at
the sources, then evaluating unf MG,S

(expG(Q)) over D is also polynomial in the
size of the data at the sources. It follows that our query answering algorithm is
polynomial with respect to data complexity.

Example 5. Referring again to Example 3, it is possible to see that, by evaluating
the unfolding of the query returned by the algorithm, the whole set of certain
answers to Q1 with respect to I1 and D2 is obtained. In particular, t1 is obtained
by processing the rule Member′(x, y) ← Enrolled′(x, y), which takes into account
that Member is a generalization of Enrolled and the rule Enrolled′(x, f(x)) ←
Student′(x), which expresses the mandatory participation of Student in Enrolled.

5 Conclusions

While it is a common opinion that query processing is an easy task in the global-
as-view approach to data integration, we have shown the surprising result that,
when the global schema is expressed in terms of a conceptual data model, even a
very simple one, query processing becomes difficult. The difficulties basically arise
because of the need of dealing with incomplete information, similarly to the case
of the local-as-view approach to data integration.

After a logic-based characterization of the data integration system, we have
presented a novel query processing algorithm that is able to compute all correct
answers to a query posed to the global schema, by reasoning on both the query
and the conceptual global schema. We have also shown that query processing,
although exponential with respect to the size of the query and the global schema,
remains of polynomial data complexity.

References

1. Serge Abiteboul and Oliver Duschka. Complexity of answering queries using mate-
rialized views. In Proc. of PODS’98, pages 254–265, 1998.



2. Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Beneventano.
Intelligent techniques for the extraction and integration of heterogeneous informa-
tion. In Proc. of the IJCAI’99 Workshop on Intelligent Information Integration,
1999.

3. Mokrane Bouzeghoub and Maurizio Lenzerini. Introduction to the special issue on
data extraction, cleaning, and reconciliation. Information Systems, 26(8):535–536,
2001.

4. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Information integration: Conceptual modeling and reasoning sup-
port. In Proc. of CoopIS’98, pages 280–291, 1998.

5. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Answering regular path queries using views. In Proc. of ICDE 2000, pages 389–398,
2000.

6. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
View-based query processing and constraint satisfaction. In Proc. of LICS 2000,
pages 361–371, 2000.

7. M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. Cody, R. Fagin, M. Flick-
ner, A. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and E. L.
Wimmers. Towards heterogeneous multimedia information systems: The Garlic ap-
proach. In Proc. of the 5th Int. Workshop on Research Issues in Data Engineering –
Distributed Object Management (RIDE-DOM’95), pages 124–131. IEEE CS Press,
1995.

8. P. P. Chen. The Entity-Relationship model: Toward a unified view of data. ACM
Trans. on Database Systems, 1(1):9–36, March 1976.

9. Giuseppe De Giacomo. Intensional query answering by partial evaluation. J. of
Intelligent Information Systems, 7(3):205–233, 1996.

10. Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. An extensible
framework for data cleaning. Technical Report 3742, INRIA, Rocquencourt, 1999.

11. Gösta Grahne and Alberto O. Mendelzon. Tableau techniques for querying informa-
tion sources through global schemas. In Proc. of ICDT’99, volume 1540 of LNCS,
pages 332–347. Springer, 1999.

12. Jarek Gryz. Query folding with inclusion dependencies. In Proc. of ICDE’98, pages
126–133, 1998.

13. Alon Y. Halevy. Theory of answering queries using views. SIGMOD Record,
29(4):40–47, 2000.

14. Richard Hull. Managing semantic heterogeneity in databases: A theoretical perspec-
tive. In Proc. of PODS’97, 1997.

15. Alon Y. Levy. Logic-based techniques in data integration. In Jack Minker, editor,
Logic Based Artificial Intelligence. Kluwer Academic Publisher, 2000.

16. Chen Li and Edward Chang. Query planning with limited source capabilities. In
Proc. of ICDE 2000, pages 401–412, 2000.

17. Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yannis Papakon-
stantinou, Jeffrey D. Ullman, and Murty Valiveti. Capability based mediation in
TSIMMIS. In Proc. of ACM SIGMOD, pages 564–566, 1998.

18. John W. Lloyd. Foundations of Logic Programming (Second, Extended Edition).
Springer, Berlin, Heidelberg, 1987.

19. Bertram Ludascher, Amarnath Gupta, and Maryann E. Martone. Model-based
mediation with domain maps. In Proc. of ICDE 2001, pages 81–90, 2001.

20. Xiaolei Qian. Query folding. In Proc. of ICDE’96, pages 48–55, 1996.
21. Jeffrey D. Ullman. Information integration using logical views. In Proc. of ICDT’97,

volume 1186 of LNCS, pages 19–40. Springer, 1997.
22. Ron van der Meyden. Logical approaches to incomplete information. In Jan

Chomicki and Günter Saake, editors, Logics for Databases and Information Sys-
tems, pages 307–356. Kluwer Academic Publisher, 1998.


