
Reasoning on UML Class Diagrams in

Description Logics

Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

lastname @dis.uniroma1.it

Abstract. In this paper1 we formalize UML class diagrams in terms of a logic
belonging to Description Logics, which are subsets of First-Order Logic that
have been thoroughly investigated in Knowledge Representation. The logic we
have devised is specifically tailored towards the high expressiveness of UML
information structuring mechanisms, and allows one to formally model impor-
tant properties which typically can only be specified by means of qualifiers. The
logic is equipped with decidable reasoning procedures which can be profitably
exploited in reasoning on UML class diagrams. This makes it possible to provide
computer aided support during the application design phase in order to auto-
matically detect relevant properties, such as inconsistencies and redundancies.

1 Introduction

The Unified Modeling Language (UML) is the de facto standard formalism for
object-oriented modeling [2, 14]. There is a vast consensus on the need for a pre-
cise semantics for UML [12, 17], in particular for UML class diagrams. Indeed,
several types of formalization of UML class diagrams have been proposed in the
literature [11–13, 9]. Many of them have been proved very useful with respect
to the task of establishing a common understanding of the formal meaning of
UML constructs. However, to the best of our knowledge, none of them has the
explicit goal of building a solid basis for allowing automated reasoning tech-
niques, based on algorithms that are sound and complete wrt the semantics, to
be applicable to UML class diagrams.

In this paper, we propose a new formalization of UML class diagrams in
terms of a particular formal logic of the family of Description Logics (DLs).
DLs2 have been proposed as successors of semantic network systems like kl-

one, with an explicit model-theoretic semantics. The research on these logics
has resulted in a number of automated reasoning systems [18, 19, 15, 16], that
have been successfully tested in various application domains (see e.g., [21, 22,
20]). Our goal is to exploit the deductive capabilities of DL systems, and show

1 A full version of this paper can be found in [3].
2 See http://dl.kr.org for the home page of Description Logics.

that effective reasoning can be carried out on UML class diagrams, so as to
provide support during the specification phase of software development.

In DLs, the domain of interest is modeled by means of concepts and rela-

tions, which denote classes of objects and relation between objects, respectively.
Generally speaking, a DL is formed by three basic components:

– A description language, which specifies how to construct complex concept
and relationship expressions (also called simply concepts and relationships),
by starting from a set of atomic symbols and by applying suitable construc-
tors,

– a knowledge specification mechanism, which specifies how to construct a
DL knowledge base, in which properties of concepts and relationships are
asserted, and

– a set of automatic reasoning procedures, which are sound, complete and
terminating.

The set of allowed constructors characterizes the expressive power of the
description language. Various languages have been considered by the DL com-
munity, and numerous papers investigate the relationship between expressive
power and computational complexity of reasoning (see [10] for a survey).

Several works point out that DLs can be profitably used to provide both
formal semantics and reasoning support to formalisms in areas such as Natural
Language, Configuration Management, Database Management, Software Engi-
neering. For example, [7, 8] illustrates the use of DLs for database modeling.
However, DLs have not been applied to the Unified Modeling Language (UML)
(with the exception of [5]). In this work we concentrate on UML class diagrams
for the conceptual perspective. Hence, we do not deal with those features that
are relevant for the implementation perspective, such as public, protected, and
private qualifiers for methods and attributes. For such UML class diagrams
we present a formalization of UML in terms of DLs. In particular, we show
how to capture the constructs of UML class diagrams by using a Description
Logic that is equipped with n-ary relations. The DL we have adopt is specifi-
cally tailored towards the high expressiveness of UML information structuring
mechanisms, and allows one to formally model important additional properties,
such has disjointness of classes, or partitions of classes into subclasses, that are
typically specified by means of constraints in UML class diagrams. In spite of
the expressiveness required, the logic proposed admits decidable reasoning pro-
cedures. Overall, the formalization in DLs of UML class diagrams provides us
with a rigorous logical framework for representing and automatically reasoning
on UML class specifications. Such a formalization can be considered as the basic
steps towards developing intelligent tools that provide computer aided reasoning
support during the application design phase, in order to automatically detect
relevant properties, such as inconsistencies and redundancies.

The paper is organized as follows: in Section 2 we give an overview of the
Description Logic we use, called DLR. In Sections 3, 4, 5 and 6, we illustrate
the formalization of UML class diagrams in terms of DLR, focusing on classes,
associations, generalization, and constraints, respectively. In Section 7 we dis-
cuss the use of the reasoning procedures associated to DLR in order to support
the specification of UML class diagrams. Section 8 concludes the paper.

2 The Description Logic DLR

In this paper we adopt a DL, here called DLR, presented in [6], which is a
variant of logic originally introduced in [4]. The basic elements of DLR are
concepts (unary relations), and n-ary relations. We assume to deal with a finite
set of atomic relations and atomic concepts, denoted by P and A, respectively.
Arbitrary relations (of given arity between 2 and nmax), denoted by R, and
arbitrary concepts, denoted by C, are built according to the following syntax:

R ::= ⊤n | P | (i/n :C) | ¬R | R1 ⊓R2

C ::= ⊤1 | A | ¬C | C1 ⊓ C2 | (≤ k [i]R)

where i denotes a component of a relation, i.e., an integer between 1 and nmax,
n denotes the arity of a relation, i.e., an integer between 2 and nmax, and k
denotes a non-negative integer. We consider only concepts and relations that are
well-typed, which means that (i) only relations of the same arity n are combined
to form expressions of type R1 ⊓ R2 (which inherit the arity n), and (ii) i ≤ n
whenever i denotes a component of a relation of arity n.

We also make use of the following abbreviations:

C1 ⊔ C2 for ¬(¬C1 ⊓ ¬C2)

C1⇒C2 for ¬C1 ⊔ C2

(≥ k [i]R) for ¬(≤ k−1 [i]R)

∃[i]R for (≥ 1 [i]R)

∀[i]R for ¬∃[i]¬R

Moreover, we abbreviate (i/n :C) with (i :C), when n is clear from the context.

A DLR knowledge base (KB) is constituted by a finite set of inclusion

assertions, where each assertion has one of the forms:

R1 ⊑ R2 C1 ⊑ C2

with R1 and R2 of the same arity.

Besides inclusion assertions, DLR KBs allow for assertions expressing iden-
tification constraints and functional dependencies.

⊤I

n ⊆ (∆I)n

P I ⊆ ⊤I

n

(i/n :C)I = {t ∈ ⊤I

n | t[i] ∈ CI}
(¬R)I = ⊤I

n \RI

(R1 ⊓R2)
I = RI

1 ∩RI

2

⊤I

1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 ⊓ C2)
I = CI

1 ∩ CI

2

(≤ k [i]R)I = {a ∈ ∆I | ♯{t ∈ RI

1 | t[i] = a} ≤ k}

Fig. 1. Semantic rules for DLR (P , R, R1, and R2 have arity n)

An identification assertion on a concept has the form:

(id C [i1]R1, . . . , [ih]Rh)

where C is a concept, each Rj is a relation, and each ij denotes one component
of Rj . Intuitively, such an assertion states that no two different instances of C
agree on the participation to R1, . . . , Rh. In other words, if a is an instance of
C that is the ij-th component of a tuple tj of Rj , for j ∈ {1, . . . , h}, and b is an
instance of C that is the ij-th component of a tuple sj of Rj , for j ∈ {1, . . . , h},
and for each j, tj agrees with sj in all components different from ij , then a and
b coincide.

A functional dependency assertion on a relation has the form:

(fd R i1, . . . , ih → j)

where R is a relation, h ≥ 2, and i1, . . . , ih, j denote components of R. The
assertion imposes that two tuples of R that agree on the components i1, . . . , ih,
agree also on the component j.

Note that unary functional dependencies (i.e., functional dependencies with
h = 1) are ruled out in DLR, since these lead to undecidability of reasoning [6].
Note also that the right hand side of a functional dependency contains a single
element. However, this is not a limitation, because any functional dependency
with more than one element in the right hand side can always be split into
several dependencies of the above form.

The semantics of DLR is specified through the notion of interpretation. An
interpretation I = (∆I , ·I) of a DLR KB K is constituted by an interpretation

domain ∆I and an interpretation function ·I that assigns to each concept C a
subset CI of ∆I and to each relation R of arity n a subset RI of (∆I)n, such
that the conditions in Figure 1 are satisfied. (In the figure, t[i] denotes the i-th
component of tuple t.) We observe that ⊤1 denotes the interpretation domain,
while ⊤n, for n > 1, does not denote the n-Cartesian product of the domain,
but only a subset of it, that covers all relations of arity n. It follows, from this
property, that the “¬” constructor on relations is used to express difference of
relations, rather than complement.

To specify the semantics of a KB we first define when an interpretation
satisfies an assertion as follows:

Person

operations

attributes

class name
name: String

phoneNumber[1..*]: String

age(Datetime): Int

acceptsSalary(Int): Bool

Fig. 2. Representation of a class in UML

– An interpretation I satisfies an inclusion assertion R1 ⊑ R2 (resp. C1 ⊑ C2)
if RI

1 ⊆ RI

2 (resp. CI

1 ⊆ CI

2).
– An interpretation I satisfies the assertion (id C [i1]R1, . . . , [ih]Rh) if for all

a, b ∈ CI and for all t1, s1 ∈ RI

1 , . . . , th, sh ∈ RI

h we have that:

a = t1[i1] = · · · = th[ih],
b = s1[i1] = · · · = sh[ih],
tj [i] = sj [i], for j ∈ {1, . . . , h}, and for i 6= ij

implies a = b

– An interpretation I satisfies the assertion (fd R i1, . . . , ih → j) if for all
t, s ∈ RI , we have that:

t[i1] = s[i1], . . . , t[ih] = s[ih] implies t[j] = s[j]

An interpretation that satisfies all assertions in a KB K is called a model of K.
Several reasoning services are applicable to DLR KBs. The most important

ones are KB satisfiability and logical implication. A KB K is satisfiable if there
exists a model of K. A concept C is satisfiable in a KB K if there is a model I
of K such that CI is nonempty. A concept C1 is subsumed by a concept C2 in
a KB K if CI

1 ⊆ CI

2 for every model I of K. An assertion α is logically implied

by K if all models of K satisfy α. One can easily verify that logical implication
and KB unsatisfiability are mutually reducible.

One of the distinguishing features of DLR is that it is equipped with rea-
soning algorithms that are sound and complete wrt to the semantics. Such
algorithms allow one to decide all the above reasoning tasks in deterministic
exponential time [6]. Indeed, the proposed algorithms are computationally op-
timal, since reasoning in DLR is EXPTIME-complete [4].

3 Classes

A class in an UML class diagram denotes a sets of objects with common features.
A class is graphically rendered as a rectangle divided into three parts, as shown
for example in Figure 2. The first part contains the name of the class, which has
to be unique in the whole diagram. The second part contains the attributes of
the class, each denoted by a name (possibly followed by themultiplicity, between
square brackets) and with an associated class, which indicates the domain of the

attribute values. For example, the attribute phoneNumber[1..*]: String means
that each instance of the class has at least one phone number, and possibly
more, and that each phone numbers is an instance of String. If not otherwise
specified, attributes are single-valued. The third part contains the operations of
the class, i.e., the operations associated to the objects of the class. An operation
definition has the form:

operation-name(parameter-list): (return-list)

Observe that an operation may return a tuple of objects as result.

An UML class is represented by a DLR concept. This follows naturally from
the fact that both UML classes and DLR concepts denote sets of objects.

An UML attribute a of type C ′ for a class C associates to each instance of
C, zero, one, or more instances of a class C ′. An optional multiplicity [i..j] for a
specifies that a associates to each instance of C, at least i and most j instances
of C ′. When the multiplicity is missing, [1..1] is assumed, i.e., the attribute is
mandatory and single-valued.

To formalize attributes we have to think of an attribute a of type C ′ for
a class C as a binary relation between instances of C and instances of C ′. We
capture such a binary relation by means of a binary relation a of DLR. To
specify the type of the attribute we use the assertion:

C ⊑ ∀[1](a⇒(2 :C ′))

Such an assertion specifies precisely that, for each instance c of the concept
C, all objects related to c by a, are instances of C ′. Note that an attribute
name is not necessarily unique in the whole schema, and hence two different
classes could have the same attribute, possibly of different types. This situation
is correctly captured by the formalization in DLR.

To specify the multiplicity [i..j] associated to the attribute we add the as-
sertion:

C ⊑ (≥ i [1]a) ⊓ (≤ j [1]a)

Such an assertion specifies that each instance of C participates at least i times
and at most j times to relation a via component 1. If i = 0, i.e., the attribute
is optional, we omit the first conjunct, and if j = ∗ we omit the second one.

An operation of a class is a function from the objects of the class to which the
operation is associated, and possibly additional parameters, to tuples of objects.
In class diagrams, the code associated to the operation is not considered and
typically, what is represented is only the signature of the operation.

In DLR, we model operations by means of DLR relations. Let

f(P1, . . . , Pm) : (R1, . . . , Rn)

be an operation of a class C that has m parameters belonging to the
classes P1, . . . , Pm respectively and n return values belonging to R1, . . . , Rn

respectively. We formalize such an operation as a DLR relation, named
opf(P1,...,Pm):(R1,...,Rn), of arity m + n + 1 among instances of the DLR con-
cepts C,P1, . . . , Pm, R1, . . . , Rn. On such a relation we enforce the following
assertions:

– An assertion imposing the correct types to parameters and return values:

C ⊑ ∀[1](opf(P1,...,Pm):(R1,...,Rn)⇒

((2 :P1) ⊓ · · · ⊓ (m+ 1 :Pm) ⊓ (m+ 2 :R1) ⊓ · · · ⊓ (m+ n+ 1 :Rn))

– Assertions imposing that invoking the operation on a given object with given
parameters determines in a unique way each return value (i.e., the relation
corresponding to the operation is in fact a function from the invocation
object and the parameters to the returned values):

(fd opf(P1,...,Pm):(R1,...,Rn) 1, . . . ,m+ 1 → m+ 2)

· · ·
(fd opf(P1,...,Pm):(R1,...,Rn) 1, . . . ,m+ 1 → m+ n+ 1)

These functional dependencies are determined only by the number of pa-
rameters and the number of result values, and not by the specific class for
which the operation is defined, nor by the types of parameters and result
values.

The overloading of operations does not pose any difficulty in the formaliza-
tion since an operation is represented in DLR by a relation having as name
the whole signature of the operation, which consists not only the name of the
operation but also the parameter and return value types. Observe that the for-
malization of operations in DLR correctly allows one to have operations with
the same name or even with the same signature in two different classes.

4 Associations and Aggregations

An association in UML, graphically rendered as in Figure 3, is a relation be-
tween the instances of two or more classes. An association often has a related
association class that describes properties of the association such as attributes,
operations, etc. An aggregation in UML, graphically rendered as in Figure 4,
is a binary relation between the instances of two classes, denoting a part-whole
relationship, i.e., a relationship that specifies that each instance of a class is
made up of a set of instances of another class.

Observe that names of associations and names of aggregations (as
names of classes) are unique. In other words there cannot be two associa-
tions/aggregations with the same name.

r2

C2

Cn

. . .

A

rnC1 r1

Fig. 3. Association in UML

mℓ. .mu nℓ. .nuC1 C2

A

Fig. 4. Aggregation in UML

We first concentrate on the formalization of aggregations, which are simpler
to model than general associations. An aggregation A, saying that instances of
the class C1 have components that are instances of the class C2, is formalized
in DLR by means of a binary relation A together with the following assertion:

A ⊑ (1 :C1) ⊓ (2 :C2).

Note that the distinction between the contained class and the containing class
is not lost. Indeed, we simply use the following convention: the first argument

of the relation is the containing class.

As we have seen for class attributes, the multiplicity of an aggregation can
be easily expressed in DLR. For example, the multiplicities shown in Figure 4
are formalized by means of the assertions:

C1 ⊑ (≥ nℓ [1]A) ⊓ (≤ nu [1]A)

C2 ⊑ (≥ mℓ [2]A) ⊓ (≤ mu [2]A)

We can use a similar assertion for a multiplicity on the participation of instances
of C1 for each given instance of C2.

Observe that, in the formalization in DLR of aggregation, role names do
not play any role. If we want to keep track of them in the formalization, it
suffices to consider them as convenient abbreviations for the components of the
DLR relation modeling the aggregation.

Next we focus on associations. Since associations have often a related as-
sociation class, we formalize associations in DLR by reifying each association
A into a DLR concept A with suitable properties. We represent an association
among n classes C1, . . . , Cn, as shown in Figure 3, by introducing a concept
A and n binary relations r1, . . . , rn, one for each component of the association

A

nℓ. .nu

r2r1
C1 C2

mℓ. .mu

Fig. 5. Binary association in UML

A 3. Each binary relation ri has Ci as its first component and A as its second
component. Then we enforce the following assertion:

C ⊑ ∃[1]r1 ⊓ (≤ 1 [1]r1) ⊓ ∀[1](r1 ⇒ (2 :C1)) ⊓
∃[1]r2 ⊓ (≤ 1 [1]r2) ⊓ ∀[1](r2 ⇒ (2 :C2)) ⊓

...
∃[1]rn ⊓ (≤ 1 [1]rn) ⊓ ∀[1](rn ⇒ (2 :Cn))

where ∃[1]ri (with i ∈ {1, . . . , n}) specifies that the concept A must have all
components r1, . . . , rn of the association A, (≤ 1 [1]ri) (with i ∈ {1, . . . , n})
specifies that each such component is single-valued, and ∀[1](ri ⇒ (2 :Ci)) (with
i ∈ {1, . . . , n}) specifies the class each component has to belong to. Finally, we
use the assertion

(id A [1]r1, . . . , [1]rn)

to specify that each instance of the concept A indeed represents a distinct tuple
of the corresponding association.

We can easily represent a multiplicity on a binary UML association, by
imposing suitable number restrictions on the DLR relations modeling the com-
ponents of the association. Differently from aggregation, however, the names
of such relations (which correspond to roles) are unique wrt to the association
only, not the entire diagram. Hence we have to state such constraints in DLR
in a slightly different way.

The multiplicities shown in Figure 5 are captured as follows:

C1 ⊑ (≥ nℓ [1](r1 ⊓ (2 :A))) ⊓ (≤ nu [1](r1 ⊓ (2 :A)))

C2 ⊑ (≥ mℓ [1](r2 ⊓ (2 :A))) ⊓ (≤ mu [1](r2 ⊓ (2 :A)))

5 Generalization and Inheritance

In UML one can use generalization between a parent class and a child class to
specify that each instance of the child class is also an instance of the parent
class. Hence, the instances of the child class inherit the properties of the parent

3 These relations may have the name of the roles of the association if available in the UML
diagram, or an arbitrary name if role names are not available. In any case, we preserve the
possibility of using the same role name in different associations.

CnC2 . . .C1

C

Fig. 6. A class hierarchy in UML

class, but typically they satisfy additional properties that do not hold for the
parent class.

Generalization is naturally supported in DLR. If an UML class C2 gener-
alizes a class C1, we can express this by the DLR assertion:

C1 ⊑ C2

Inheritance between DLR concepts works exactly as inheritance between UML
classes. This is an obvious consequence of the semantics of ⊑ which is based
on subsetting. Indeed, in DLR, given an assertion C1 ⊑ C2, every tuple in
a relation having C2 as i-th argument type may have as i-th component an
instance of C1, which is in fact also an instance of C2. As a consequence, in
the formalization, each attribute or operation of C2, and each aggregation and
association involving C2 is correctly inherited by C1. Observe that the formal-
ization in DLR also captures directly inheritance among association classes,
which are treated exactly as all other classes, and multiple inheritance between
classes (including association classes).

Moreover in UML, one can group several generalizations into a class hier-
archy, as shown in Figure 6. Such a hierarchy is captured in DLR by a set of
inclusion assertions, one between each child class and the parent class:

Ci ⊑ C for each i ∈ {1, . . . , n}

In UML it is possible to override attributes or operations of a superclass.
That is, it is possible to specialize an attribute or an operation for the sub-
class. From the conceptual point of view such a specialization needs to remain
compatible with the original definition of the attribute/operation, i.e., the at-
tribute/operation of the subclass can only be a restriction of the correspond-
ing attribute/operation belonging to the superclass. For attributes, this means
that one can restrict the type of the attribute to be a subclass of the original
type, or restrict the multiplicity wrt to the one specified for the superclass.
For operations, while keeping the same signature, one may restrict (by means
of constraints) the return types and possibly also the argument types to be
subclasses of the original ones4.

4 Observe that restricting the argument types corresponds, in the implementation of the
operation, to restrict the preconditions for the applicability of the operation.

We illustrate by means of an example how one can correctly model such
forms of overriding in DLR. Let C be an UML class that has an operation
f(C1, C2) : C3, and C ′ be a subclass of C (and hence inherits the operation).
In DLR, we model the situation by introducing a concept C and a relation
opf(C1,C2):C3

and a concept C ′ with suitable assertions including C ′ ⊑ C. As
a consequence instances of the concept C ′ inherits the properties that hold for
instances of C including the participation in the relation opf(C1,C2):C3

. Suppose
now that in the UML class diagram C ′ we override the method f(C1, C2) : C3

by requiring that the result value belongs to a subclass C ′

3 of C3. We can capture
this in DLR by adding the assertion:

C ′ ⊑ ∀[1](opf(C1,C2):C3
⇒(4 :C ′

3))

6 Constraints

In UML it is possible to add information to a class diagram by using constraints.
In general, constraints are used to express in an informal way information which
cannot be expressed by other constructs of UML class diagrams. We discuss here
common types of constraints that occur in UML class diagrams and how they
can be taken into account when formalizing class diagrams in DLR.

Generally, in UML class diagrams, unless specified otherwise by a constraint,
two classes may have common instances, i.e., they are not disjoint. If a con-
straint imposes the disjointness of two classes, say C and C ′, this can be for-
malized in DLR by means of the assertion

C ⊑ ¬C ′

Observe that disjointness constraints are often used in class hierarchies. For
example, consider a class hierarchy formed by a class C and n subclasses of C,
C1, . . . , Cn. We may want to require that C1, . . . , Cn are mutually disjoint. In
DLR, this can be expressed by the assertions

Ci ⊑ ¬Cj for each i, j ∈ {1, . . . , n} with i 6= j

Disjointness of classes is just one example of negative information. Again, by
exploiting the expressive power of DLR, we can express additional forms of
negative information, usually not considered in UML, by introducing suitable
assertions. For example, we can enforce that no instance of a class C has an
attribute a by means of the assertion

C ⊑ ¬∃[1]a

Analogously, one can assert that no instance of a class is involved in a given
association or aggregation.

Turning again the attention to generalization hierarchies, by default, in
UML a generalization hierarchy is open, in the sense that there may be in-
stances of the superclass that are not instances of any of the subclasses. This
allows for extending the schema more easily, in the sense that the introduction
of a new subclass does not change the semantics of the superclass. However,
in specific situations, it may happen that in a generalization hierarchy, the su-
perclass C is a covering of the subclasses C1, . . . , Cn. We can represent such a
situation in DLR by simply including the additional assertion

C ⊑ C1 ⊔ · · · ⊔ Cn

The above assertion models a form of disjunctive information: each instance
of C is either an instance of C1, or an instance of C2, . . . or an instance of
Cn. Other forms of disjunctive information can be modeled by exploiting the
expressive power of DLR. For example, that an attribute a is present only for
a specified set C1, . . . , Cn of classes can be modeled by suitably using union of
classes as follows:

∃[1]a ⊑ C1 ⊔ · · · ⊔ Cn

Keys are a modeling notion that is very common in databases, and they
are used to express that certain attributes uniquely identify the instances of a
class. We can exploit the expressive power of DLR in order to associate keys to
classes. If an attribute a is a key for a class C this means that there is no pair of
instances of C that have the same value for a. We can capture this in DLR by
means of the assertion (id C [1]a). More generally, we are able to specify that
a set of attributes {a1, . . . , an} is a key for C; in this case we use the assertion:
(id C [1]a1, . . . , [1]an)

As already seen, constraints that correspond to the specialization of the
type of an attribute or its multiplicity can be represented in DLR. Similarly,
consider the case of a class C participating in an aggregation A with a class
D, and where C and D have subclasses C ′ and D′ respectively, related via an
aggregation A′. A subset constraint from A′ to A can be modeled correctly in
DLR by means of the assertion A ⊑ A′, involving the two binary relations A
and A′ that represent the aggregations.

In general, one can exploit the expressive power of DLR to formalize several
types of constraints that allow one to better represent the application semantics
and that are typically not dealt with in a formal way. Observe that this allows
one to take such constraints fully into account when reasoning on the class
diagram.

7 Reasoning on Class Diagrams

Traditional CASE tools support the designer with a user-friendly graphical en-
vironment and provide powerful means to access different kinds of repositories

that store information associated to the elements of the developed project. How-
ever, no support for higher level activities related to managing the complexity of
the design is provided. In particular, the burden of checking relevant properties
of class diagrams, such as consistency or redundancy, is left to the responsibil-
ity of the designer. Thus, the formalization in DLR of UML class diagrams,
and the fact that properties of inheritance and relevant types of constraints are
perfectly captured by the formalization in DLR and the associated reasoning
tasks, provide the ability to reason on class diagrams. This represents a signif-
icant improvement and it is a first step towards the development of modeling
tools that offer an automated reasoning support to the designer in his modeling
activity. By exploiting the DLR reasoning services various kinds of checks can
be performed on the class diagram.

A class diagram is consistent, if its classes can be populated without violat-
ing any of the constraints in the diagram. Observe that the interaction of various
types of constraints may make it very difficult to detect inconsistencies. A class

is consistent if it can be populated without violating any of the constraints in
the class diagram. The inconsistency of a class may be due to a design error or
due to over-constraining. In any case, the designer can be forced to remove the
inconsistency, either by correcting the error, or by relaxing some constraints, or
by deleting the class, thus removing redundancy from the schema. By exploiting
the formalization in DLR, class consistency can be checked by verifying sat-
isfiability of the corresponding concept in the DLR KB representing the class
diagram. Similarly, consistency of the class diagram corresponds to consistency
of the DLR KB.

Two classes are equivalent if they denote the same set of instances whenever
the constraints imposed by the class diagram are satisfied. Determining equiv-
alence of two classes allows for their merging, thus reducing the complexity of
the schema. A class C1 is subsumed by a class C2 if, whenever the constraints
imposed by the class diagram are satisfied, the extension of C1 is a subset of
the extension of C2. Such a subsumption allows one to deduce that properties
for C1 hold also for C2. It is also the basis for a classification of all the classes
in a diagram. Such a classification, as in any object-oriented approach, can be
exploited in several ways within the modeling process [1]. Class equivalence,
subsumption, and hence classification, can be checked by verifying equivalence
and subsumption in DLR.

A property is a logical consequence of a class diagram if it holds whenever
all constraints specified in the diagram are satisfied. As an example, consider a
class C generalizing classes C1, . . . , Cn, and assume that a constraint specifies
that it is complete. If an attribute a is defined as mandatory for all classes
C1, . . . , Cn, then it follows logically that the same attribute is mandatory also
for class C, even if not explicitly present in the schema. Determining logical
consequence is useful on the one hand to reduce the complexity of the schema

by removing those constraints that logically follow from other ones, and on the
other hand it can be used to make properties explicit that are implicit in the
schema, thus enhancing its readability. Logical consequence can be captured
by logical implication in DLR, and determining logical implication is at the
basis of all types of reasoning that a DLR reasoning system can provide. In
particular, observe that all reasoning tasks we have considered above can be
rephrased in terms of logical consequence.

8 Conclusions

We have proposed a new formalization of UML class diagrams in terms of
a particular formal logic of the family of Description Logics. Notably such a
logic has sound, complete and decidable reasoning procedures. These reasoning
procedures can be favorably exploited for developing intelligent system that
support automated reasoning on UML class diagrams, so as to provide support
during the specification phase of software development. We have already started
experimenting such systems. In particular, we have represented UML diagrams
in DLR and used DL reasoners, specifically FACT [18] and RACER [16], for
reasoning on UML class diagrams. Although such DL reasoners do not yet incor-
porate all features required by our formalization (e.g., support for identifiers),
the first results are encouraging.

References

1. Sonia Bergamaschi and Bernhard Nebel. Acquisition and validation of complex object
database schemata supporting multiple inheritance. Applied Intelligence, 4(2):185–203,
1994.

2. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Addison Wesley Publ. Co., Reading, Massachussetts, 1998.

3. Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. A formal
framework for reasoning on UML class diagrams. Submitted for publication, 2001.

4. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the decidability
of query containment under constraints. In Proc. of the 17th ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems (PODS’98), pages 149–158, 1998.

5. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Reasoning in expressive
description logics with fixpoints based on automata on infinite trees. In Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI’99), pages 84–89, 1999.

6. Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Identification con-
straints and functional dependencies in description logics. In Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2001), 2001. To appear.

7. Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for conceptual
data modeling. In Jan Chomicki and Günter Saake, editors, Logics for Databases and
Information Systems, pages 229–264. Kluwer Academic Publisher, 1998.

8. Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-based represen-
tation formalisms. J. of Artificial Intelligence Research, 11:199–240, 1999.

9. Tony Clark and Andy S. Evans. Foundations of the Unified Modeling Language. In David
Duke and Andy Evans, editors, Proc. of the 2nd Northern Formal Methods Workshop.
Springer-Verlag, 1997.

10. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. Reasoning
in description logics. In Gerhard Brewka, editor, Principles of Knowledge Representation,
Studies in Logic, Language and Information, pages 193–238. CSLI Publications, 1996.

11. Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. The UML as a formal
modeling notation. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Proc. of
the OOPSLA’97 Workshop on Object-oriented Behavioral Semantics, pages 75–81. Tech-
nische Universität München, TUM-I9737, 1997.

12. Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-modelling seman-
tics of UML. In H. Kilov, editor, Behavioural Specifications for Businesses and Systems,
chapter 2. Kluwer Academic Publisher, 1999.

13. Andy S. Evans. Reasoning with UML class diagrams. In Second IEEE Workshop on
Industrial Strength Formal Specification Techniques (WIFT’98). IEEE Computer Society
Press, 1998.

14. Martin Fowler and Kendall Scott. UML Distilled – Applying the Standard Object Modeling
Laguage. Addison Wesley Publ. Co., Reading, Massachussetts, 1997.

15. Volker Haarslev and Ralf Möller. High performance reasoning with very large knowledge
bases: A practical case study. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001), 2001.

16. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001), 2001.

17. David Harel and Bernhard Rumpe. Modeling languages: Syntax, semantics and all that
stuff. Technical Report MCS00-16, The Weizmann Institute of Science, Rehovot, Israel,
2000.

18. Ian Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages
636–647, 1998.

19. Ian Horrocks and Peter F. Patel-Schneider. Optimizing description logic subsumption. J.
of Logic and Computation, 9(3):267–293, 1999.

20. Thomas Kirk, Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava. The Information
Manifold. In Proceedings of the AAAI 1995 Spring Symp. on Information Gathering from
Heterogeneous, Distributed Enviroments, pages 85–91, 1995.

21. D. McGuinness and J. Wright. Conceptual modelling for configuration: A description
logic-based approach. Artificial Intelligence for Engineering Design, Analysis, and Man-
ufacturing Journal, 12:333–344, 1998.

22. Ulrike Sattler. Terminological Knowledge Representation Systems in a Process Engineer-
ing Application. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen, 1998.

