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Abstract

Data integration systems provide access to a set of heterogeneous, autonomous data sources through a so-called

global schema. There are basically two approaches for designing a data integration system. In the global-as-view

approach, one defines the elements of the global schema as views over the sources, whereas in the local-as-view

approach, one characterizes the sources as views over the global schema. It is well known that processing queries in the

latter approach is similar to query answering with incomplete information, and, therefore, is a complex task. On the

other hand, it is a common opinion that query processing is much easier in the former approach. In this paper we show

the surprising result that, when the global schema is expressed in the relational model with integrity constraints, even of

simple types, the problem of incomplete information implicitly arises, making query processing difficult in the global-as-

view approach as well. We then focus on global schemas with key and foreign key constraints, which represents a

situation which is very common in practice, and we illustrate techniques for effectively answering queries posed to the

data integration system in this case.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Integrating heterogeneous data sources is a
fundamental problem in databases, which has
been studied extensively in the last two decades
both from a formal and from a practical point of
view [1–6]. Recently, mostly driven by the need to
integrate data sources on the Web, much of the
research on integration has focussed on so-called
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data integration [6–8]. Data integration is the
problem of combining the data residing at
different sources, and providing the user with a
unified view of these data. Such a unified view is
structured according to a so-called global schema,
which represents the intensional level of the
integrated and reconciled data, and provides the
elements for expressing the queries over the data
integration system. It follows that, in formulating
the queries, the user is freed from the knowledge
on where data are, how data are structured at the
sources, and how data are to be merged and
reconciled to fit into the global schema.

The interest in this kind of systems has been
continuously growing in the last years. Many
organizations face the problem of integrating data
residing in several sources. Companies that build a
rved.
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Data Warehouse, a Data Mining, or an Enterprise
Resource Planning system must address this
problem. Also, integrating data in the World Wide
Web is the subject of several investigations and
projects nowadays. Finally, applications requiring
accessing or re-engineering legacy systems must
deal somehow with data integration.

The design of a data integration system is a very
complex task, which requires addressing several
different issues. Here, we concentrate on two basic
issues:
(1)
 specifying the mapping between the global
schema and the sources,
(2)
 processing queries expressed on the global
schema.
With regard to issue (1), two basic approaches
have been used to specify the mapping between the
sources and the global schema [7,9]. The first
approach, called global-as-view [10–12], requires
that the global schema is expressed in terms of the
data sources. More precisely, to every element of
the global schema, a view over the data sources is
associated, so that its meaning is specified in terms
of the data residing at the sources. In general, the
views associated to the elements of the global
schema are considered sound, i.e., all the data
provided by a view satisfies the corresponding
element of the global schema, but there may be
additional data satisfying the element not provided
by the view. The second approach, called local-

as-view [13–15], requires the global schema to be
specified independently from the sources. In turn,
the sources are defined as views over the global
schema. Comparisons of the two approaches are
reported in [8,16]. In this paper, we study global-
as-view data integration systems, and, according
to the usual approach, we assume that the views
associated to the elements of the global schema are
sound.

Issue (2) is concerned with one of the most
important problems in the design of a data inte-
gration system, namely, the choice of the method
for computing the answer to queries posed in terms
of the global schema. Since the global schema acts
as the interface to the user for query formulation,
it should mediate among different representations
of overlapping worlds, and therefore the schema
definition language should incorporate flexible and
powerful representation mechanisms, such as the
ones based on semantic integrity constraints. For
the purpose of query answering, the system should
be able to reformulate the query in terms of a
suitable set of queries posed to the sources. These
queries are then shipped to the sources, and the
results are assembled into the final answer. It is
well known that processing queries in the local-
as-view approach is a difficult task [8,14,17–19].
Indeed, in this approach the only knowledge we
have about the data in the global schema is
through the views representing the sources, and
such views provide only partial information about
the data. Therefore, extracting information from
the data integration system is similar to query
answering with incomplete information, which is a
complex task [20]. On the other hand, query
processing is considered much easier in the global-
as-view approach, where in general it is assumed
that answering a query basically means unfolding
its atoms according to their definitions in terms of
the sources [7]. The reason why unfolding does the
job is that the global-as-view mapping essentially
specifies a single database satisfying the global
schema, and evaluating the query over this unique
database is equivalent to evaluating its unfolding
over the sources.

While it is a common opinion in the literature
that the simple technique based on unfolding
is sufficient in the global-as-view approach, we
show in this paper that the presence of integrity
constraints in the global schema poses new
challenges, specially related to the need of taking
the semantics of constraints into account during
query processing.

The importance of allowing integrity constraints
in the global schema has been stressed in several
works on data integration [15,21–25]. In [23] the
problem of providing consistent answers in data-
bases that violate integrity constraints is ad-
dressed; however, in this work only universally
quantified constraints are considered. The work in
[24] deals with integrity constraints in the context
of data exchange, where the aim is to materialize a
so-called target schema (which corresponds to the
global schema in our setting). The contributions of
this work are incomparable to ours: on the one
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hand, [24] deals with tuple-generating dependencies

(tgds) and equality-generating dependencies (egds),
which together are a more general class of
constraints than the one we consider; on the other
hand, the results of [24] are restricted to a class of
tgds (the weakly-acyclic tgds) that ensures that the
models of the target schema are always finite
(otherwise the target schema could not be materi-
alized). So the problem of dealing with infinite
models is not addressed. Integrity constraints have
also been dealt with in the context of deductive
databases [26], however with a different aim,
namely to check whether a set of integrity
constraints holds in a database. Moreover, these
works are not concerned with decidability or
computational complexity of the problem. Integ-
rity constraints are exploited in [27] for semantic
query optimization in object databases.

The first contribution in this paper is to show
that, when the global schema contains integrity
constraints, even of simple forms, the semantics of
the data integration system is best described in
terms of a set of databases, rather than a single
one, and this implies that, even in the global-as-
view approach, query processing is intimately
connected to the notion of querying incomplete

databases. The fact that the problem of incomplete
information is overlooked in current approaches
can be explained by observing that traditional data
integration systems follow one of the following
strategies: they either express the global schema as
a set of plain relations without integrity con-
straints, or they consider the sources as exact
(see, e.g., [28,29]), as opposed to sound. On the
contrary, the goal of our work is to study the more
general setting where the global schema contains
integrity constraints, and sources are considered
sound (but not necessarily complete). The above
result demonstrates that, in this case, we have to
account for multiple global databases.

The second contribution of the paper is to study
the case of global schemas expressed in the
relational model with key and foreign key con-
straints, which represents a situation very common
in practice. Although the problem of multiple
global databases arises in this case, we have
devised techniques for effectively answering queries
posed to the data integration system. The resulting
algorithm runs in polynomial time with respect to
data complexity, i.e., with respect to the size of
data at the sources.

The paper is organized as follows. In Section 2
we describe a formal framework for data integra-
tion. In Section 3 we show that the presence of
integrity constraints in the global schema compli-
cates the task of query processing. In Sections 4
and 5 we present our query processing algorithm
for the case of global relational schema with key
and foreign key constraints. Section 7 concludes
the paper.
2. Framework for data integration

In this section we illustrate our formalization of
a data integration system, which is based on the
relational model with integrity constraints.

In the relational model, predicate symbols are
used to denote the relations in the database,
whereas constant symbols denote the values stored
in relations. We assume to have a fixed (infinite)
alphabet G of constants, and, if not specified
otherwise, we will consider only databases over
such an alphabet. In such a setting, the unique

name assumption (that is, to assume that different
constants denote different objects) is implicit.
A relational schema (or simply schema) is con-
stituted by:

* An alphabet A of predicate (or relation)
symbols, each one with the associated arity,
i.e., the number of arguments of the predicate
(or, attributes of the relation). In the technical
development, we do not use names for referring
to attributes, rather, we simply use the numbers
corresponding to their positions.

* A set of integrity constraints, i.e., assertions on
the symbols of the alphabet A that express
conditions that are intended to be satisfied in
every database coherent with the schema.

A relational database (or simply, database) DB
for a schema C is a set of relations with constants
as atomic values, and with one relation rDB of arity
n for each predicate symbol r of arity n in
the alphabet A: It is well known that a database
can be seen as a first-order interpretation for the
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relation symbols in the schema: the relation rDB is
the interpretation in DB of the predicate symbol r;
in the sense that it contains the set of tuples that
satisfy the predicate r in DB: A database DB for a
schema C is said to be legal if every constraint of C
is satisfied by DB: The notion of satisfaction
depends on the type of constraints.

In our framework we consider the relational
model with two kinds of constraints:

* Key constraints: given a relation r in the schema,
a key constraint over r is expressed in the form
keyðrÞ ¼ A; where A is a set of attributes of r:
Such a constraint is satisfied in a database DB if
for each t1; t2ArDB; with t1at2; we have
t1½A�at2½A�; where t½A� is the projection of the
tuple t over A: In the following, we assume,
without loss of generality, that the attributes
constituting the key of a relation r are the first h

attributes, i.e., keyðrÞ ¼ f1;y; hg; for an
hparityðrÞ:

* Foreign key constraints: a foreign key constraint
is a statement of the form r1½A�Dr2½B�; where
r1; r2 are relations, A is a sequence of distinct
attributes of r1; and B is keyðr2Þ; i.e., the
sequence ½1;y; h� constituting the key of r2:
Such a constraint is satisfied in a database DB if
for each tuple t1 in rDB

1 there exists a tuple t2 in
rDB

2 such that t1½A� ¼ t2½B�:

A relational query is a formula that specifies a
set of tuples to be retrieved from a database. In
this work, we consider the class of conjunctive
queries. Formally, a conjunctive query q of arity n

is written in the rule-based form

qðx1;y;xnÞ’conjðx1;y; xn; y1;y; ymÞ;

where

* q belongs to a new alphabet Q (the alphabet of
queries, which is disjoint from both G and A),

* conjðx1;y;xn; y1;y; ymÞ is a conjunction of
atoms involving the variables x1;y;xn; y1;y; ym;
and a set of constants from G; and the predicate
symbols of the atoms are in C:

Note that, since all variables x1;y;xn in the
head appear also in the body, we are dealing with
safe conjunctive queries.
The answer to a query q of arity n over a
database DB for G; denoted qDB; is the set of n-
tuples of constants ðc1;y; cnÞ; such that, when
substituting each ci for xi; the formula
(ðy1;y; ynÞ � conjðx1;y;xn; y1;y; ymÞ evaluates
to true in DB: Note that the answer to q over
DB is a relation whose arity is equal to the arity of
the query q:

We now turn our attention to the notion of data
integration system.

Definition 1. A data integration system I is a triple
I ¼ /G;S;MS; where G is the global schema, S is
the source schema, and M is the mapping between
G and S:

The characteristics of the components of a data
integration system in our approach are as follows:

* The global schema is expressed in the relational
model with both key and foreign key con-
straints. We assume that in the global schema
there is exactly one key constraint for each
relation.

* The source schema is expressed in the relational
model without integrity constraints. In other
words, we conceive each source as a relation,
and we consider the set of all relations as a
unique schema, called source schema.

* The mapping M is defined following the global-
as-view approach: to each relation r of the
global schema G we associate a query rðrÞ over
the source schema S: No special limitation is
posed on the language used to express queries in
the mapping M; which means that, in principle,
for any relation r in G; rðrÞ can be a computable
query over the source schema. However, for the
sake of practicality, it is reasonable to assume
that such a query belongs to a class of queries
with polynomial time data complexity, which
implies that the evaluation of rðrÞ over any
source database D takes polynomial time with
respect to the size of D: This is exactly the
assumption we make in the rest of the paper.

* Queries over the global schema are conjunctive

queries. Indeed, in what follows, when we talk
about queries posed to a data integration
system, we always mean conjunctive queries.
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Example 2. An example of data integration system
is I 1 ¼ /G1;S1;M1S where G1 is constituted by
the relation symbols

personðPcode;Pname;Age;CityOfBirthÞ

studentðScode;UniversityÞ

cityðCname;MajorÞ

with the following integrity constraints:

keyðpersonÞ ¼ fPcodeg

keyðstudentÞ ¼ fScodeg

keyðcityÞ ¼ fCnameg

person½CityOfBirth�Dcity½Cname�

city½Major�Dperson½Pcode�

student½Scode�Dperson½Pcode�

S1 consists of three sources. Source s1; of arity 4,
contains information about persons with their code,
name, age, and city of birth. Source s2; of arity 2,
contains information about enrollment of students
in universities. Finally, Source s3; of arity 2, contains
information about cities with their name and their
major. The mapping M1 is defined as follows:

rðpersonÞ ¼ perðX ;Y ;Z;W Þ’s1ðX ;Y ;Z;W Þ

rðstudentÞ ¼ stuðX ;Y Þ’s2ðX ;Y Þ

rðcityÞ ¼ citðX ;W Þ’s3ðX ;W Þ

In order to define the semantics of a data
integration system, we start from the data at the
sources, and specify which are the data that satisfy
the global schema. A source database D for I ¼
/G;S;MS is constituted by one relation rD for
each source r in S: We call global database for I ; or
simply database for I ; any database for G: A data-
base B for I is said to be legal with respect to D if:

* B satisfies the integrity constraints of G;
* B satisfies M with respect to D; i.e., for each

relation r in G; the set of tuples rB that B assigns
to r is a subset of the set of tuples rðrÞD

computed by the associated query rðrÞ over D;
i.e., rðrÞDDrB:

Note that the above definition amounts to
consider any view rðrÞ as sound, which means that

A. Cal"ı et al. / Informatio
the data provided by the sources are only a subset
(possibly proper) of the data that would satisfy the
relations of the global schema. Other assumptions
on views are possible (see [14,18]). In particular,
views may be complete, i.e., for each r in G; we
have rðrÞD+rB; or exact, i.e., for each r in G; we
have rðrÞD ¼ rB: In this paper, we restrict our
attention to sound views only, which are typically
considered the most natural ones in a data
integration setting [7,30].

At this point, we are able to give the semantics
of a data integration system.

Definition 3. Let I ¼ /G;S;MS be a data inte-
gration system and let D be a source database for
I : The semantics of I w.r.t. D; denoted semDðI Þ; is
the set of databases for I that are legal w.r.t. D;
i.e., that satisfy both the constraints of G; and the
mapping M with respect to D: If semDðI Þa|; then
I is said to be consistent w.r.t. D:

By the above definition, it is clear that the
semantics of a data integration system is formu-
lated in terms of a set of databases, rather than a
single one. Indeed, as we will show in the sequel,
the cardinality of semDðI Þ is in general greater
than one. The impact of this property on query
answering will be studied in the next section.
3. Query answering in the presence of constraints

The ultimate goal of a data integration system is
to answer queries posed by the user in terms of the
global schema. Answering a query posed to a
system representing a set of databases, is a
complex task, as shown by the following example.

Example 4. Referring to Example 2, suppose we
have the following source database D1:
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Now, due to the integrity constraints in G1; 120
is the code of some person. Observe, however, that
nothing is said by D1 about the name, age and the
city of birth of such a person. Therefore, we must
accept as legal all databases that differ in such
attributes of the person with code 120. Note that
this is a consequence of the assumption of having
sound views. If we had exact or complete views,
this situation would have lead to an inconsistency
of the data integration system. Instead, when
dealing with sound views, we can think of
extending the data contained in the sources in
order to satisfy the integrity constraints over the
global schema. The fact that, in general, there are
several possible ways to carry out such an
extension implies that there are several legal
databases for the data integration system.

Let us now turn the attention to the notion of
answer to a query posed to the data integration
system. In our setting, a query q to a data
integration system I ¼ /G;S;MS is a conjunctive
query, whose atoms have symbols in G as
predicates. Our goal is to specify which are the
tuples that form the answer to a certain query
posed to I : The task is complicated by the existence
of several global databases which are legal for I
w.r.t. a source database D: In order to address this
problem, we adopt the following approach: a tuple
of constants is considered an answer to the query
only if it is a certain answer, i.e., it satisfies the
query in every database that belongs to the
semantics of the data integration system.

Definition 5. Let I ¼ /G;S;MS be a data inte-
gration system, let D be a source database for I ;
and let q be a query to I : The set of certain answers

qI ;D to q w.r.t. I and D is the set of tuples t of
constants of the same arity as q; and tAqB; for each
BAsemDðI Þ:

As mentioned, it is generally assumed that query
answering is an easy task in the global-as-view
approach. Indeed, the most common technique for
query answering in this approach is based on
unfolding, i.e., substituting to each relation symbol
r in the query its definition rðrÞ in terms of the
sources. We now show that a simple unfolding
strategy is in general not sufficient for providing all
correct answers in the presence of integrity
constraints.

Example 6. Referring to Example 4, consider the
query

qðX Þ’personðX ;Y ;Z;W Þ4studentðX ;Y Þ

The correct answer to the query is f101; 120g;
because, due to the integrity constraints in G1; we
know that 120 appears in the first attribute of
person in all the databases for I 1 that are legal
w.r.t. D1: However, we do not get this information
from sD

1

1 ; and, therefore, a simple unfolding
strategy retrieves only the answer f101g from D1;
thus proving insufficient for query answering in
this framework. Notice that, if the query asked for
the person name instead of the person code (i.e.,
the head is qðY Þ instead of qðX Þ), then one could
not make use of the dependencies to infer
additional answers, and the correct answer would
be f101g: Observe also that the same would
happen if the head was qðX ;Y Þ or qðX ;ZÞ:

The above example shows that, in the presence
of integrity constraints, even in the global-as-
view approach we have to deal with incomplete
information during query processing.
4. Canonical database

We show that computing certain answers to
conjunctive queries corresponds to evaluating the
query over a special database, called canonical,
which represents all possible global databases legal
for the data integration system and which may be
infinite in general.

Let I ¼ /G;S;MS be a data integration
system. In this paper we assume that, for each
relation r of the global schema, the query rðrÞ over
the source schema S that the mapping M asso-
ciates to r preserves the key constraint of r: This
may require that rðrÞ implements a suitable dupli-
cate record elimination strategy that ensures that,
for every source database D; no pairs of tuples of
D with the same value for the key of r satisfy rðrÞ:
The problem of duplicate record elimination, and,
more generally, of data cleaning, is a critical issue
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in data integration systems, however it is ortho-
gonal to the problem addressed here. We refer to
[31,32] for more details.

Let q be a conjunctive query posed to I and let
D be a source database for I : We illustrate a naive
method for computing the answer qI ;D to q w.r.t. I
and D: The naive computation of qI ;D proceeds as
follows:
(1)
1 N

the tu

integ

Indee

const
For each relation r of the global schema, we
compute the relation rD by evaluating the
query rðrÞ over the source database D: The
various relations so obtained form what we
call the retrieved global database retðI ;DÞ:
Note that, since we assume that rðrÞ has been
designed so as to resolve all key conflicts
regarding r; the retrieved global database
satisfies all key constraints in G:
(2)
 If, additionally, the retrieved global database
satisfies all foreign key constraints in G; then
we are basically done: we simply evaluate q

over retðI ;DÞ; and we obtain the answer to
the query.
Otherwise, based on the retrieved global data-
base, we can build a database for I still satisfying
the key constraints by suitably adding tuples to the
relations of the global schema in such a way that
also the foreign key constraints are satisfied.1

Obviously, there are several possible ways to add
tuples to the global relations.

We may try to infer all the legal databases for I
that are coherent with the retrieved global
database, and compute the tuples that satisfy the
query q in all such legal databases. However, the
difficulty here is that, in general, there is an infinite
number of legal databases that are coherent with
the retrieved global database. Fortunately, we
show in the following that, starting from the
retrieved global database, we can define another
database, which we call canonical, that has the
interesting property of faithfully representing all
legal databases that are coherent with the retrieved
ote that, since views are sound, i.e., they return a subset of

ples in a global relation, we cannot conclude that the data

ration system violates the foreign key constraints of G:
d, it may be the case that the tuples needed to satisfy such

raints are not part of the retrieved subsets.
global database. Although the canonical database
is in general infinite, and therefore cannot be
directly used for answering queries, we will show
that it plays an important role in the method for
query answering that we will describe in the next
section.

Let us start by showing how to build the cano-
nical database. First of all, we define the domain of
such a database, which we denote HDðDÞ; as
follows. Based on the global schema G of I ; we
introduce the following set of function symbols:

HTðGÞ ¼ ffr;i j rAG and iparityðrÞ and iekeyðrÞg:

Each fr;i is a function symbol with the same arity as
the number of attributes of keyðrÞ; i.e., arityð fr;iÞ ¼
arityðkeyðrÞÞ: Intuitively, the role of the term
fr;iða1;y; akÞ is to denote the value in the i-th
column of the tuple of r having a1;y; ak in the key
columns.

From D; we define the domain HDðDÞ as the
smallest set satisfying the following conditions:

* GDHDðDÞ;
* if a1;y; akAHDðDÞ; and fr;iAHTðGÞ; with

arity ð fr;iÞ ¼ k; then fr;iða1;y; akÞAHDðDÞ:

Now, given the retrieved global database
retðI ;DÞ; we construct inductively the canonical
database canðI ;DÞ over the domain HDðDÞ by
starting from retðı;DÞ and repeatedly applying the
following rule:

if ðx1;y;xhÞArcanðI ;DÞ½A�; ðx1;y;xhÞer
canðI ;DÞ
2 ½B�;

and the foreign key constraint r1½A�Dr2½B� is in
G; then insert in r

canðI ;DÞ
2 the tuple t such that

* t½B� ¼ ðx1;y;xhÞ; and
* for each i such that 1piparityðr2Þ; and i not in
B; t½i� ¼ fr2;iðx1;y;xhÞ:

Note that the above rule does enforce the
satisfaction of the foreign key constraint
r1½A�Dr2½B�; by adding a suitable tuple in r2: the
key of the new tuple is determined by the values in
r1½A�; and the values of the non-key attributes are
formed by means of the function symbols fr2;i:

Example 7. Suppose that we have two relations r

and s in G; both of arity 2 and having as key the
first attribute, and that the following dependencies
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hold on G:

r½2�Ds½1�

s½1�Dr½1�

Suppose that the retrieved global database stores a
single tuple ða; bÞ in r: Then, by applying the above
rule, we insert the tuple ðb; fs;2ðbÞÞ in s; successively
we add ðb; fr;2ðbÞÞ in r; then ð fr;2ðbÞ; fs;2ð fr;2ðbÞÞÞ in s

and so on. Observe that the two dependencies are
cyclic, and in this case the construction of the
canonical database requires an infinite sequence of
applications of the rules.

Observe that canðI ;DÞ is indeed a database over
the domain HDðDÞ; and that canðI ;DÞ may be
infinite, in particular this happens when the
foreign key constraints of G are cyclic, as in
Example 7. However, it enjoys important proper-
ties, as shown in the following theorems.

Theorem 8. Let I ¼ /G;S;MS be a data integra-

tion system and D is a source database for I : Then

canðI ;DÞ is a legal database for I w.r.t. D if and only

if retðI ;DÞ does not violate any key constraint in G:

Proof. It is immediate to see that if retðI ;DÞ
violates some key constraint in G; then no legal
database exists for I w.r.t. D:

It remains to show that, if retðI ;DÞ does not
violate any key constraint in G; then canðI ;DÞ
satisfies all the constraints in G; which implies that
I is consistent w.r.t. D: To show that canðI ;DÞ is
indeed a legal database for I w.r.t. D; we consider
key and foreign key constraints separately. As for
key constraints, it is easy to see that the tuples
inserted during the process of computing canðI ;DÞ
cannot violate any key constraints of G: Indeed, in
computing canðI ;DÞ; we insert a tuple into a
relation r only when the key component of that
tuple is not already present in r: Since retðI ;DÞ
does not violate any key constraint in G; it follows
that no key constraint of G is violated in canðI ;DÞ:
As for foreign key constraints, suppose by contra-
diction that the foreign key constraint r1½A�Dr2½B�
is violated in canðI ;DÞ: This implies that there is a
tuple t in r1 such that for no tuple t0 in r2 we have
that t0½B� ¼ t½A�: But this would imply that we can
apply the rule used for constructing canðI ;DÞ; and
insert a new tuple t00 in r2 such that t00½B� ¼ t½A�;
and for each iparityðr2Þ not in B; t0½i� ¼ fr2;iðt½A�Þ:
Since this is impossible because of the way
canðI ;DÞ has been built, we conclude that no
foreign key constraint is violated by canðI ;DÞ: &

We observe that the construction of the
canonical database is similar to the construction
of the restricted chase of a database described in
[33]. The difference lies in the fact that, in the
construction of the chase, fresh values are used
instead of terms involving Skolem functions. In
the canonical database, such terms keep track of
the application of the rules, and this is necessary
for our query answering technique, as we will show
in Section 5.

Another interesting property of the canonical
database canðI ;DÞ is that it faithfully represents all
legal databases that are coherent with the retrieved
global database retðI ;DÞ: In particular, the follow-
ing theorem shows that, for every database B that
is legal for I w.r.t. D; there is a homomorphism
from canðI ;DÞ to B that induces a well-defined
mapping from the tuples in the relations of
canðI ;DÞ to the tuples in the relations of B:

Theorem 9. Let I ¼ /G;S;MS be a data inte-

gration system, D a source database for I ; and

B a legal database for I w.r.t. D: Then there

is a function c from HDðDÞ to G such that, for

each relation r of arity n in G; and each tuple

ðc1;y; cnÞ constituted of elements in HDðDÞ; if

ðc1;y; cnÞArcanðI ;DÞ; then ðcðc1Þ;y;cðcnÞÞArB:

Proof. We define the function c from HDðDÞ
to G inductively, and we simultaneously show
that for each relation r of arity n in G; and
each tuple ðc1;y; cnÞ constituted of elements
in HDðDÞ; if ðc1;y; cnÞArcanðI ;DÞ; then ðcðc1Þ;y;
cðcnÞÞArB:

We proceed by induction on the application
of the rule used during the construction of
canðI ;DÞ: As a base step, the function c maps
each constant in retðI ;DÞ to itself. Since B is legal
for I w.r.t. D; for each relation r we have that
rretðI ;DÞDrB: Hence, for each r; if c1;y; cn are
constants, and ðc1;y; cnÞArretðI ;DÞ; we have that
ðcðc1Þ;y;cðcnÞÞ ¼ ðc1;y; cnÞArB:
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Inductive step. Suppose that in the application
of the rule, we are inserting the tuple ða1;y;ah;
fr;hþ1ða1;y; ahÞ;y; fr;nða1;y; ahÞÞ in rcanðI ;DÞ where
r has arity n; keyðrÞ ¼ f1;y; hg; and the tuple is
inserted in rcanðI ;DÞ because of the foreign key
constraint w½ j1;y; jh�Dr½1;y; h�: This means that
there is a tuple t in wcanðI ;DÞ such that t½ j1;y; jh� ¼
ða1;y; ahÞ; and ða1;y; ahÞercanðI ;DÞ½1;y; h�: By
induction hypothesis, there are b1;y;bh in G such
that cða1Þ ¼ b1;y;cðahÞ ¼ bh; and there is a tuple
t0AwB such that for each i; t0½i� ¼ cðt½i�Þ; and
t0½ j1;y; jh� ¼ ðcða1Þ;y;cðahÞÞ ¼ ðb1;y;bhÞ: Be-
cause of the constraint w½ j1;y; jh�Dr½1;y; h�;
and because B is legal and f1;y; hg is the key of
r; there is one and only one tuple ðb1;y;bh;
bhþ1;y;bnÞ in rB having ðb1;y;bhÞ as values for
the key attributes, which implies that c has not
assigned any value yet to fr;hþ1ða1;y; ahÞ;y;
fr;nða1;y; ahÞ: Then, we set cð fr;hþ1ða1;y; ahÞÞ ¼
bhþ1;y;cð fr;nða1;y; ahÞÞ ¼ bn; and we can con-
clude that ðcða1Þ;y;cðahÞ;cð fr;hþ1ða1;y; ahÞÞ;y;
cð fr;nða1;y; ahÞÞÞArB. &

Finally, we show that, if I is consistent w.r.t. D;
then a tuple t of constants is in qI ;D if and only if t

is in the answer to q over the database canðI ;DÞ:
Note that terms involving Skolem functions are
not relevant to the user, so they are never part of
the certain answers. Therefore, even if the cano-
nical database is infinite, the set of certain answers
is always finite.

Theorem 10. Let I ¼ /G;S;MS be a data inte-

gration system, q a conjunctive query posed to I ; D
a source database for I such that I is consistent

w.r.t. D; and t a tuple of constants of the same arity

as q: Then tAqI ;D if and only if tAqcanðI ;DÞ:

Proof. For the ‘‘if ’’ direction, we show that if t is
in the answer to q over canðI ;DÞ; then tAqI ;D:
Indeed, consider any B that is a legal database for
I w.r.t. D: By Theorem 9, there is a function c
from HDðDÞ to G such that, for each relation r of
arity n in G; and each tuple ðc1;y; cnÞ constituted
of elements in HDðDÞ; if ðc1;y; cnÞArcanðI ;DÞ; then
ðcðc1Þ;y;cðcnÞÞArB: The fact that t is in the
answer to q over canðI ;DÞ means that there is an
assignment a from the variables of q to objects in
HDðDÞ such that all atoms of q are true with
respect to the assignment. It is easy to see that the
assignment a � c can be used to show that t is in the
answer to q over B:

As for the ‘‘only-if ’’ direction, first note that, by
hypothesis, I is consistent w.r.t. D; and, therefore,
by Theorem 8, retðI ;DÞ does not violate any key
constraint in G; which implies that canðI ;DÞ is a
legal database for I w.r.t. D: Therefore, from the
fact that t is not in the answer to q over canðI ;DÞ;
we can conclude that teqI ;D: &

Example 11. Considering Example 6, the con-
struction of the canonical database canðI1;D1Þ pro-
ceeds as follows. First of all, to repair the violation
of the constraint student½Scode�Dperson½Pcode�
we add ð120; fperson;2ð120Þ; fperson;3ð120Þ; fperson;4ð120ÞÞ
to person: Now, from the constraint person

½CityOfBirth�Dcity½Cname�; we deduce that fperson;4
ð120Þ is the name of a city, so we add ð fperson;4
ð120Þ; fcity;2ð fperson;4ð120ÞÞÞ to city: From city½Major�D
person½Pcode�; we infer that fcity;2ð fperson;4ð120ÞÞÞ is
the code of some person, and we proceed adding a
new tuple in person; and so on. Note that the
canonical database is infinite. Recalling Example
6, we see that the evaluation of q over canðI 1;D1Þ
produces f101; 120g (disregarding terms involving
Skolem functions).

Based on the above results, we can conclude that
canðI ;DÞ is the right abstraction for answering
queries posed to the data integration system.
However, as we said before, canðI ;DÞ is in general
infinite. In the next section we show that, in
processing a query q posed to the data integration
system, we can find the answers to q over canðI ;DÞ
without actually building canðI ;DÞ:
5. The Algorithm for query answering

The naive computation described in the pre-
vious section is impractical, because it requires to
build the canonical database, which is in general
infinite. In order to overcome the problem, we
present an algorithm consisting of two separate
phases. First, as we said in the previous section, we
assume that, for each relation r of the global
schema, the query rðrÞ over the source schema that
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the mapping M associates to r preserves the key
constraint of r:
(1)
 Instead of referring explicitly to the canonical
database for query answering, we transform
the original query q into a new query expGðqÞ
over the global schema, called the expansion of

q w.r.t. G; such that the answer to expGðqÞ over
the retrieved global database is equal to the
answer to q over the canonical database.
(2)
 In order to avoid building the retrieved global
database, we do not evaluate expGðqÞ on the
retrieved global database. Instead, we unfold
expGðqÞ to a new query, called unfMðexpGðqÞÞ;
over the source relations on the basis of M;
and we use the unfolded query unfMðexpGðqÞÞ
to access the sources.
Fig. 1 shows the basic idea of our approach. In
order to obtain the certain answers qI ;D; the user
query q could in principle be evaluated (dashed
arrow) over the (possibly infinite) canonical data-
base canðI ;DÞ; which is generated from the retrieved
global database retðI ;DÞ by applying rules de-
scribed in Section 4. In turn, retðI ;DÞ can be
obtained from the source database D by evaluating
the queries of the mapping. Our query answering
process instead expands the query according to the
constraints in G; unfolds it according to M; and
then evaluates it on the source database.

We first deal with the query reformulation step
constituting Phase (1). At the end of the section we
Fig. 1. Query answering process.
briefly discuss Phase (2), which is the standard
unfolding process in data integration [7,30].

Let I ¼ /G;S;MS be a data integration
system, let D be a source database, and let q be a
query over the global schema G: We show how to
reformulate the original query q into a new query
expGðqÞ over the global schema, such that the
answer to expGðqÞ over the (virtual) retrieved
global database is equal to the answer to q over
the canonical database.

The basic idea to do so is that the constraints in
G can be captured by a suitable (definite) logic

program PG [34]. To build PG; we introduce
for each relation symbol p in G a new relation
symbol p0 called primed relation. We call primed

atom every atom whose relation symbol is primed.
Then, taking into account the semantics of G;
we define PG to be constituted by the following
rules (expressed in Logic Programming notation
[34]):

* for each relation r of arity n; a rule:

r0ðX1;y;XnÞ’rðX1;y;XnÞ

* for each foreign key constraint r1½A�Dr2½B� in G;
where A ¼ fi1;y; ihg; keyðr2Þ ¼ B ¼ f1;y; hg;
arityðr1Þ ¼ n; and arityðr2Þ ¼ m; a rule:

r02ðXi1 ;y;Xih ; fr2;hþ1ðXi1 ;y;Xih Þ;y; fr2;n

ðXi1 ;y;Xih ÞÞ’r01ðX1;y;XmÞ

Observe that, if the foreign key constraints of the
global schema G are cyclic, then the logic program
PG is recursive. In what follows, we denote by
headðsÞ the head of a rule s; and by bodyðsÞ the
body of s:

Example 12. We refer to Example 11. The logic
program PG makes use of the primed relations
person0=3; student0=1; city0=2 and constitutes of
the following (recursive) rules:

person0ðX ;Y ;ZÞ’personðX ;Y ;ZÞ

student0ðX ;Y Þ’studentðX ;Y Þ

city0ðX ;Y Þ’cityðX ;Y Þ

city0ðX ; fcity;2ðX ÞÞ’person0ðY ;Z;X Þ

person0ðY ; fperson;2ðY Þ; fperson;3ðY ÞÞ’city0ðX ;Y Þ

person0ðX; fperson;2ðX Þ; fperson;3ðX ÞÞ’student0ðX ;Y Þ
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If we consider retðI ;DÞ as a set of logic program
facts, it is immediate to verify that PG,retðI ;DÞ is
again a definite logic program, and that the
Herbrand universe of PG,retðI ;DÞ coincides with
HDðDÞ: We remind the reader that every definite
logic program P has a minimal Herbrand model,
denoted minðPÞ [34]. The model minðPÞ has the
Herbrand universe of P as domain, and plays a
crucial role in characterizing which are the goals
(conjunctions of atoms) that logically follow from
the program P:

The relationship between the logic program
PG and the canonical database of the data inte-
gration system I is characterized by the following
theorem. We denote by q0 the query obtained
by rewriting q by substituting each relation
symbol r in the body bodyðqÞ of q with the primed
symbol r0:

Theorem 13. Let I ¼ /G;S;MS be a data inte-

gration system, q a conjunctive query posed to I ; D
a source database for I ; and t a tuple of constants of

the same arity as q: Then tAqcanðI ;DÞ if and only if

tAq0minðPG,retðI ;DÞÞ:

Proof. One direction is immediate: since, up to the
renaming of each relation symbol r by the corres-
ponding primed symbol r0; canðI ;DÞ is a subset of
minðPG,retðI ;DÞÞ; and q is monotone, it is
obvious that tAqcanðI ;DÞ implies tAq0minðPG,retðI ;DÞÞ:

For the other direction, we inductively define a
function f from HDðDÞ to HDðDÞ; and we simul-
taneously show that for each relation r of arity n in
G; and each tuple ðc1;y; cnÞ constituted of ele-
ments of HDðDÞ; if ðc1;y; cnÞAr0minðPG,retðI ;DÞÞ; then
ðfðc1Þ;y;fðcnÞÞArcanðI ;DÞ: We proceed by induc-
tion on the application of the logic program rules
used during the construction of minðPG,retðI ;DÞÞ:

Base step. The function f maps each constant in
retðI ;DÞ into itself. It follows that, for each r; if
c1;y; cn are constants, and ðc1;y; cnÞArretðI ;DÞ; then
both ðc1;y; cnÞAr0minðPG,retðI ;DÞÞ; and ðfðc1Þ;y;
fðcnÞÞArcanðI ;DÞ:

Inductive step. Suppose that in the application
of the logic program rules, we are inserting the
tuple ða1;y; ah; fr;hþ1ða1;y; ahÞ;y; fr;nða1;y; ahÞÞ
in r0minðPG,retðI ;DÞÞ where r has arity n; keyðrÞ ¼
f1;y; hg; and the tuple is inserted in r0minðPG,retðI ;DÞÞ
because of the rule

r0ðXj1 ;y;Xjh ; fw;hþ1ðXj1 ;y;Xjh Þ;y; fw;nðXj1 ;y;XjhÞÞ

’w0ðX1;y;XmÞ

This means that there is a tuple t in w0minðPG,retðI ;DÞÞ

such that t½ j1;y; jh� ¼ ða1;y; ahÞ: For the induc-
tion hypothesis, there are b1;y;bh in HDðDÞ
such that fða1Þ ¼ b1;y;fðahÞ ¼ bh; and there is a
tuple t0AwcanðI ;DÞ such that for each i; t0½i� ¼ fðt½i�Þ;
and t0½ j1;y; jh� ¼ ðfða1Þ;y;fðahÞÞ ¼ ðb1;y; bhÞ:
Because of the constraint w½ j1;y; jh�Dr½1;y; h�;
and because canðI ;DÞ is legal and f1;y; hg is the
key of r; there is one and only one tuple ðb1;y;bh;
bhþ1;y;bnÞ in rcanðI ;DÞ having ðb1;y;bhÞ as values
for the key attributes. Then, we set fð fr;hþ1

ða1;y; ahÞÞ ¼ bhþ1;y;fð fr;nða1;y; ahÞÞ ¼ bn; and
we can conclude that ðfða1Þ;y;fðahÞ;fð fr;hþ1

ða1;y; ahÞÞ;y;fð fr;nða1;y; ahÞÞÞArcanðI ;DÞ. &

The logic program PG is used to construct the
query expGðqÞ associated to the original query q:
This construction builds upon the standard notion
of SLD-tree [34] for the query q in the program PG:
The SLD-tree for a program containing recursive
rules is in general infinite. In our approach, we
build only a finite portion of the SLD-tree, by
stopping the expansion of a branch when certain
conditions are met. Building such a partial SLD-
tree is known as partial evaluation of logic
programs [35].

To generate the query expGðqÞ; we adopt the
following algorithm, called below expansion

algorithm for q in PG: we build a ( finite) expansion

tree for q0 in PG (see below), and we return as
result the query expGðqÞ formed as the union of
all non-empty queries in the leaves of the expan-
sion tree.

The expansion tree for q0 in PG is defined as
follows:
�
 The root is labeled by q0; and has one (primed)
atom (for example the first in left-to-right order)
marked as selected. We say that the root has
depth 0:
�
 Except if one of the stopping conditions below
is satisfied, a node d of depth k; labeled by a
query g having a ‘‘selected’’ atom a; has one
child for each rule s in PG such that there exists
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a most general unifier2 mguða; headðsÞÞ between
the atom a and the head headðsÞ of the
rule s; in which the distinguished variables are
not assigned to terms involving function sym-
bols. Each of such children has the following
properties:
3

We

fier

a an
it has depth k þ 1;
3
 it is labeled by the query obtained from
g by replacing the atom a with bodyðsÞ
and by substituting the variables according
to mguða; headðsÞÞ;
3
 it has as marked ‘‘selected’’ one of the
primed atoms (for example the first in left-
to-right order).
�
 If one of the stopping conditions below is
satisfied for a node d; then d has a single child,
which is labeled by the so-called empty query,
i.e., a query that has no atoms, and is denoted
by the special symbol ‘‘&’’.

The stopping conditions are as follows:
(1)
 The node d has depth k > nq � ðnq � nc � ðw þ
1Þw þ 1Þ; where nq is the number of atoms
in the query q; nc is the number of foreign
key constraints in G; and w is the maximum
number of attributes of the key of any relation
in G:
(2)
 The node d is labeled by a query g; and there
exists a predecessor %d of d labeled by a query %g

and a substitution y of the variables of %g that
makes %g equal to g:
We now show termination, soundness, and
completeness of the expansion algorithm. We
observe that the second stopping condition is in
fact an optimization step, that does not affect
soundness and completeness, but allows for
further limiting the expansion of the tree.

Theorem 14 (Termination of the expansion). Let

G be a global schema and q a conjunctive query.

Then the expansion algorithm for q w.r.t. PG
terminates, and the query expGðqÞ is a finite union

of conjunctive queries.
recall that, given two atoms a and b; the most general

mguða; bÞ is a most general substitution for the variables

d b that makes a and b equal [34].
Proof. This is a trivial consequence of the bound
on depth of the nodes of the tree that can be
further expanded. &

Next we prove soundness of the expansion
algorithm, i.e., that the answers to the expanded
query expGðqÞ are also answers to q:

Theorem 15 (Soundness of the expansion). Let

I ¼ /G;S;MS be a data integration system, q a

conjunctive query posed to I ; D a source database

for I ; and t a tuple of constants of the same arity

as q: Then tAqcanðI ;DÞ if tAexpGðqÞ
retðI ;DÞ:

Proof. Since expGðqÞ is a finite union of conjunc-
tive queries, tAexpGðqÞ

retðI ;DÞ if and only if there is
a conjunctive query qc which is a disjunct in
expGðqÞ such that tAq

retðI ;DÞ
c : By the completeness

of SLD-resolution [34], there exists an SLD-
refutation dc of qc w.r.t. PG returning as answer
a substitution yt corresponding to t: Now consider
the path from the query q0 to qc in the expansion
tree. Such a path corresponds to an SLD-deriva-
tion that can be continued with the SLD-refuta-
tion dc: The resulting SLD-derivation is an SLD-
refutation for q0 w.r.t. PG with answer yt (note that
the distinguished variables of the query q and
hence q0 are never instantiated during the SLD-
derivations corresponding to the paths of the
expansion tree). By the soundness of SLD-resolu-
tion [34], it follows that tAq0minðPG,retðI ;DÞÞ; and
hence, by Theorem 13, we have tAqcanðI ;DÞ: &

Next we turn our attention to completeness. We
call (ground) facts of a database DB; assertions of
the form rðtÞ; where r is a relation symbol and t is a
tuple in rDB: We introduce the notion of level of a
fact f in the canonical database canðI ;DÞ; denoted
levelð f Þ; inductively defined as follows:

* if rðtÞ is a fact of retðI ;DÞÞ; then levelðrðtÞÞ ¼ 0;
* if r1ðt1Þ is a fact of canðI ;DÞ with levelðr1ðt1ÞÞ ¼

k; and t2 is inserted in r2 during the construction
of canðI ;DÞ because of the foreign key con-
straint r1½A�Dr2½B�; then levelðr2ðt2ÞÞ ¼ k þ 1:

Below, let nq be the number of atoms in the
query q; nc the number of foreign key constraints
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in G; and w the maximum number of attributes of
the key of any relation in G:

Lemma 16. Let I ¼ /G;S;MS be a data integra-

tion system, q a conjunctive query, and t a tuple of

constants of the same arity as q; such that

tAqcanðI ;DÞ: Then there exists a substitution of the

distinguished and non-distinguished variables of q

that assigns t to the distinguished variables and

elements of HDðDÞ to the non-distinguished vari-

ables, so that all atoms of the body of q become facts

f1;y; fnq
of canðI ;DÞ having levelð fiÞpnq � nc �

ðw þ 1Þw:

Proof. The proof follows directly from Theorem 2
in [33], by observing that the canonical database
canðI ;DÞ is constructed exactly as the restricted

chase in [33], and that the level of a fact of
canðI ;DÞ corresponds the level of a conjunct in the
chase graph. From the results in [33], we have that
there is a substitution of the distinguished and
non-distinguished variables of q assigning t to the
distinguished variables, such that the atoms in q;
once the substitution is applied, become conjuncts
of the chase having level less or equal to
nq � nc � ðw þ 1Þw: &

Lemma 17. Let ff1;y; fng be a set of ground facts

of canðI ;DÞ each of which has levelð fiÞpk: Then

there exists an SLD-refutation for the goal f 0
1;y; f 0

n

in PG,retðI ;DÞ; where f 0
i is the primed atom

corresponding to fi; having length cpn � ðk þ 1Þ:

Proof. Consider one of the facts fi: We show that,
if levelð fiÞ ¼ k; then there exists an SLD-refutation
of f 0

i of length k þ 1: We proceed by induction
on k:

If k ¼ 0 then fi is a fact rðtÞ of retðI ;DÞ: Hence
by resolving r0ðtÞ with the rule in PG of the form
r0ðx1;y;xmÞ’rðx1;y; xmÞ; where m is the arity of
r; we get an SLD-refutation of length 1:3

If k > 0 then fi ¼ r2ðt2Þ has been obtained from a
fact f ¼ r1ðt1Þ with levelð f Þ ¼ k 
 1 by applying a
foreign key constraint r1½A�Dr2½B�: By induction
3 Differently from [34], in computing the length of a

refutation, we do not count the final resolution step leading

to the empty goal.
hypothesis, there is an SLD-refutation for the goal
f 0 ¼ r01ðt1Þ of length k: Hence, by applying the rule
corresponding to the foreign key, we get a SLD-
refutation for r02ðt2Þ of length k þ 1 from the one
for r1ðt1Þ:

By applying such a result for each fact fi we get
the claim. &

Theorem 18 (Completeness of the expansion). Let

I ¼ /G;S;MS be a data integration system, q a

conjunctive query posed to I ; D a source database

for I ; and t a tuple of constants of the same arity as

q: Then tAexpGðqÞ
retðI ;DÞ if tAqcanðI ;DÞ:

Proof. Let us first assume that stopping condition
(2) never applies. By Lemma 16, we know that if
tAqcanðI ;DÞ then we can find a substitution for the
distinguished and non-distinguished variables in q

assigning t to the distinguished variables and such
that all atoms of the body of qðtÞ are facts f1;y; fnq

having levelð fiÞpnq � nc � ðw þ 1Þw:
On the other hand, by Lemma 17, we know that

there is an SLD-refutation dground for f 0
1;y; f 0

nq
in

PG,retðI ;DÞ of length nq � ðnq � nc � ðw þ 1Þw þ 1Þ:
By the Lifting Lemma [34], there exists a SLD-

refutation dlifted of q0 in PG,retðI ;DÞ of the same
length as d that returns as answer a substitution yt

of the (distinguished and non-distinguished) vari-
ables making the body of the query equal to
f 0
1;y; f 0

nq
: Note that, by applying yt to the

distinguished variables, we get the tuple t:
Consider the partial SLD-tree obtained from the

expansion tree. The SLD-derivations that are
stopped before arriving to all non-primed atoms
in the expansion tree are all longer than the length
of dground : Hence, by the independence of the
computation rule [34], a variant of the SLD-
refutation (with the same length and the same
computed answer) is present in the expansion tree,
once we resolve the facts in retðI ;DÞ: Let us call
such a refutation dexpan:

Take the query qc that is in expGðqÞ labeling the
leaf of the path in the expansion tree used in dexpan:
Such a leaf will be nq steps before the empty goal in
the refutation, and hence qc has as refutation the
last nq steps of dexpan: Considering that the
distinguished variables are only bounded by
objects in retðI ;DÞ; and hence such variables in
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dexpan get a substitution in the last nq steps, we have
that tAq

retðI ;DÞ
c :

Now, consider the case in which stopping
condition (2) may also apply. Completeness
follows from the result just proved, once we make
the following observation. Suppose that the short-
est (possibly the only one) SLD-refutation for q0 in
PG,retðI ;DÞ assigning t to the distinguished vari-
ables goes through a node d; satisfying stopping
condition (2). Suppose that d is labeled by goal gt:
Let us say that the length of the SLD-refutation is
h; and that the node the labeled by gt is the kth
node along the SLD-refutation. Since the stopping
condition applies, there is another goal %gt at a
predecessor node in the SLD-refutation such that

%gty ¼ gt; for some substitution y: Obviously, such
a SLD-refutation is also an SLD-refutation for

%gty: But then, by the Lifting Lemma [34], there is
an SLD-refutation of %gt of the same length k:
Hence, there exists an SLD-refutation for q0;
assigning t to the distinguished variables, of length
strictly shorter than h: This leads to a contra-
diction. This implies that for each SLD-refutation
for q0 that assigns t to the distinguished variables,
if it goes through a node satisfying the stopping
condition above, then there is also another refuta-
tion which is shorter that does not go through that
node. Hence we may drop from the expansion tree
for expGðqÞ all the conjuncts involving such nodes,
without losing any answer to the original query. &

The following example illustrates the applica-
tion of the expansion algorithm in a simple case.

Example 19. Consider Example 12. Suppose the
user query is qðX Þ’personðX ;Y ;ZÞ: The expan-
sion tree of q is shown in Fig. 2. Note that in
the rightmost branch, stopping condition (2) is
verified, since the goal person0ðX ;W2;W3Þ is
subsumed by the goal person0ðX ;Y ;ZÞ; that labels
the root. Therefore the evaluation stops, produ-
cing the empty clause &: The non-empty leaves,
shaded in the figure, provide the following expan-
sion q0 ¼ expGðqÞ of the query q:

q0ðX Þ’ personðX ;Y ;ZÞ

q0ðX Þ’ studentðX ;W1Þ

q0ðX Þ’ cityðW2;X Þ
Intuitively, we see that the expanded query
searches for codes of persons not only in the
relation person; but also in student and city;
where, due to the integrity constraints, it is known
that codes of persons are stored.

Next we consider the unfolding step, which
substitutes each atom of the (expanded) query with
the body of the corresponding query in the
mapping M: As mentioned, this is a standard
step in data integration [7,30] (which trivially
terminates) and it is immediate to prove that it
preserves soundness and completeness.

Theorem 20 (Soundness and completeness of
unfolding). Let I ¼ /G;S;MS be an integration

system, q a conjunctive query posed to I ; D a source

database for I such that I is consistent w.r.t. D; and

t a tuple of constants of the same arity as q: Then

tAqretðI ;DÞ if and only if tA½unfMðqÞ�D:

Proof. Let q ¼ a1;y; anq
: By definition of the

mapping, aretðI ;DÞ
i ¼ ½unfMðaiÞ�D for all i such that

1pipnq: Since for any tuple t we have tAaretðI ;DÞ
i if

and only if tA½unfMðaiÞ�D; the claim follows
immediately. &

With soundness and completeness of both
unfolding and expansion steps in place, we can
state the main result of this section.
Theorem 21 (Soundness and Completeness). Let

I ¼ /G;S;MS be a data integration system, q a

conjunctive query posed to I ; D a source database

for I such that I is consistent w.r.t. D; and t a tuple

of constants of the same arity as q: Then tAqI ;D if

and only if tA½unfMðexpGðqÞÞ�D:

Proof. By Theorem 20, tA½unfMðexpGðqÞÞ�D if and
only if tAexpGðqÞ

retðI ;DÞ: Applying Theorems 15
and 18, we have that tAexpGðqÞ

retðI ;DÞ if and only if
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tAqcanðI ;DÞ: By Theorem 10, tAqcanðI ;DÞ if and only
if tAqI ;D: This proves the claim. &

6. Discussion and related work

We start this section by discussing the computa-
tional complexity of our algorithm. We distinguish
between combined and data complexity. We
remind the reader that we use nq to denote the
number of atoms in the query q; nc the number of
foreign key constraints in G; and w the maximum
number of attributes of the key of any relation in G:

The combined complexity is the complexity of
the algorithm with respect to the size of all
parameters characterizing the problem, namely,
the size of the query q; the size of the global
schema G; and the size of the source database D: It
is easy to see that, under this measure, the cost
of the algorithm is given by the sum of the cost
of computing unfMðexpGðqÞÞ; and the cost of
evaluating unfMðexpGðqÞÞ over the source data-
base D: The cost of computing unfMðexpGðqÞÞ is
directly related to the number of nodes of the
SLD-tree computed by our expansion algorithm,
i.e., Oðknq�ðnq�nc�ðwþ1Þwþ1ÞÞ; where k is one plus the
maximum number of foreign key constraints for
a relation in G: It follows that the worst-case
time complexity of computing unfMðexpGðqÞÞ
is Oðknq�ðnq�nc�ðwþ1Þwþ1ÞÞ: The cost of evaluating
unfMðexpGðqÞÞ over the source database D depends
on both the kind of queries associated by MG;S to
the elements of G; and the form of unfMðexpGðqÞÞ:
With regard to the first aspect, as mentioned in
Section 2, we assume that they can be evaluated in
polynomial time data complexity. With regard to
the second aspect, starting from the observation
that expGðqÞ is a finite union of conjunctive queries,
and that the evaluation of a union of conjunctive
queries can be done in time polynomial with
respect to the size of the database, it is easy to
see that unfMðexpGðqÞÞ can be evaluated over the
source database D in time polynomial in the size
of D:

Data complexity refers to the complexity of the
algorithm with respect to the size of the source
database D only. Observe that, since the size of D
largely dominates the size of the other parameters
of the problem, data complexity is the most
important criterion for measuring the complexity
of our method. As we said before, the cost of
computing unfMðexpGðqÞÞ is independent of the
size of D: Thus, the data complexity of our
algorithm is solely determined by the complexity
of evaluating unfMðexpGðqÞÞ over the source
database D: It follows that our query answering
algorithm is polynomial with respect to data
complexity. Note also that, although the number
of queries in unfMðexpGðqÞÞ to be evaluated over D
is exponential with respect to the size of the
original query q; the size of each of such queries is
at most quadratic with respect to the size of q and
MG;S : In fact, each conjunctive query in expGðqÞ
has the same number of conjuncts as q; and each
such conjunct is unfolded according to MG;S :

The results presented in this paper are related to
the work by Johnson and Klug on containment
of conjunctive queries under functional and
inclusion dependencies [33]. Indeed, we exploited
one of their results in order to devise a bound on
the depth of the expansion tree. The goal of
[33] was to show that testing query containment
under functional and inclusion dependencies
is PSPACE-complete in several interesting cases.
The upper bound result is obtained by exhibiting
a nondeterministic PSPACE algorithm performing
the test, and relying on the observation that
NPSPACE is equal to PSPACE. The first thing
to note is that the class of constraints considered
in this paper is incomparable with the one studied
in [33]. In particular, our foreign key constraints
do not fall in the class considered in [33]. Despite
this fact, the results by Johnson and Klug can in
principle be used to show that query answering
in our setting is also in PSPACE. However, the
application of the method illustrated in [33] to our
context would result in an algorithm that would
perform an exhaustive search in the relevant finite
portion of the canonical database. While such an
exhaustive search is not too problematic in the
context of query containment (the size of queries
being probably small), it becomes too expensive in
our setting, because it corresponds to a large
number of accesses to the source database D;
one for each guess of the nondeterministic algo-
rithm. On the contrary, our method is based on



ARTICLE IN PRESS

A. Cal"ı et al. / Information Systems 29 (2004) 147–163162
the idea of letting the query q and the correspond-
ing unification with the foreign key rules guide
such search, even at the price of an exponential
(with respect to the query) worst-case blow-up
in the space used during the construction of
unfMðexpGðqÞÞ:
7. Conclusions

While it is a common opinion that query
processing is an easy task in the global-centric
approach to data integration, we have shown the
surprising result that, when the global schema
contains integrity constraints, even of simple
forms, query processing becomes more difficult.
The difficulties basically arise because of the need
of dealing with incomplete information, similarly
to the case of the source-centric approach to data
integration. We have studied the case of global
schemas expressed in the relational model with key
and foreign key constraints, and we have presented
techniques for effectively answering queries posed
to the data integration system in this case. The
method described in this paper can be extended in
several ways. First, it is immediate to verify that
the technique can be easily adapted to deal with
the case of unions of conjunctive queries. Second,
the method is still valid if we consider a more
expressive version of foreign key constraints. Finally,
we are working on several optimization strategies
in the construction of the expansion tree.
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