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Abstract. Data integration systems provide access to a set of hetero-
geneous, autonomous data sources through a so-called global, or medi-
ated view. There is a general consensus that the best way to describe
the global view is through a conceptual data model, and that there are
basically two approaches for designing a data integration system. In the
global-as-view approach, one defines the concepts in the global schema as
views over the sources, whereas in the local-as-view approach, one char-
acterizes the sources as views over the global schema. It is well known
that processing queries in the latter approach is similar to query answer-
ing with incomplete information, and, therefore, is a complex task. On
the other hand, it is a common opinion that query processing is much
easier in the former approach. In this paper we show the surprising result
that, when the global schema is expressed in terms of a conceptual data
model, even a very simple one, query processing becomes difficult in the
global-as-view approach also. We demonstrate that the problem of in-
complete information arises in this case too, and we illustrate some basic
techniques for effectively answering queries posed to the global schema
of the data integration system.

1 Introduction

Data integration is the problem of combining the data residing at different
sources, and providing the user with a unified view of these data, called global
(or, mediated) schema [15, 16]. The global schema is therefore a reconciled view
of the information, which can be queried by the user. It is the task of the data
integration system to free the user from the knowledge on where data are, how
data are structured at the sources, and how data are to be merged and reconciled
to fit into the global schema.

The interest in this kind of systems has been continuously growing in the
last years. Many organizations face the problem of integrating data residing
in several sources. Companies that build a Data Warehouse, a Data Mining,
or an Enterprise Resource Planning system must address this problem. Also,
integrating data in the World Wide Web is the subject of several investigations
and projects nowadays. Finally, applications requiring accessing or re-engineering
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legacy systems must deal with the problem of integrating data stored in different
sources.

The design of a data integration system is a very complex task, which com-
prises several different issues. Here, we concentrate on the following issues:
(i) dealing with heterogeneity of the sources, (ii) specifying the mapping be-
tween the global schema and the sources, (iii) processing queries expressed on
the global schema.

Issue (i) refers to the fact that typically sources adopt different ontologies,
models, and systems for storing data. This poses challenging problems in speci-
fying the global schema. The goal is to design such a schema so as to provide an
appropriate abstraction of all the data residing at the sources. One aspect de-
serving special attention is the choice of the language used to express the global
schema. Since such a schema should mediate among different representations of
overlapping worlds, the language should provide flexible and powerful represen-
tation mechanisms. This is the reason why many authors advocate the use of
a conceptual data model for expressing the global schema [5, 21, 22, 3]. In this
paper we follow this idea, and investigate the problem of query answering in
data integration systems where the global schema is expressed in terms of an
extended Entity-Relationship Model.

With regard to issue (ii), two basic approaches have been used to specify
the mapping between the sources and the global schema [15, 17, 18]. The first
approach, called global-as-view (also global-schema centric, or simply global-
centric), requires that the global schema is expressed in terms of the data sources.
More precisely, to every concept of the global schema, a view over the data
sources is associated, so that its meaning is specified in terms of the data resid-
ing at the sources. The second approach, called local-as-view (or source-centric),
requires the global schema to be specified independently from the sources. In
turn, the sources are defined as views over the global schema. A comparison
of the approaches is reported in [24]. In this paper, we concentrate on the lat-
ter approach, which is generally considered sufficiently simple and effective for
practical purposes.

Finally, issue (iii) is concerned with one of the most important problems in
the design of a data integration system, namely, the choice of the method for
computing the answer to queries posed in terms of the global schema. For this
purpose, the system should be able to re-express the query in terms of a suitable
set of queries posed to the sources. In this reformulation process, the crucial
step is deciding how to decompose the query on the global schema into a set of
subqueries on the sources, based on the meaning of the mapping. The computed
subqueries are then shipped to the sources, and the results are assembled into
the final answer. It is well known that processing queries in the local-as-view
approach is a difficult task [23, 24, 14, 1, 13, 7, 8]. Indeed, in this approach
the only knowledge we have about the data in the global schema is through the
views representing the sources, and such views provide only partial information
about the data. Therefore, extracting information from the data integration
system is similar to query answering with incomplete information, which is a
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complex task [25]. On the other hand, query processing looks much easier in the
global-as-view approach, where in general it is assumed that answering a query
basically means unfolding its atoms according to their definitions in terms of the
sources [15].

While this is a common opinion in the literature, we show that our framework
poses new challenges, specially related to the need of taking the semantics of the
conceptual global schema into account during query processing. Indeed, the first
contribution in this paper is to show that the idea of adopting a conceptual data
model for expressing the global schema, makes query processing more involved
than in the simplified framework usually considered in the literature. In partic-
ular, we present the surprising result that the semantics of a data integration
system is best described in terms of a set of databases, rather than a single one,
and this implies that, even in the global-as-view approach, query processing is
intimately connected to the notion of querying incomplete databases.

The second contribution of the paper is the formalization of the notion of
correct answer in a data integration system with a conceptual global schema,
and the presentation of a query processing strategy that is able to provide all
correct answers to a query posed to the system.

The paper is organized as follows. In Section 2 we describe the conceptual
data model we use in our approach. Section 3 illustrates a formal framework
for data integration, by describing the main components of a data integration
system, namely, the global schema, the sources, and the mapping between the
two, and by specifying the precise semantics of the system. In Section 4 we
present our query processing algorithm. By reasoning on both the query and the
conceptual global schema, the algorithm is able to compute all correct answers
to a query posed to the global schema. Section 5 concludes the paper.

2 The Conceptual Data Model

We present the conceptual model which is at the basis of the integration frame-
work introduced in the next section. The model incorporates the basic features
of the Entity-Relationship (ER) model [10], extended with subset (or is-a) con-
straints on both entities and relationships. Other characteristics that are not
considered in this paper for the sake of simplicity (e.g., domain of attributes,
identification constraints, etc.), can also be added without affecting the results
in the next sections.

An ER schema is a collection of entity, relationship, and attribute definitions
over an alphabet A of symbols. The alphabet A is partitioned into a set of entity
symbols (denoted by E), a set of relationship symbols (denoted by R), and a set
of attribute symbols (denoted by A).

An entity definition has the form

define entity E
isa: E1, . . . , Eh

participates in: R1 : c1, . . . , R� : c�

end.
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where E is the entity to be defined, the isa clause specifies a set of entities to
which E is related via is-a (i.e., the set of entities that are supersets ofE), and the
participates in clause specifies those relationships, with respective components,
to which an instance of E must necessarily participate. A relationship definition
has the form

define relationship R among E1, . . . , En

isa: R1, . . . , Rh

end.

where R is the relationship to be defined, the entities listed in the among clause
are those among which the relationship is defined (i.e., component i of R is an
instance of entity Ei), and the isa clause specifies a set of relationships to which
R is related via is-a. The number of entities in the among clause is the arity of
R. An attribute definition has the form

define attribute A for X
qualification

end.

where A is the attribute to be defined, X is the entity or relationship to which
the attribute is associated, and qualification consists of none, one, or both of
the keywords functional and mandatory, specifying respectively that each
instance of X has a unique value for attribute A, and that each instance of
X must have a value for attribute A. If the functional keyword is missing, the
attribute is multivalued, and if the mandatory keyword is missing, the attribute
is optional.

In the definition of an entity or a relationship, the isa clause may be missing.
Similarly, in an entity definition, the participates in clause may be missing.
On the contrary, the among clause in a relationship definition must be present.

Notice that in our model each attribute is associated to a unique entity or re-
lationship, i.e., different entities and relationships have disjoint sets of attributes.
Also, for the sake of simplicity, we do not consider the specification of the do-
mains of attributes in our model, and we simply assume that attributes have
atomic values.

The semantics of an ER schema is defined by specifying when a database
satisfies all constraints imposed by the schema. Formally, a database B is defined
over a fixed (infinite) alphabet Γ of symbols, each one denoting a semantic value.
B assigns to each entity a subset of Γ , to each attribute A of an entity a binary
relation over Γ , to each relationship R of arity n, a set of n-tuples of elements
of Γ , and to each attribute A of a relationship of arity n an (n+1)-ary relation
over Γ . The set of objects assigned by B to an entity, attribute, or relationship
is called the set of its instances in B. We say that B is legal with respect to an
ER schema G if the following conditions are satisfied:

– For each entity definition as the one above, the set of instances of E is a
subset of the sets of instances of E1, . . . , Eh, and for each pair Ri : ci in the
participates in clause of the definition, we have that each instance of E
appears as ci-th component is some instance of Ri.
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– For each attribute specification as the one above, where X is an entity, we
have that for each instance of A the first component is an instance of X .
Moreover, if the qualification contains the keyword mandatory, then each
instance of X must appear as the first component in some instance of A, and
if it contains the keyword functional, then there may be no two instances of
A coinciding on the first component (and differing on the second component).
Similar conditions hold for the case where X is a relationship.

– For each relationship specification as the one above, for each instance
(o1, . . . , on) of R we have that oi is an instance of Ei. Moreover, the set
of instances of R is a subset of the sets of instances of R1, . . . , Rh.

The language we use to express queries over a global schema expressed in our
conceptual model is that of conjunctive queries. Formally, a conjunctive query
(CQ) Q of arity n is written in the form

Q(x1, . . . , xn) ← conj (x1, . . . , xn, y1, . . . , ym)

where conj (x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms involving constants
of Γ and variables x1, . . . , xn, y1, . . . , ym from an alphabet of variables. The
predicates in the atoms are the so-called concepts of the conceptual schema,
i.e., its entities, relationships and attributes:

– Each entity E in G has an associated predicate E of arity 1. Intuitively, E(c)
asserts that c is an instance of entity E.

– Each attribute A for an entity E has an associated predicate A of arity 2.
Intuitively, A(c, d) asserts that c is an instance of entity E and d is the value
of attribute A associated to c.

– Each relationship R among the entities E1, . . . , En has an associated predi-
cate R of arity n.

– Each attribute A for a relationship R among the entities E1, . . . , En has an
associated predicate A of arity n+1. Intuitively, A(c1, . . . , cn, d) asserts that
(c1, . . . , cn) is an instance of relationship R and d is the value of attribute A
associated to (c1, . . . , cn).

From a semantic point of view, the extension of a predicate P in a database
B coincides with the set of instances that the concept associated to P has
in B. With this consideration, we can turn our attention to the semantics of
queries, and simply observe that the semantics of conjunctive queries is the
usual one, where the variables in the body are existentially quantified [2]. Thus,
the answer set QB of Q over a database B is the set of tuples (c1, . . . , cn) of
B for which there are d1, . . . , dm in B, such that for each atom e(b1, . . . , bk)
in conj (c1, . . . , cn, d1, . . . , dm), where each bi is one of c1, . . . , cn, d1, . . . , dm, we
have that (b1, . . . , bk) ∈ eB.

Example 1. Consider the ER schema shown in Figure 1, depicted in the usual
graphical notation for the ER model. The elements of such a schema are
Person/1, Employee/1, City/1, Lives In/2, pname/2, salary/2, cname/2, since/2.
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salary

pname

Person Lives In City

Student

since

cname

Fig. 1. ER schema of Example 1

Suppose we want to know the names of the employees who live in Rome since
1997. The corresponding CQ is

q(y)← Employee(x), pname(x, y), Lives In(x, z), since(x, z, 1997),
cname(z, “Rome”)

The answer of q over the database shown in Figure 2, is Ann.

3 The Formal Framework for Data Integration

In this section we set up a formal framework for data integration. In particular,
we describe the main components of a data integration system, namely, the global
schema, the sources, and the mapping between the two. Finally, we provide the
semantics both of the system, and of query answering.

Definition 1. A data integration system I is a triple 〈G,S,MG,S〉, where G is
the global schema, S is the source schema, and MG,S is the mapping between G
and S.

We describe the characteristics of the various components of a data integra-
tion system in our approach:

– The global schema G is expressed in the conceptual data model described in
the previous section.

– The source schema S is constituted by the schemas of the source relations.
Note that we assume that the sources are expressed as relational data bases.

Person
p1

p2
Employee p1 City c1 Lives In

p1 c1

p2 c2

pname
p1 Jeremy

p2 Ann
salary p1 80, 000 cname

c1 Caracas

c2 Rome

c3 Yokohama

since
p1 c1 1982

p2 c2 1997

Fig. 2. Extension of relations of Example 1
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This is not a strong limitation, since, in case of sources of different type, we
can assume that suitable wrappers present the data at the source in relational
form. Moreover, we observe that all considerations presented in this paper
still hold in the case of other types of sources (e.g., semistructured sources).

– The mapping MG,S between G and S is given by associating to each concept
C (either entity, relationship, or attribute) in the global schema a query VC

over the sources. We do not pose any constraint on the language used to
express the queries in the mapping. Since sources are relational databases,
we simply assume that the language is able to express computations over
relational databases. Note that the elements that are assigned a query over
the sources by the mapping coincide with the concepts of the global schema.

More precisely, the mapping associates queries to the elements of G as follows:

– The mapping associates a query of arity 1 to each entity of G.
– The mapping associates a query of arity 2 to each attribute A defined for
an entity in G. Intuitively, if the query retrieves (c, d) from the sources, this
means that d is a value of the attribute A of the entity instance c.

– The mapping associates a query of arity n to each relationship R of arity n
in G. Intuitively, if the query retrieves the tuple (c1, . . . , cn) from the sources,
this means that (c1, . . . , cn) is an instance of R.

– The mapping associates a query of arity n+1 to each attribute A defined for a
relationship R of arity n in G. Intuitively, if the query retrieves (c1, . . . , cn, d)
from the sources, this means that d is a value of the attribute A of the
relationship instance (c1, . . . , cn).

As specified above, the intended meaning of the query VC associated to the
concept C is that it specifies how to retrieve the data corresponding to C in the
global schema starting from the data at the sources. This confirms that we are
following the global-as-views approach: the concepts in the global schema are
defined as views over the source data.

Notice that all considerations reported in this paper still hold if we choose
a different set of elements for specifying the mapping. For example, we could
associate a single query of arity m+1 to each entity with m attributes (similarly
for the relationships).

In order to specify the semantics of a data integration system, we have to
characterize, given the set of tuples satisfying the various source relations, which
are the data satisfying the global schema. In principle, given a set of data at the
sources, one would like to have a corresponding single database for the global
schema. Indeed, this is the case for most of the data integration systems described
in the literature. However, we will show in the following the surprising result that,
due to the presence of the semantic conditions that are implicit in the conceptual
schema G, in general, we will have to account for a set of databases.

We remind the reader that we assume that the databases involved in our
framework (both global databases, and source databases) are defined over a
fixed (infinite) alphabet Γ of symbols. In order to assign semantics to a data
integration system I = 〈G,S,MG,S〉, we start by considering a source database
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Enrolled

MemberPerson

Student University

Organization

age

Fig. 3. Global schema of Example 2

for I, i.e., a database D for the source schema S. Based on D, we now specify
which is the information content of the global schema G. We call global database
for I any database for G. A global database B for I is said to be legal with
respect to D, or, simply, legal for I with respect to D, if:
– B is legal with respect to G,
– for each element e of G, the set of tuples eB that B assigns to e is coherent
with set of tuples computed by the associated query Ve over D, i.e., VD

e ⊆ eB.

The above definition implies that sources are considered sound : the data
they provide to the integration system satisfy the global schema, but are not
necessarily complete [13]. Another possibility would be to consider them exact.
When sources are exact, the mapping between the global schema and the sources
is defined in such a way that, for every source database D, and every element e
of G, it holds that VD

e = eB.

Example 2. Figure 3 shows the global schema G1 of a data integration system
I1 = 〈G1,S1,M1〉, where age is a functional attribute, Student has a mandatory
participation in the relationship Enrolled, Enrolled is-a Member, and University is-
a Organization. The schema models persons who can be members of one or more
organizations, and students who are enrolled in universities. Suppose that S1 is
constituted by s1, s2, s3, s4, s5, s6, s7, s8, and that the mappingM1 is as follows:

Person(x)← s1(x) Student(x)← s3(x, y) ∨ s4(x, z)
Organization(x)← s2(x) University(x)← s5(x)

Member(x, y)← s7(x, z), s8(z, y) Enrolled(x, y)← s4(x, y)
age(x, y)← s3(x, y) ∨ s6(x, y, z)

We are now ready to provide the definition of the semantics of a data inte-
gration system in our formalization.

Definition 2. Let I = 〈G,S,MG,S〉 be a data integration system, and let D be a
source database for I. The semantics of I with respect to D, denoted sem(I,D),
is the set of global databases that are legal for I with respect to D.

From the above definition it is easy to see that, in our framework, given a
source database D, different situations are possible:
1. No legal global database exists. This happens, in particular, when the data

at the sources retrieved by the queries associated to the elements of the
global schema do not satisfy the functional attribute constraints.
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Example 3. Referring to Example 2, consider a source database D1, where s3
stores the tuple (t1, a1), and s6 stores the tuple (t1, a2, v1). The query associated
to age by the mappingM1 specifies that, in every legal database of I1 both tuples
should belong to the extension of age. However, age is a functional attribute in
G1, and therefore no legal database exists for the data integration system I1.

2. Several legal global databases exist. This happens, for example, when the
data at the sources retrieved by the queries associated to the global relations
do not satisfy the is-a relationships of the global schema. In this case, it may
happen that several ways exist to add suitable objects to the elements of
G in order to satisfy the constraints. Each such ways yields a legal global
database.

Example 4. Referring again to Example 2, consider a source database D2, where
s1 stores p1 and p2, s2 stores o1, s5 stores u1, and s4 stores t1, and the pairs (p1, o1)
and (p2, u1) are in the join between s7 and s8. By the mapping M1, it follows
that in every legal database of I1, p1, p2 ∈ Person, (p1, o1), (p2, u1) ∈ Member,
o1 ∈ Organization, t1 ∈ Student, u1 ∈ University. Moreover, since G1 specifies
that Student has a mandatory participation in the relationship Enrolled, in every
legal database for I1, t1 must be enrolled in a certain university. The key point
is that nothing is said in D2 about which university, and therefore we have to
accept as legal all databases for I1 that differ in the university in which t1 is
enrolled.

In our framework, we assume that the first problem is solved by the queries
extracting data at the sources. In other words, we assume that, for any func-
tional attribute A, the corresponding query implements a suitable data cleaning
strategy that ensures that, for every source database D and every x, at most one
tuple (x, y) belongs to VD

A (similar condition holds for functional attributes of
relationships). The interested reader is referred to [12] for more details of data
cleaning techniques.

The second problem shows that the issue of query answering with incomplete
information arises even in the global-as-view approach to data integration. In-
deed, the existence of multiple global databases for the data integration system
implies that query processing cannot simply reduce to evaluating the query over
a single database. Rather, we should in principles take all possible legal global
databases into account when answering a query.

It is interesting to observe that there are at least two different strategies to
simplify the setting, and overcome this problem:

1. Data integration systems usually adopt a simpler data model (often, a plain
relational data model) for expressing the global schema. In this case, the data
retrieved from the sources trivially fits into the schema, and can be directly
considered as the unique database to be processed during query answering.

2. The queries associated to the elements of the global schema are often con-
sidered as exact. In this case, analogously to the previous one, it is easy
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to see that the only global database to be considered is the one formed by
the data retrieved by the source. However, when data at the sources do
not obey all semantic conditions that are implicit in the conceptual global
schema, this single database is not coherent with the global schema, and the
data integration system is inconsistent. This implies that query answering is
meaningless. We argue that, in the usual case of autonomous, heterogeneous
sources, it is very unlikely that data fit in the global schema, and therefore,
this approach is too restrictive, in the sense that the data integration system
would be often inconsistent.

The fact that the problem of incomplete information is overlooked in cur-
rent approaches can be explained by observing that traditional data integration
systems follow one of the above mentioned simplifying strategies: they either
express the global schema as a set of plain relations, or consider the sources as
exact (see, for instance, [9, 19, 4]). On the contrary, the goal of our work is to
study the more general setting where the global schema is expressed in terms
of a conceptual model, and sources are considered sound (but not necessarily
complete). The above result demonstrates that, in this case, we have to account
for multiple global databases, and the results described in Section 4 show how
to process queries in this setting.

We conclude the section by defining the notion of query posed to the data
integration system. A query Q to a data integration system I = 〈G,S,MG,S〉 is
a conjunctive query, whose atoms have symbols in G as predicates, as illustrated
in Section 2. Our goal here is to specify which are the tuples that form the
answer to a query posed to a data integration system I. The fact that, given a
source database D, several global databases may exist that are legal for I with
respect to D complicates this task. In order to address this problem, we follow
a first-order logic approach: a tuple (c1, . . . , cn) is considered an answer to the
query only if it is a certain answer, i.e., it satisfies the query in every database
that belongs to the semantics of the data integration system.

Definition 3. Let I = 〈G,S,MG,S〉 be a data integration system, let D be a
source database for I, and let Q be a query of arity n to I. The set of certain
answers QI,D to Q with respect to I and D is the set of tuples (c1, . . . , cn) such
that (c1, . . . , cn) ∈ QB, for each B ∈ sem(I,D).

Example 5. Referring to Example 4, consider the query Q1 to I1:

Q1(x)← Member(x, y),University(y)

It is easy to see that {p2, t1} is the set of certain answers to Q1 with respect to
I1 and D2. Thus, although D2 does not indicate which university t1 is enrolled
in, the semantics of I1 specifies that t1 is enrolled in a university in all legal
database for I1. Since Member is a generalization of Enrolled, this implies that
t1 is in the set of certain answers to Q1 with respect to I1 and D2.
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4 Answering Queries over the Global Schema

In this section we present an algorithm for computing the set of certain answers
to queries posed to a data integration system. The key feature of the algorithm
is to reason about both the query and the conceptual global schema in order to
infer which tuples satisfy the query in all legal databases of the data integration
system. Thus, the algorithm does not simply unfold the query on the basis of
the mapping, as usually done in data integration systems based on the global-
as-view approach. Indeed, we now show that a simple unfolding strategy does
not work in our setting.

Example 6. Consider again Example 5, and suppose we simply unfold the query
Q1 in the standard way, by substituting each atom with the query that M1

associates to the element in the atom. Then we get the query

q(x)← s7(x, z), s8(z, y), s5(y)

If we evaluate this query over D2, we get {p2} as result, thus missing the certain
answer t1.

Next we illustrate our algorithm for computing all certain answers. The algo-
rithm is able to add more answers to those directly extracted from the sources,
by exploiting the semantic conditions expressed in the conceptual global schema.

Let I = 〈G,S,MG,S〉 be an integration system, let D be a source database,
and let Q be a query over the global schema G. The algorithm is constituted by
three major steps.

1. From the query Q, obtain a new query expG(Q) over the elements of the
global schema G in which the knowledge in G that is relevant for Q has been
compiled in.

2. From expG(Q), compute the query unf MG,S (expG(Q)), by unfolding expG(Q)
on the basis of the mapping MG,S . The unfolding simply substitutes each
atom of expG(Q) with the query associated byMG,S to the element in the
atom. The resulting unf MG,S (expG(Q)) is a query over the source relations.

3. Evaluate the query unf MG,S (expG(Q)) over the source database D.
The last two steps are quite obvious. Instead, the first one requires to find a

way to compile into the query the semantic relations holding among the concepts
of the global schema G. Such semantic relations can indeed be crucial for inferring
the complete set of certain answers.

The basic idea to do so is that the relations among the elements in G can be
captured by a suitable rule base RG . To build RG , we introduce a new predicate
P ′ (called primed predicate) for each predicate P associated to an element P
of G. Then, from the semantics of the ER schema we devise the following rules
(expressed in Logic Programming notation [20]):

– for each entity E, attribute A and relationship R in G, we have:
E′(x) ← E(x)
A′(x, y) ← A(x, y)
R′(x1, . . . , xn) ← R(x1, . . . , xn)
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– for each is-a relation between E and Ei, or between R and Ri in an entity
or relationship definition of G, we have:

E′
i(x) ← E′(x)

R′
i(x1, . . . , xn) ← R′(x1, . . . , xn)

– for each attribute A for an entity E or a relationship R in an attribute
definition in G, we have:

E′(x) ← A′(x, y)
R′(x1, . . . , xn) ← A′(x1, . . . , xn, y)

– for each relationship R involving an entity Ei as i-th component according
to the corresponding relationship definition in G, we have:

E′
i(xi) ← R′(x1, . . . , xi, . . . , xn)

– for each mandatory participation of an entity E in a relationship Rj in an
entity definition of G, we have:

R′
j(f1(x), . . . , x, . . . , fn(x)) ← E′(x)

where fi are fresh Skolem functions [20].
– for each mandatory attribute A for an entity E or a relationship R in an
attribute definition of G, we have:

A′(x, f(x)) ← E′(x)
A′(x1, . . . , xn, f(x)) ← R′(x1, . . . , xn)

where f is a fresh Skolem function.

Once we have defined such a rule base RG , we can use it to generate the
query expG(Q) associated to the original query Q. This is done as follows:

1. First, we rewrite Q by substituting each predicate P in the body body(Q)
of Q with P ′. We denote by Q′ the resulting query. In the following we call
“primed atom” every atom whose predicate is primed.

2. Then we build a partial resolution tree for Q′, i.e., a tree having each node
labeled by a conjunctive query q, with one of the atoms in body(q) marked
as “selected”, obtained as follows.
(a) The root is labeled by Q′, and has marked as selected any (primed) atom

in body(Q′) (for example the first in left-to-right order).
(b) Except if condition (2c) below is satisfied, a node, labeled by a query q

having a “selected” atom α, has one child for each rule r in RG such that
there exists a most general unifier1mgu(α, head (r)) between the atom α
and the head head(r) of the rule r. Each of such children has the following
properties:

1 We recall that given two atoms α and β the most general unifier mgu(α, β) is a most
general substitution for the variables in α and β that makes α and β equal [20].
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– it is labeled by the query obtained from q by replacing the atom α
with body(r) and by substituting the variables with mgu(α, head(r));

– it has as marked “selected” one of the primed atoms (for example
the first in left-to-right order).

(c) If a node d that is labeled by a query q and there exists a predecessor
d′ of d labeled by a query q′ and a substitution θ of the variables of q′

that makes q′ equal to q, then d has a single child, which is labeled by
the empty query (a query whose body is false).

3. Finally we return as result the query expG(Q) formed as the union of all
non-empty queries in the leaves of the partial resolution tree.

The following three observations are crucial for characterizing both the ter-
mination and the correctness of our algorithm:

– The termination of the construction of the tree, and thus of the entire algo-
rithm, is guaranteed by the condition (2c) and by the observation that all
the rules in RG have a single atom in the body.

– By exploiting results on partial evaluation of logic programs (see [11]), it can
be shown that expG(Q) is equivalent to the original query Q with respect
to the global schema G, that is, for each database B that is legal for G, the
evaluation of Q yields the same result as expG(Q), i.e., QB = (expG(Q))B.

– The query expG(Q) returned by the algorithm is a union of conjunctive
queries. Each disjunct of expG(Q) is a conjunctive query over the predicates
of the global schema, i.e., the elements that have an associated query over
the sources by virtue of the mapping.

The above observations imply that, if we evaluate unf MG,S (expG(Q)) over
the source database D, we get exactly the set of certain answers qI,D of Q with
respect to I and D.

With regard to the characterization of the computational complexity of the
algorithm, we observe that the number of disjuncts in expG(Q) can be exponen-
tial in the number of rules in the rule base RG (and therefore in the size of the
global schema G), and in the number of variables in the original query Q. Note,
however, that this bound is independent of the size of D, i.e., the size of data at
the sources. We remind the reader that the evaluation of a union of conjunctive
queries can be done in time polynomial with respect to the size of the data. Since
expG(Q) is a union of conjunctive queries, we can conclude that, if the queries
associated byMG,S to the elements of G can be evaluated in polynomial time in
the size of the data at the sources, then evaluating unf MG,S (expG(Q)) over D is
also polynomial in the size of the data at the sources. It follows that our query
answering algorithm is polynomial with respect to data complexity.

Example 7. Referring again to Example 5, it is possible to see that, by evaluating
the unfolding of the query returned by the algorithm, the whole set of certain
answers to Q1 with respect to I1 and D2 is obtained. In particular, t1 is obtained
by processing the rule Member′(x, y)← Enrolled′(x, y), which takes into account
that Member is a generalization of Enrolled and the rule Enrolled′(x, f(x)) ←
Student′(x), which expresses the mandatory participation of Student in Enrolled.
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5 Conclusions

While it is a common opinion that query processing is an easy task in the global-
as-view approach to data integration, we have shown the surprising result that,
when the global schema is expressed in terms of a conceptual data model, even
a very simple one, query processing becomes difficult. The difficulties basically
arise because of the need of dealing with incomplete information, similarly to
the case of the local-as-view approach to data integration.

After a logic-based characterization of the data integration system, we have
presented a novel query processing algorithm that is able to compute all correct
answers to a query posed to the global schema, by reasoning on both the query
and the conceptual global schema. We have also shown that query processing,
although exponential with respect to the size of the query and the global schema,
remains of polynomial data complexity.

We have implemented a first prototype of data integration system based on
the presented algorithm. In addition to specifying the global schema in terms
of a conceptual data model, the system allows several types of constraints to be
expressed on the sources. Although we did not address this issue here, these con-
straints are used for carrying out several optimizations in accessing the sources.
Overall, the first experiments about the performance of the system are extremely
encouraging.

In this paper, we used a simple conceptual data model for expressing the
global schema, and we used the language of conjunctive queries for expressing
queries over the global schema. We observe, however, that all the results pre-
sented in the paper can be straightforwardly extended to the class of unions of
conjunctive queries. As future work, we aim at enriching the conceptual model
with more advanced features, such as disjointness assertions, and cardinality
constraints on attributes and relationships. With these features, query answer-
ing becomes even more complex, due to the need of performing more sophisti-
cated forms of data cleaning and reconciliation [6, 12]. Our goal is to modify the
algorithm described in this paper so as to adapt to the new class of semantic
conditions represented in the global schema.
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