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Abstract. Relational data may have access limitations, i.e., relations
may require certain attributes to be selected when they are accessed;
this happens, for instance, while querying web data sources (wrapped in
relational form) or legacy databases. It is known that the evaluation of a
conjunctive query under access limitations requires a recursive algorithm
that is encoded into a Datalog program. In this paper we address the
problem of containment of conjunctive queries under access limitations,
which is highly relevant in query optimization. Checking containment in
this case would amount to check containment of recursive Datalog pro-
grams, which is undecidable in general. We show however, that due to
the specific form of the Datalog programs resulting from encoding access
limitations, the containment problem is in fact decidable. We provide a
decision procedure based on chase techniques, and study its computa-
tional complexity.

1 Introduction

Integrated access of data over the Web is a prominent application field for in-
formation integration [6]. Information Integration, in general, is the problem of
combining data residing at different, heterogeneous sources, by providing the
user with a uniform access to the data [8, 14]. Often, in the context of Web
data integration, no direct access to the underlying database is provided: data
are accessible only via forms, where typically certain fields are required to be
filled in by the user in order to obtain a result. Consider for example the DBLP
site1, where, in order to obtain a list of publications extracted from an under-
lying database, either an author or a title has to be specified, while it is not
possible to ask directly, e.g., for all publications of a certain conference2. Also,
another case where (relational) sources have limited access is the case of legacy
data sources. Limitations on how sources can be accessed significantly compli-
cate query processing [13, 10, 7, 5, 12, 4], since in this case the known techniques
for query answering are in general not sufficient. As shown in [13, 10, 11], query

1 http://dblp.uni-trier.de/
2 We do not consider here advanced search, which is also supported at DBLP.



answering in the presence of access limitations in general requires the evaluation
of a recursive query plan, which can be suitably expressed in Datalog.

Since source accesses are costly, an important issue is how to minimize the
number of accesses to the sources while still being guaranteed to obtain all
possible answers to a query. [10, 11] discuss several optimisations that can be
made at compile time, during query plan generation. However, the presented
techniques are not applicable in the case where user queries and view definitions
are arbitrary conjunctive queries. A technique for optimising query answering for
the full class of conjunctive queries is presented in [2], together with a runtime
optimisation technique.

To the best of our knowledge, optimisation techniques based on query con-
tainment [9, 3] have not been yet studied in the case of access limitations. Con-
tainment of queries is a well-recognised problem in query evaluation and op-
timisation. In this paper we address the problem of checking containment of
conjunctive queries in the presence of access limitations on the data sources. In
particular:

1. We clearly state the problem in the case of access limitations, showing that it
amounts to checking containment between two recursive Datalog programs
(problem that is in general undecidable).

2. We introduce a novel formal tool to check containment of a query Q1 into
another query Q2 under access limitations, namely the backward-chase, that
is a set of databases that are representative of all database that provide an
answer to Q1. The backward chase is in general an infinite set.

3. We show the decidability of the problem of containment in this setting, by
proving that, in order to check containment, only database of a limited size
in the chase need to be considered.

4. Finally, we show an upper bound to the complexity of the query containment
problem.

2 Preliminaries

In this section we present the formal framework in which we address the problem
of query containment. We will consider conjunctive queries, for the syntax and
semantics of which we refer the reader, for instance, to [1]; we shall use Datalog
notation for such queries. We will consider (relational) database whose values
belong to a domain ∆ of constants, and to another domain ∆F of fresh constants,
needed for technical reasons, and such that ∆ ∩ ∆F = ∅. The answer to a
conjunctive query Q evaluated over a database B is denoted Q(B). The head
and the body of a conjunctive query Q are denoted with head(Q) and body(Q)
respectively; the set of constants appearing in Q is denoted const(Q). We denote
with |Q| the number of atoms in a query Q.

In the following, we shall need the notion of homomorphism, which can be
used to define the answers Q(B) to a query Q evaluated over a database B. A
homomorphism is a function from the symbols of a query to ∆∪∆F , that sends
constants of ∆ to themselves, and induces a well-defined map from conjuncts of
Q to tuples of the corresponding relations in B, i.e. it maps atoms of the form



R(d1, . . . , dn) to tuples of the relation R in B. We recall that a tuple t is in Q(B)
if and only if there is a homomorphism that sends body(Q) to tuples of B and
head(Q) to t.

To each attribute in a relation we associate a domain, which specifies the legal
values for that attribute. Instead of using concrete domains, such as Integer or
String, we deal with abstract domains, which have an underlying concrete do-
main, but represent information at a higher level of abstraction, which is needed
to distinguish, e.g., strings representing person names from strings representing
plate numbers.

Access limitations on a relation are constraints that impose that certain
attributes must be selected (bound to a constant) for the relation to be accessed.
More formally, we have the following:

1. we consider a relational schema S = 〈R,Π〉 with access limitations;
2. R is a set of relational predicates, each with an associated arity;
3. every attribute of a relational predicate R has an abstract domain;
4. Π is a set of access limitations, that specifies, for every atribute of some

relational predicate, whether it is free or bound ; in order to access a relation
in a query, all bound attributes (denoted with the subscript b here) must be
selected.

In the presence of access limitations on the sources, evaluating a query in the
ordinary way does not yeld the same results as in the case without limitations
as shown by the following example.

Example 1. Consider a relation S1(Title,Year b,Artist), representing informa-
tion about title, year and artist (composer or performer) of songs, and another

relation S2(Artistb,Nation,YOB), representing name, nationality and year of
birth of artists. In this case, given the conjunctive query

Q(A) ← S2(A, italian, 1950)

asking for names of Italian artists born in 1950, we notice that Q cannot be
immediately evaluated, since S2 requires the first attribute to be bound to a
constant (selected). Therefore, simple evaluation produces an empty answer to Q,
for every database. However, supppose that the both the two attributes Year and
YOB have the same abstract domain, representing years; similarly, the attributes
named Artist share the same abstract domain; in such a case, likely to happen
in practice, we could use names of artists extracted from S1 to access S2 and
extract tuples that may contribute to the answer. More precisely, we start from
the constant 1950, present in the query, and access S1; this will return tuples
with new artist names; such constants (artist names) can be used to access S2.
In turn, new tuples from S2 may provide new constants representing years, that
can be used to access S1, and so on. Once this recursive process has terminated,
we have retrieved the maximum number of tuples that can contribute to the
answer.

Given a query over the data sources, an algorithm exists [10] that retrieves all
the obtainable tuples in the answer to the query. Such an algorithm consists in



the evaluation of a suitable Datalog program which extracts all obtainable tuples
starting from a set of initial values, as described in the previous example. The
Datalog program, which we do not describe in detail due to space limitations, is
constructed by encoding in Datalog clauses the limitations on the sources that
must be respected during evaluation of the query. The evaluation of the Datalog
program is done as follows: starting from a set of initial values, that must include
those appearing in the query, we access all the relations we can, according to
their binding patterns. With the new tuples obtained (if any), we obtain new
values with which to access the relations again, getting from them new tuples,
and so on, until we have no way of doing accesses with new constants. The
program extracts all tuples obtainable while respecting the access limitations,
but there may be tuples in the sources that cannot be retrieved. Given a query
Q posed over a schema S = 〈R,Π〉 with access limitations, a set of constants
I ⊆ ∆, and a database B for R, we denote the answers obtained through the
recursive evaluation described above as ans(Q,S, B, I). Notice that in general
ans(Q,S, B, I) ⊆ Q(B).

We now come to the problem of containment. Since, in the presence of access
limitations, the only way of accessing the sources to answer a query is to extract
the tuples recursively as described above, we will define the containment between
two conjunctive queries by considering this query answering technique. As for
the set of initial constants, in principle we may have additional constants with
respect to those appearing in the two queries; therefore, as set of initial constants,
we shall consider a superset of the union of the constants appearing in the two
queries.

Definition 1. Consider two conjunctive queries Q1, Q2 over a schema S =
〈R,Π〉 with access limitations, and a set of constants I such that I ⊇ const(Q1)∪
const(Q2); we say that Q1 is contained in Q2 under Π with respect to I, de-
noted Q1 ⊆Π,I Q2, if for every database B for R we have ans(Q1,S, B, I) ⊆
ans(Q2,S, B, I).

From the previous definition it follows that checking containment amounts to
check containment between two recursive Datalog programs, which in general is
an undecidable problem [1]. However, in the following we will show that, due to
the special form of the programs, checking containment under access limitations
is indeed decidable.

3 Containment under Access Limitations

In this section we present the foundations of our novel technique to check con-
tainment of conjunctive queries under access limitations. Analogously to what
is done for containment of conjunctive queries under inclusion and functional
dependencies [9], in order to check the containment of a query Q1 into another
query Q2, we characterise the set of databases that provide an answer tuple
for Q1 by constructing, starting from Q1, a set of databases called chase. In
our case, the chase is constructed according to the access limitations is a set of
databases. With the chase at hand, we can evaluate Q2 over the chase of Q1 in



order to check the existance of a counterexample to containment, i.e., a database
C that provides an answer tuple to Q1 that is not in the answer set of Q2 when
evaluated over C.

We now give the definition of the chase of a conjunctive query. The chase
starts from the frozen body of the query, i.e., the image of the body of the query
according to some homomorphism; then, according to the access limitations, we
go back in the extraction process, adding to the chase tuples that may lead to the
extraction of the previous ones, and we proceed until we decide to stop, adding
tuples that can be extracted with the initial constants in the query. Since we
proceed somehow backwards, we call our chase backward-chase.

Definition 2 (Backward-chase). Consider a conjunctive query Q over a
schema S = 〈R,Π〉 with access limitations, and a set of non-fresh constants
I ⊇ const(Q). The backward-chase of Q, denoted bchase(Q,S, I) is a set of
databases; a database C ∈ bchase(Q,S, I) is constructed as follows. For tech-
nical reasons, we shall consider C as a graph where nodes are tuples of the
database, and each node c has a level, denoted level(c), that is a non-negative
integer; the set of nodes at level h in C will be called level h of C.

1. We start by freezing body(Q); this is done by choosing a homomorphism µ
that sends body(Q) to a set of facts; such facts will stay at level 0 of C. The
homomorphism µ must send variables in Q to fresh constants in ∆F .

2. We use an auxiliary predicate H (that without loss of generality we can
consider to be in R), of same arity as Q, for the head of Q; we will call
µ(head(Q)) the head of the backward-chase, denoted head(bchase(Q,S, I)).

3. For each fact c = R(d1, . . . , dn) at level k, and for each bound attribute of
R, say the i-th, we have that there is a fact c′ = R′(d′

1
, . . . , d′m) such that d′i

appears in a position corresponding to a free attribute or R′, and the attribute
associated to d′i has the same abstract domain as di. If c is at level k, the
fact c′ must be at level k+1, and an arc (c′, c) is in C. All other constants in
c′ that do not appear at level k must be fresh constants in ∆F , not appearing
in any of the levels lower than k. Notice that c′ may have more than one
constant that is used to “fill” bound attributes of c, but not of facts at level
different from k. Also, the same tuple can appear in different nodes of the
graph.

4. All the leaves of C are facts of the form L(d), where L is an auxiliary unary
predicate (that without loss of generality we can consider to be in R), and
d ∈ I.

Notice that every database belonging to a backward chase is a forest of trees,
each rooted at a node at level 0. When we evaluate a query over a database
C of some backward-chase, we consider C as the set of its tuples (removing
duplicates).

Now we come to the main result in this section, stating that the backward-
chase of a query Q is a representative for all databases that return an answer
tuple when Q is evaluated over them (considering the access limitations). Before
presenting the main result, we need an auxiliary lemma that shows that, once we
consider the chase of the left-hand side query, the evaluation of the right-hand
side one over a database in the above chase can ignore the access limitations,



as long as the set of inital constants includes the constants appearing in both
queries.

Lemma 1. Consider two conjunctive queries Q1, Q2 over a schema S = 〈R,Π〉
with access limitations, a set of constants I such that I ⊇ const(Q1)∪const(Q2),
and a database C ∈ bchase(Q1,S, I); we have that ans(Q2,S, C, I) = Q2(C).

Proof (sketch). Since I ⊇ const(Q1) ∪ const(Q2), all tuples in C can be ex-
tracted in the recursive evaluation of Q2; therefore, such an evaluation produces
the same results as the ordinary conjunctive query evaluation. 2

Theorem 1. Consider two conjunctive queries Q1, Q2 over a schema S =
〈R,Π〉 with access limitations, and a set of constants I such that I ⊇ const(Q1)∪
const(Q2); then, we have Q1 ⊆Π,I Q2 if and only if for every database C ∈
bchase(Q1, S, I) there exists a homomorphism that sends body(Q2) to facts of
C, and head(Q2) to head(C).

Proof (sketch).
“⇐” Consider a generic database B such that there exists a tuple t in

ans(Q1,S, B, I), with t ∈ (∆∪∆F )n (let n be the arity of Q1); it is not difficult
to prove that there exists a database C ∈ bchase(Q1, S, I) such that there exists
a homomorphism λ such that λ(C) ⊆ B; this holds because the steps of the ex-
traction of the tuples that lead to the retrieval of t are mimicked by the steps in
the construction of C (the former go in the reverse order with respect to the lat-
ter). Now, by hypothesis, there exists a homomorphism µ that sends body(Q2)
to facts of C, and head(Q2) to head(C); by considering the composition of ho-
momorphisms η = µ ◦ λ, we have that η(body(Q2)) ⊆ B and η(headQ2) = t.
This proves that Q1 ⊆Π,I Q2.

“⇒” This is straightforward, from the definition of containment under access
limitations. 2

With the notion of chase at hand, we are able to face the problem of decid-
ability of checking containment of conjunctive queries under access limitations.
Notice that the previous theorem does not provide any direct strategy for check-
ing containment; indeed, given a conjunctive query over a schema S, and a set
I of initial constants, the number of databases in bchase(Q1,S, I) may be infi-
nite. Also, notice that the databases in bchase(Q1,S, I) may be of infinite size,
though, for obvious reasons, henceforth we shall only consider finite databases.

4 Decidability and Complexity

In this section we prove that the problem of checking containment of two conjunc-
tive queries under access limitations is decidable. This will be proved by showing
that, while checking Q1 ⊆Π,I Q2, when we look for a homomorphism that sends
body(Q2) to facts in some database C ∈ bchase(Q1, S, I) (and head(Q2) to
head(C)), it is sufficient to consider databases in bchase(Q1, S, I) that have a
number of levels that does not exceed a certain limit, depending on the schema
and the queries.

Henceforth, we shall denote with subtree(c) the subtree having c as root, and
containing all descendants of c. We need some preliminary definitions.



Definition 3. Consider a graph C in some backward-chase for a query over
a schema with access limitations. Two subtrees C1 = subtree(c1) and C2 =
subtree(c1) of C, where c1 and c2 are nodes of C, are said to be k-isomorphic if
the trees rooted at c1 and c2 and having only levels up to k (where k is not more
than the maximum level of C2) are identical modulo the renaming of the fresh
constants.

We now provide a theorem that shows the decidability of the problem of
checking containment (or better, non-containment). The theorem shows that, in
order to find a counterexample showing that Q1 6⊆Π,I Q2, we need to consider
only databases of the backward-chase of Q1 that have a number of levels that
does not exceed a certain limit.

Theorem 2. Consider two conjunctive queries Q1, Q2 over a schema S =
〈R,Π〉 with access limitations, and a set of constants I such that I ⊇
const(Q1) ∪ const(Q2); if there exists a finite database C ∈ bchase(Q,S, I)
such that Q1(C) 6⊆Π,I Q2(C), then there exists another finite database C ′ ∈
bchase(Q,S, I) such that Q1(C

′) 6⊆Π,I Q2(C
′), and such that C ′ has maximum

level δ = |Q2|
2 + |R|.

Proof (sketch). In order to guarantee that the databases that we consider
in the chase are representatives of every counterexample, we show that we can
obtain a counterexample C̄ with number of levels less or equal than δ from a
counterexample C of arbitrary depth (number of levels). It is possible to show
that |Q2| levels in C̄ are sufficient to ensure that, if Q2 maps onto C, it maps
also onto C̄; in fact, the connected parts of Q2 map onto at most |Q2| subtrees
of depth at most |Q2|, and the fact that we check databases in the backward-
chase with at least |Q2|

2 levels ensures that we find some C̄ that has subtrees
that are |Q2|-isomorphic to those on which the connected parts of Q2 map. The
remaining |R| levels are sufficient to “close off” the database with facts of the
form L(d), d ∈ I, and make it become a member of the backward-chase. 2

Finally, we characterise the computational complexity of our query contain-
ment problem, by providing an upper bound for it.

Theorem 3. The complexity of checking containment of conjunctive queries un-
der access limitations is in co-nexptime.

Proof (sketch). The proof is done by showing a nondeterministic algorithm
that guesses a database C ∈ bchase(Q,S, I) with maximum number of levels
δ = |Q2|+ |R|; in the worst case the guessed database has O(W δ) nodes, each of
which can be chosen in |R|·W ways. The database C can therefore be guessed by
a nondeterministic algorithm in exponential time; after that, checking whether
Q2(C) yields head(bchase(Q,S, I)) can be done in nondeterministic polynomial
time. This proves that the non-containment is in nexptime, from which the
thesis follows. 2

5 Conclusions

We have addressed the problem of containment of conjunctive queries in the
case where access limitations are present on the relational schema. This prob-



lem is highly relevant in query optimisation. We have shown that, since in the
presence of access limitations the evaluation of a query, which is in general in-
herently recursive, needs to be encoded in a Datalog program, the problem of
containment amounts to checking containment between two recursive Datalog
programs. Though the problem of containment of recursive Datalog program is
in general undecidable, we have shown that in our case containment checking is
indeed decidable, and we have provided an upper bound to the complexity of
the problem by exhibiting a nondeterministic algorithm that solves it.

We plan to extend the results presented in this paper by finding a lower
complexity bound for the problem of query containment. Also, we intend to
implement the containment algorithm in order to test it on real cases, and to
optimise the algorithm to achieve efficiency in real-world cases.
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