
Optimizing Query Planning with Limited Source

Capabilities in the Presence of Inclusion and Functional

Dependencies

Andrea Cal̀ı, Diego Calvanese

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy

lastname @dis.uniroma1.it

Abstract. Information Integration is the problem of providing a uniform access to multiple

and heterogeneous data sources. The most common approach to this problem, called Global-

as-View, consists in providing a global schema of data in which each relation of such a schema

is defined as a view over a set of data sources. Recent works deal with this problem in the case

of limited source capabilities, where in general sources can only be accessed respecting certain

binding patterns for their attributes. In this case, computing the answer to a query over the

global schema cannot be done by simply unfolding the global relations with their definitions.

Instead, it may require the evaluation of a suitable recursive datalog program. In this paper

we study query evaluation in the Global-as-View approach with limited source capabilities

in the presence of full inclusion and functional dependencies between sources. We present

a polynomial time algorithm for implication of such kind of dependencies and we study

how the presence of such dependencies enables one to minimize the number of accesses to

the sources. We provide necessary and sufficient conditions for determining whether, during

query evaluation, a given source has to be accessed or not.

1 Introduction

Information Integration is the problem of combining the data residing at different, heterogeneous
sources, by providing the user with a uniform access to the data [8]. The integration system
provides an integrated, reconciled view of the data, usually called global schema, in terms of which
user queries are formulated. Thus the user is freed from the knowledge on where the data are, how
data are structured at the sources, and how the sources have to be accessed.

To specify the relation between the (materialized) data sources and the (virtual) global schema,
two basic approaches have been used, called Global-as-View (GAV) and Local-as-View (LAV))
respectively [16, 10]. In the GAV approach, the global schema is expressed in terms of the data
sources, by associating to every relation of the mediated schema a view over the data sources
specifying its meaning in terms of the data at the sources. In the LAV approach, the global schema
is specified independently from the sources, and each source is defined as a view over the global
schema.

The LAV approach makes the maintenance of the integration system easier, since the addition
of new sources does not require to modify the global schema and the queries associated to existing
sources. On the other hand, processing queries over the global schema is complicated and costly [16,



1]: one possible approach is to first reformulate (rewrite) the query to obtain a query plan expressed
in terms of the sources and then use such a query plan to access the sources and extract the data [11].

On the contrary, in the GAV approach, adding a new source typically requires changing the
definition of the relations in the global schema, and hence may affect the whole integration system.
The fundamental advantage of GAV lies however in the simplicity of query planning: one simply
unfolds the original query by replacing each global relation with the corresponding view [16]. For
this reason the GAV approach is in fact the most videly adopted in practice [4, 9], and in the rest
of the paper we deal with the GAV approach only.

A prominent application field for information integration is the integration of data over the
Web [7]. Often in that context, no direct access to the underlying database is provided. Data is
accessible only via forms, where typically certain fields are required and need to be instantiated by
the user in order to obtain a result. Consider for example the DBLP site1, where, in order to obtain
a list of publications extracted from an underlying database, either an author or a title has to be
specified, while it is not possible to ask directly, e.g., for all publications of a certain conference2.

Information integration has typically been addressed in the relational setting, which is the one
we consider in our paper. To be able to incorporate in such a setting also non-relational data
sources, such as web pages, these data sources are typically wrapped, i.e., accessed via special
programs, called wrappers, that export a relational view of the data. A way to correctly represent
the actual way in which the data source has to be accessed, is to associate a binding pattern to
the relational view of the source [15, 12]. The binding pattern specifies which attributes must be
bound when accessing the source. In such a setting a query plan is admissible only if all accesses
to the sources specified in the plan respect the binding patterns

Limitations on how sources can be accessed significantly complicate query processing, since
in this case simply unfolding the global relations in the query with their definitions is in general
not sufficient. In fact, to answer queries over such sources one generally needs to start from a set
of constants (provided e.g., by the user who fills a form, or taken from a source without access
limitations) to be used to bind attributes. Such bindings are used to access sources and thus obtain
new constants which in turn can be used for new accesses. Hence, as shown in [15, 12, 13], query
answering in the presence of limited access patterns in general requires the evaluation of a recursive
query plan, which can be suitably expressed in Datalog.

Since source accesses are costly, an important issue is how to minimize the number of accesses
to the sources while still being guaranteed to obtain all possible answers to a query. [12, 13] discuss
several optimizations that can be made at compile time, during query plan generation. However,
an important point that has not been addressed before, is whether one can optimize query plans at
run-time, possibly exploiting additional information available about the sources. Indeed, exploiting
knowledge about integrity constraints present on the sources, one may detect during query eval-
uation that a certain access to a source is useless, in the sense that it may provide only answers
that are already known from previous accesses.

In this paper we address the problem of run-time query plan optimization for sources with
limited capabilities in the presence of functional dependencies and full inclusion dependencies (see,
e.g., [2], Chapters 8 and 9). Functional dependencies allow one to state that a certain set A of

1 http://dblp.uni-trier.de/
2 We do not consider here advanced search, which is also supported at DBLP.



attributes in a relation functionally determines another set B of attributes, in the sense that two
tuples in the relation that coincide on A also have to coincide on B. They are an important type
of integrity constraint, which generalize key constraints and thus are actually present in most
relational data sources. Full inclusion dependencies are a limited form of inclusion dependencies,
which allow one to state that an entire relation is included in another one (having the same arity).
Full inclusion dependencies allow one to correctly model a data source accessible through different
binding patterns, e.g., bibliographic data at DBLP accessible by author or by title. Such a data
source can be modeled by means of two relations with different binding patterns, which are declared
equivalent by means of two inclusion dependencies. Observe that this is a very common case which
arises each time the same underlying data is accessible, e.g., on the web, via two different forms.

More precisely, we provide the following results:

1. We show that the implication problem for functional and full inclusion dependencies is decidable
in polynomial time. This result is, to the best of our knowledge, not covered by the known
results about implication of dependencies [6, 5].

2. We address the problem of run-time query plan optimization in the case where both the queries
defining relations in the global schema and the user query are unions of conjunctive queries,
and functional and full inclusion dependencies are asserted over source relations. We present a
condition to determine whether, during query evaluation, a given source has to be accessed or
not, and prove that such a condition is necessary and sufficient.

Thus, by result (1) we can derive all possible full inclusion and functional dependencies that hold
for a set of sources, and by result (2) we can exploit such dependencies for run-time query plan
optimization.

The rest of the paper is organized as follows. In Section 2 we present the technical preliminaries
and discuss the query planning algorithm for GAV in the presence of binding patterns presented
in [12]. In Section 3 we discuss implication of functional and full inclusion dependencies. In Section 4
we present the condition for minimizing run-time source accesses and prove its correctness and
completeness. Finally, in Section 5 we conclude the paper.

2 Preliminaries

We present the formal framework in which we address run-time query plan optimization. We first
introduce the notion of union of conjunctive queries. A union of conjunctive queries (UCQ) q of
arity n over a set R of relations is written in the form

q(X1, . . . , Xn)← body1(X1, . . . , Xn, Y1,1, . . . , Y1,n1)
...

q(X1, . . . , Xn)← bodyk(X1, . . . , Xn, Yk,1, . . . , Yk,nk)

where for each i, body i(X1, . . . , Xn, Yi,1, . . . , Yi,ni) is a conjunction of atoms involving the variables
X1, . . . , Xn, Yi,1, . . . , Yi,ni and constants, and the predicate symbols of the atoms are in R.

Given a database DB , the answer qDB of q over DB is the set of tuples (c1, . . . , cn) of constants
in DB such that, for some i ∈ {1, . . . , k}, there are constants d1, . . . , dni in DB , such that each
atom in body i(c1, . . . , cn, d1, . . . , dni) holds in DB .



We address information integration in the GAV approach, where sources have access limitations
and both the queries defining the relations in the global schema and the user query are UCQs.
We use positional notation for relations, identifying attributes of relations with their positions. To
each attribute (position) in a relation we associate an abstract domain, which specifies the legal
values for that attribute. Abstract domains have underlying concrete domains (which we do not
deal with in this paper), such as Integer or String, but they represent information at a higher
level of abstraction, which is needed to distinguish, e.g., strings representing person names from
strings representing plate numbers.

Formally, we have:

– a set S of relational sources, each with an associated arity, a tuple of abstract domains, and
a binding pattern. The binding pattern is the subset of the attributes of the relation which
must be bound by a constant in order to query the source. In the examples we specify relations
with their abstract domains, and underline the abstract domains in the positions of the source
attributes that must be bound.

– a set G of global relations, each with an associated query, which is an UCQ over S;
– a user query, which is an UCQ over G.

The actual data are stored in the sources, whereas the relations in the global schema are not
materialized. The user query is specified over the global schema, and in order to answer it one has
to compute a query plan specifying how to access the sources.

In the case where the sources do not have access limitation, computing the query plan in
the GAV approach amounts to a simple unfolding of the global relations in the query with their
definitions. This is shown in the following example, adapted from [10].

Example 1. Suppose we have the set of sources S = {s1(Title,Year ,Artist), s2(Artist ,Nation)},
where s1 stores data about Italian songs, while s2 stores artists with their nationality. Let the
global view be defined as follows:

song(T, Y,A)← s1(T, Y,A)

italian(A)← s1(T, Y,A)

italian(A)← s2(A,N), N = italian

The query

q(T )← song(T, 1998, A), italian(A)

asking for titles of songs produced in year 1998 and interpreted by an Italian artist, after unfolding
becomes

q(T )← s1(T, 1998, A), s1(T, Y,A)

q(T )← s1(T, 1998, A), s3(A,N), N = italian

In the presence of access limitations on the sources, simple unfolding is in general not sufficient
to extract all obtainable answers from the sources, as shown by the following example. In this
examples and in the following ones we assume that for each attribute of a relation an abstract
domain with the same name is defined.



Example 2. Suppose we have two sources

s1(Owner ,Model ,Color ,PlateNo)
s1(Owner ,Address,Rooms)

Source s1 stores information about cars: given a person (required constant), s1 provides model,
plate number, and color of the cars owned by the person. Source s2 provides the owner, address,
and number of rooms of houses. The global schema is the following:

Car(O,M,C, P )← s1(O,M,C, P )

House(O,A)← s2(O,A,N)

Suppose we are searching for all the plate numbers of cars whose model is Ferrari by means of the
following query:

q(P )← Car(O, ferrari, C, P )

The unfolding of such a query generates a query plan involving only source s1; such a plan yields
the empty answer since to access source s1 we need owner names. However, it is possible to obtain
an answer to q by retrieving owner names from s2, using them to query s1, and selecting from the
obtained tuples those in which the car model is Ferrari.

The example shows how an apparently useless source may provide constants with which useful
information can be retrieved.

In [12] an algorithm is given which, given a UCQ over the data sources, retrieves all the
obtainable tuples in the answer to the query. The algorithm consists in the evaluation of a suitable
Datalog program which extracts all obtainable tuples starting from a set of initial bindings. The
Datalog program is constructed by first unfolding the query in the traditional way, and then
encoding in Datalog clauses the limitations on the sources that must be respected during evaluation
of the query. We illustrate how to construct the Datalog program associated to a query and how
to evaluate it over the sources by means of an example, and refer to [12] for the details.

Example 3. Let us consider the following source relations

s1(A,B)
s2(A,B)
s3(A,B ,C )

and the following unfolded query:

q(C)← s1(a1, B), s3(a1, B, C)

q(C)← s2(a1, B), s3(a1, B, C)

The datalog program corresponding to q is shown in Figure 1. It makes use of the auxiliary
predicates

– domA(A), domB(B), and domC(C), called domain predicates, which represent the abstract
domains of the sources;

– ŝ1, ŝ2, and ŝ3, which store the tuples extracted from s1, s2, and s3.



q(C) ← s1(a1, B), s3(a1, B,C)

q(C) ← s2(a1, B), s3(a1, B,C)

ŝ1(A,B) ← domA(A), s1(A,B)

domA(A) ← domA(A), s1(A,B)

ŝ2(A,B) ← domB(B), s2(A,B)

domA(A) ← domA(A), s1(A,B)

ŝ3(A,B,C) ← domB(B), s3(A,B,C)

domA(A) ← domB(B), s3(A,B,C)

domC(C) ← domB(B), s3(A,B,C)

domA(a1) ←

Fig. 1. Datalog program that answers the query of Example 3

Observe that the ŝi predicates correspond to the source predicates but have no access limitations.
The evaluation of the Datalog program is done as follows: starting from the initial bindings

in the query, we access all the sources we can, according to their binding patterns. With the new
tuples obtained (if any), we obtain new constants with which to access the sources again, getting
from them new tuples, and so on, until we have no way of doing accesses with new bindings. At
each step, the constants obtained so far are stored in the domain relations. The program extracts
all tuples obtainable respecting the binding patterns, but there may be tuples in the sources that
cannot be retrieved.

For the example, assume the sources have the extension shown in Figure 2. Starting from a1,
the only constant in the query, we access s1 getting the tuples (a1, b1) and (a1, b2). Now we have b1

and b2 with which to access s1 and s2; from s2 we get (a2, b1), while from s2 we get nothing. With
the new constant a2 we access s1 getting (a2, b3). Finally, we access s3 with b3 getting (a4, b3, c1)
(with b3 we do not get any tuple from s2). At this point, we have populated the relations ŝi, from
which we evaluate the query with the first two rules. The answer to q is therefore the tuple (c1).
Observe that (a2, b4) and (a3, b1) could not be extracted from s2.

s1 :

a1 b1

a1 b2

a2 b3

a3 b1

s2 :
a2 b1

a2 b4

s2 : a4 b3 c1

Fig. 2. Extension of sources of Example 3

3 Functional and Full Inclusion Dependencies

We formally introduce the kind of integrity constraints that we use for source access optimization.
In the following we denote sets of attributes (i.e., positions) with boldface letters, and we use A(s)
to denote the set of attributes of source s. Given a relation s, a set of attributes A ⊆ A(s), and
a tuple t in the extension of s, we denote with t[A] the projection of t over A. Finally, given a
database DB , we denote the extension of s in DB with sDB .



A full inclusion dependency between two sources s1 and s2, which must be of the same arity,
has the form

s1 ⊆ s2

Such an inclusion dependency is satisfied in a database DB , written DB |= s1 ⊆ s2 if sDB
1 ⊆ sDB

2 .
A functional dependency over a source s has the form

s : A→ B

with A,B ⊆ A(s). Such a dependency is satisfied in a database DB if for any pair of tuples
t1, t2 ∈ sDB we have that t1[A] = t2[A] implies that t1[B] = t2[B].

Full inclusion dependencies turn out to be essential for modeling the common case of real data
sources that can be accessed in different ways, e.g., a database relation that can be accessed from
a Web site using different forms. We can represent in our model such a real data source as a set
of distinct sources s1, . . . , sn, one for each different way of accessing it, with a binding pattern
that reflects the access modality. The fact that the sources s1, . . . , sn represent the same data, is
expressed by means of a pair of full inclusion dependencies si ⊆ sj and sj ⊆ si between each pair
of sources si and sj . More generally, by means of an inclusion dependency we can capture the case
of a Web site in which a form gives access to a subset of the data contained in the site.

A (full inclusion or functional) dependency γ is implied by a set of dependencies Γ , if for every
database DB satisfying Γ also γ is satisfied.

We discuss now implication of functional and full inclusion dependencies. The following infer-
ence rules are the specialization of the more general sound (but not complete) inference rules for
(arbitrary) inclusion and functional dependencies [6] to the case where all inclusion dependencies
are full. We show that for such a case these inference rules are not only sound but also complete.

1. If A ⊆ B, with A,B ⊆ A(s), then s : B→ A.
2. If A→ B, then AC→ BC.
3. If s : A→ B and s : B→ C, then s : A→ C.
4. If s1 ⊆ s2 and s2 ⊆ s3, then s1 ⊆ s3.
5. If s1 ⊆ s2 and s2 : A→ B, then s1 : A→ B.

We note that the only rule that makes full inclusion and functional dependencies interact is rule 5.
The following theorem shows that functional dependencies do not influence the implication of

a full inclusion dependency. Hence, an inclusion dependency can be derived only from the set of
available inclusion dependencies.

Theorem 1. Given a set S of sources with s1, s2 ∈ S, a set Γi of full inclusion dependencies, and
a set Γf functional dependencies, we have that Γi |= s1 ⊆ s2 iff (Γi ∪ Γf ) |= s1 ⊆ s2.

Proof.
“⇒” Trivial.
“⇐” We show that (a) implies (b), where

(a) Γi 6|= s1 ⊆ s2, i.e., there exists a database DB such that DB |= Γi and DB 6|= s1 ⊆ s2;
(b) (Γi ∪ Γf ) 6|= s1 ⊆ s2, i.e., there exists a database DB such that DB |= Γi and DB |= Γf ,
but DB 6|= s1 ⊆ s2.



Assuming (a) to be true, we construct a database DB as follows. We start from empty source
relations and we put a tuple t in s2. Then we add t to any source s such that there exists a
sequence

s ⊆ r1 ⊆ · · · ⊆ rk ⊆ s2

of full inclusion dependencies in Γi. At the end, we have a subset of sources containing t; At this
point, we are sure that s1 is empty in our database. In fact, if we had t ∈ s1 at the end of the
construction, we would necessarily have in Γi a chain of inclusion dependencies

s1 ⊆ r′1 · · · ⊆ · · · ⊆ r′h ⊆ s2

and by transitivity of inclusion dependencies [6] this negates (a). Therefore, the database DB
we have constructed is such that DB |= Γi by construction, and DB |= Γf because each source
contains at most one tuple. Thus (b) follows.

Next, we show that full inclusion and functional dependencies interact only in a limited form.

Theorem 2. Let S = {s0, s1, . . . , sn} be a set of sources, let Γ be a set of full inclusion depen-
dencies of the form s0 ⊆ si, and of functional dependencies of the form si : Aij → Bij, for
i ∈ {0, . . . , n} and j ∈ {1, . . . , ni}. Then Γ |= s0 : A → B if and only if {s0 : Aij → Bij | i ∈
{0, . . . , n} and j ∈ {1, . . . , ni}} |= s0 : A→ B.

Proof. Let Γ0 = {s0 : Aij → Bij | i ∈ {0, . . . , n} and j ∈ {1, . . . , ni}}
“⇐” It suffices to show that for each i ∈ {0, . . . , n} and j ∈ {1, . . . , ni} we have that Γ |= s0 :

Aij → Bij . This follows directly from inference rule 5.
“⇒” Suppose that Γ |= s0 : A → B and Γ0 6|= s0 : A → B. Then we can construct a

database DB by first putting two tuples t1, t2 in sDB
0 such that t1[A] = t2[A], t1[B] 6= t2[B],

and all functional dependencies in Γ0 are satisfied in DB . The we propagate the tuples t1 and t2

to s1, . . . , sn according to the inclusion dependencies in Γ . Now, from the fact that these tuples
are the only ones in s1, . . . , sn, that s0, s1, . . . , sn all have the same abstract domains, and that
the functional dependencies si : Aij → Bij involve the same attributes as the corresponding
s0 : Aij → Bij , it follows that all dependencies in Γ are satisfied in DB . It follows that DB |= Γ ,
but DB 6|= s0 : A→ B, which is a contradiction to Γ |= s0 : A→ B.

Finally, to deal with functional dependencies within one relation we can apply the following
theorem [3, 14].

Theorem 3 ([3, 14]). The inference rules 1, 2, and 3 are sound and complete for implication of
functional dependencies within one relation.

From the previous results we can prove the following theorem.

Theorem 4. Implication of full inclusion dependencies and functional dependencies can be decided
in polynomial time.

Proof. By Theorem 1, implication of an inclusion dependency amounts to reachability on the
inclusion dependency graph, which can be decided in NLOGSPACE.

To decide implication of functional dependencies, by Theorem 2, we can first compute the
transitive closure of full inclusion dependencies using inference rule 4. Then, we propagate all
functional dependencies across full inclusion dependencies using rule 5. Finally, by Theorem 3, we
can compute implication of functional dependencies within a single source in polynomial time.



4 On-line Optimization

In [12] an optimization technique is presented, which can be applied at query plan generation,
and which identifies the sources that are relevant for a query, thus avoiding useless accesses to
non-relevant sources.

Instead, here we introduce a further optimization technique, which can be applied during the
query evaluation process. The technique takes into account constants already extracted from the
sources at a certain step of the evaluation of the Datalog program Π associated to a query. It
exploits full inclusion dependencies and functional dependencies on the source relations to know
in advance, at a certain step of the evaluation of Π, whether an access is potentially useful for the
answer, i.e. it could return tuples with new constants.

Observe that a full inclusion dependency between two sources can only hold when the two
sources have not only the same arity but also the same abstract domains associated to the same
attributes.

Example 4. Suppose we have the following sources:

person(Code,Surname,City)
employee(Code,Surname,City)

with employee ⊆ person. The attribute with domain City represents the city where the correspond-
ing person (or employee) lives. We also have the functional dependency

Code → City ,Surname

on both person and employee. Suppose that employee and person have both the following extension:

Code Surname City

2 Brown Sidney

5 Williams London

7 Yamakawa Tokyo

1 Yoshikawa Tokyo

9 Peretti Rome

If our set of initial constants is Rome and Tokyo, at the first step we access person and we get the
following tuples:

Code Surname City

7 Yamakawa Tokyo

1 Yoshikawa Tokyo

9 Peretti Rome

Now we have six new constants: the three codes 1, 7, and 9 and the three surnames Yamakawa,
Yoshikawa, and Peretti. With these constants we could access source person to try and get other
constants (we may get only cities, as other attributes are bound). But we can easily observe that,
because of the functional dependency cited above, if we bind the attribute with domain Code with
one of the known constants, we get a tuple we had already obtained from person. Therefore the
access to employee is useless, once we have accessed person. Instead, if we get a code 2 and a
surname Brown from another source, we could access person and get new tuples.



The following theorem provides a characterization, in terms of a necessary and sufficient con-
dition, of the source accesses that are useless, in the sense that they do not provide new constants.

Theorem 5. Given two sources s1, s2 with s1 ⊆ s2, let B1 and B2 be the bound attributes of s1

and s2, respectively. Let without loss of generality B1 = {A1, . . . , An1} and let (a1, . . . , an1) be an
n1-uple of constants, with ai matching with domain Ai. Let further t be a tuple previously extracted
from s2 such that t[B1] = (a1, . . . , an1).

We have that, for any database we do not obtain new tuples by accessing s1 with (a1, . . . , an1),
if and only if there exists a functional dependency

s1 : C→ D

with
C ⊆ B1

D ⊇ B2

Proof. “⇐” Let Θ be a set of tuples of s2, obtained by binding B2 one or more times. We want
to show that, having a functional dependency s1 : C→ D as described above, we cannot use a set
of constants (a1, . . . , an1) = t[B1], where t ∈ Θ, to access s1, and get a tuple t′ /∈ Θ.

Let t′ be a tuple extracted from s1 by using (a1, . . . , an1) as binding constants for B1. We
have by construction t′[B1] = t[B1], hence t′[C] = t[C], being C ⊆ B1. Therefore, because of the
functional dependency, we have t′[D] = t[D], hence t′[B2] = t[B2], being B2 ⊆ D. Now we observe
that t′ matches on B2 = B(s2) with a tuple of Θ, so t′ must have been obtained from s1 at a
previous step, that is t′ ∈ Θ.

“⇒” We have that for any database, accessing s1 using (a1, . . . , an1) = t[B1] as binding
constants, we do not get any new tuple. We want to show that there is a functional dependency
s1 : C→ D with C ⊆ B1 and D ⊇ B2. In order to do so, we show that if one of these conditions
does not hold, we can always construct an extension of s1 and s2, consistent with the dependencies,
such that, by accessing s1, we obtain a tuple t′ /∈ Θ.

Let us consider the following two cases:

1. If C * B1, we put in both s1 and s2 the tuple t and a tuple t′ such that t[B1] = t′[B1] and
t[C−B1] 6= t′[C−B1]; moreover we choose t[B2] 6= t′[B2].

2. If D + B2, we put in both s1 and s2 the tuple t and a tuple t′ such that t[D] = t′[D] and
t[B2 −D] 6= t′[B2 −D].

Without loss of generality, we suppose Θ = {t}. In both cases, the database we have constructed
is consistent with the dependencies, and it is such that accessing s1 with t[B1] we get t′, which is
not in Θ. This proves our assertion.

From the previous theorem we can prove the following upper bound for verifying whether a
source access may be useful for getting new tuples.

Theorem 6. One can check in polynomial time in the number of functional and full inclusion
dependencies and the number of attributes in all sources, whether accessing a source with a certain
tuple of constants may provide new tuples.



Proof. By Theorem 5 it is sufficient to check whether there exists a functional dependency s1 :
C → D with C ⊆ B1 and D ⊇ B2. From inference rules 2 and 3 for functional and full inclusion
dependencies this condition is equivalent to s1 : B1 → B2. By Theorem 4 this can be checked in
polynomial time.

5 Conclusions

We have studied the problem of query planning in the Global-as-View approach in the presence
of source access limitation. We have provided a polynomial time algorithm for implication of full
inclusion dependencies and functional dependencies. We have shown that the presence of such
kinds of dependencies allows one to avoid unnecessary accesses to the sources, and have provided
a necessary and sufficient condition to optimize the query evaluation process.

We are currently implementing the query planning and query evaluation algorithms, and we
are working on incorporating the proposed optimization techniques in the query evaluation phase.

References

1. Serge Abiteboul and Oliver Duschka. Complexity of answering queries using materialized views.

In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems

(PODS’98), pages 254–265, 1998.

2. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley Publ.

Co., Reading, Massachussetts, 1995.

3. Catriel Beeri and Philip A. Bernstein. Computational problems related to the design of normal form

relational schemas. ACM Trans. on Database Systems, 4(1):30–59, 1979.

4. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and

J. Widom. The TSIMMIS project: Integration of heterogeneous information sources. In Proc. of

IPSI Conf. (IPSI’94), Tokyo (Japan), 1994.

5. S. S. Cosmadakis, P. C. Kanellakis, and M. Vardi. Polynomial-time implication problems for unary

inclusion dependencies. J. of the ACM, 37(1):15–46, January 1990.

6. Stavros S. Cosmadakis and Paris C. Kanellakis. Functional and inclusion dependencies - A graph the-

oretical approach. In P. C. Kanellakis and F. P. Preparata, editors, Advances in Computing Research,

Vol. 3, pages 163–184. JAI Press, 1986.

7. Daniela Florescu, Alon Levy, and Alberto Mendelzon. Database techniques for the World-Wide Web:

A survey. SIGMOD Record, 27(3):59–74, 1998.

8. Richard Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In Proc. of the

16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS’97), 1997.

9. Richard Hull and Gang Zhou. A framework for supporting data integration using the materialized and

virtual approaches. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 481–492,

1996.

10. Alon Y. Levy. Answering queries using views: A survey. Technical report, University of Washinghton,

1999.

11. Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering queries

using views. In Proc. of the 14th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database

Systems (PODS’95), pages 95–104, 1995.

12. Chen Li and Edward Chang. Query planning with limited source capabilities. In Proc. of the 16th

IEEE Int. Conf. on Data Engineering (ICDE 2000), pages 401–412, 2000.



13. Chen Li and Edward Chang. On answering queries in the presence of limited access patterns. In Proc.

of the 8th Int. Conf. on Database Theory (ICDT 2001), 2001.

14. David Maier. Minimum covers in the relational database model. J. of the ACM, 27(4):664–674, 1980.

15. Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries using templates with

binding patterns. In Proc. of the 14th ACM SIGACT SIGMOD SIGART Symp. on Principles of

Database Systems (PODS’95), 1995.

16. Jeffrey D. Ullman. Information integration using logical views. In Proc. of the 6th Int. Conf.

on Database Theory (ICDT’97), volume 1186 of Lecture Notes in Computer Science, pages 19–40.

Springer-Verlag, 1997.


