
Finite Model Reasoning on UML Class
Diagrams via Constraint Programming∗†

Marco Cadoli1, Diego Calvanese2,
Giuseppe De Giacomo1, Toni Mancini1

1 Dip. di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Ariosto 25, 00185 Roma, Italy

cadoli|degiacomo|tmancini@dis.uniroma1.it

2 Faculty of Computer Science
Free University of Bozen-Bolzano

Piazza Domenicani 3, 39100 Bolzano, Italy
calvanese@inf.unibz.it

Abstract

Finite model reasoning in UML class diagrams is an important
task for assessing the quality of the analysis phase in the development
of software applications in which it is assumed that the number of
objects of the domain is finite. In this paper, we show how to encode
finite model reasoning in UML class diagrams as a constraint satis-
faction problem (CSP), exploiting techniques developed in description
logics. In doing so we set up and solve an intermediate CSP problem
to deal with the explosion of “class combinations” arising in the en-
coding. To solve the resulting CSP problems we rely on the use of

∗This research has been partially supported by FET project TONES (Thinking ON-
tologiES), funded within the EU 6th Framework Programme under contract FP6-7603,
and by the PRIN 2006 project NGS (New Generation Search), funded by MIUR.
†R. Basili and M.T. Pazienza (Eds.): AI*IA 2007, LNAI 4733, pp. 36–47, 2007.

c© Springer-Verlag Berlin Heidelberg 2007

1



off-the-shelf tools for constraint modeling and programming. As a re-
sult, we obtain, to the best of our knowledge, the first implemented
system that performs finite model reasoning on UML class diagrams.

1 Introduction

The Unified Modelling Language (UML, [8], cf. www.uml.org) is probably
the most used modelling language in the context of software development,
and has been proven to be very effective for the analysis and design phases
of the software life cycle.

UML offers a number of diagrams for representing various aspects of
the requirements for a software application. Probably the most important
diagram is the class diagram, which represents all main structural aspects
of an application. A typical class diagram shows: classes, i.e., homogeneous
collections of objects, i.e., instances; associations, i.e., relations among classes;
ISA hierarchies among classes, i.e., relations establishing that each object of
a class is also an object of another class; and multiplicity constraints on
associations, i.e., restrictions on the number of links between objects related
by an association.
Actually, a UML class diagram represents also other aspects, e.g., the at-
tributes and the operations of a class, the attributes of an association, and
the specialization of an association. Such aspects, for the sake of simplicity,
will not be considered in this paper.

An example of a class diagram is shown in Figure 1(a), which refers to
an application concerning management of administrative data of a univer-
sity, and exhibits two classes (Student and Curriculum) and an association
(enrolled) between them. The multiplicity constraints state that:

• Each student must be enrolled in at least one and at most one curricu-
lum;

• Each curriculum must have at least twenty enrolled students, and there
is no maximum on the number of enrolled students per curriculum.

It is interesting to note that a class diagram induces restrictions on the
number of objects. As an example, referring to the situation of Figure 1(a),
it is possible to have zero, twenty, or more students, but it is impossible to
have any number of students between one and nineteen. The reason is that

2



1..1
Curriculum

20..∗

enrolled
Student

1..1
Curriculum

1..1 1..1

20..∗
enrolledStudent

likes

(a) (b)

Figure 1: UML class diagrams with (a) finitely satisfiable and (b) finitely
unsatisfiable classes.

if we had, e.g., five students, then we would need at least one curriculum,
which in turn requires at least twenty students.

In some cases the number of objects of a class is forced to be zero. As an
example, if we add to the class diagram of Figure 1(a) a further association,
likes, with the constraints that each student likes exactly one curriculum, and
that each curriculum is liked by exactly one student (cf., Figure 1(b)), then it
is impossible to have any finite non-zero number of students and curricula. In
fact, the new association and its multiplicity constraints force the students to
be exactly as many as the curricula, which is impossible. Observe that, with
a logical formalization of the UML class diagram, one can actually perform
such a form of reasoning making use of automated reasoning tools1.

Referring to Figure 1(b), note that the multiplicity constraints do not rule
out the possibility of having infinitely many students and curricula. When
a class is forced to have either zero or infinitely many instances, it is said
to be finitely unsatisfiable. For the sake of completeness, we mention that
in some situations involving ISA hierarchies (not shown for brevity), classes
may be forced to have zero objects, and are thus said to be unsatisfiable in the
unrestricted sense. The above example shows that UML class diagrams do
not have the finite model property, since unrestricted and finite satisfiability
are different.

Unsatisfiability, either finite or unrestricted, of a class is a symptom of a
bug in the analysis phase, since either such a class is superfluous, or a conflict
has arisen while modeling different, antithetic, requirements. In particular,
finite unsatisfiability is especially relevant in the context of applications, e.g.,
databases, in which the number of instances is intrinsically finite. Global
reasoning on the whole class diagram is needed to show finite unsatisfiability.
For large, industrial class diagrams, finite unsatisfiability could easily arise,
because different parts of the same diagram may be synthesized by different

1Actually, current CASE tools do not perform any kind of automated reasoning on
UML class diagrams yet.

3



analysts, and is likely to be nearly impossible to be discovered by hand.
In this paper, we address finite model reasoning on UML class diagrams,

a task that, to the best of our knowledge, has not been attempted so far.
This is done by exploiting an encoding of UML class diagrams in terms of
Description Logics (DLs) [2], in order to take advantage of the finite model
reasoning techniques developed for DLs [4, 5].These techniques, which are
optimal from the computational complexity point of view, are based on a
reduction of reasoning on a DL knowledge base to satisfaction of linear con-
straints.

The contribution of this paper is on the practical realization of such finite
modeling reasoning techniques by making use of off-the-shelf tools for con-
straint modelling and programming. In particular, by exploiting the finite
model reasoning technique for DLs presented in [4, 5], we propose an encod-
ing of UML class diagram satisfiability as a Constraint Satisfaction Problem
(CSP). We show that, in spite of the high computational complexity of the
reasoning task in general, the aforementioned techniques are feasible in prac-
tice, if some optimizations are performed in order to reduce the exponential
number of variables in the constraint problem. We do so by relying again on
the constraint solver itself, by setting up and solving an auxiliary constraint
problem that exploits the structure of real-world UML class diagrams.

We built a system that accepts as input an UML class diagram (written
in the standard MOF syntax2), and reasons on it according to the ideas
above making use of the ILOG’s oplstudio constraint system. The system
allowed us to test the technique on the industrial knowledge base CIM.

2 Description Logics

DLs [1] are logics for representing a domain of interest in terms of classes and
relationships among classes and reasoning on it. They are extensively used
to formalize conceptual models and object-oriented models in databases and
software engineering [3, 2], and lay the foundations for ontology languages
used in the Semantic Web.

In DLs, the domain of interest is modeled through concepts, denoting
classes of objects, and roles, denoting binary relations between objects. The
semantics of DLs is given in terms of an interpretation I = (∆I , ·I) consisting
of an interpretation domain ∆I and an interpretation function ·I that maps

2http://www.dmtf.org/

4



Syntax Semantics

¬B ∆I \BI
D1 uD2 DI1 ∩DI2
D1 tD2 DI1 ∪DI2
∀R.D {a : ∀b. (a, b) ∈ RI → b ∈ DI}

(≥ mR) {a : |{b : (a, b) ∈ RI}| ≥ m}
(≤ nR) {a : |{b : (a, b) ∈ RI}| ≤ n}
P− {(a, b) : (b, a) ∈ P I}

Figure 2: Syntax and semantics of ALUNI

every concept D to a subset DI of ∆I and every role R to a subset RI of
∆I ×∆I . In this paper we deal with the DL ALUNI [4, 5], whose syntax
and semantics are shown in Figure 2 (B and P denote respectively atomic
concepts and roles, D and R respectively arbitrary concepts and roles, m a
positive integer, and n a non-negative integer). The constructs (≥ mR) and
(≤ nR) are called number restrictions. We refer to [1] for more details on
DLs.

An ALUNI knowledge base (KB) is constituted by a finite set of (prim-
itive) inclusion assertions of the form B v D. An interpretation I is called
a model of a KB if BI ⊆ DI for each assertion B v D in the KB. The
basic reasoning tasks in DLs are (finite) KB and concept satisfiability: a KB
is (finitely) satisfiable if it admits a (finite) model; a concept C is (finitely)
satisfiable in a KB, if the KB admits a (finite) model I such that CI 6= ∅.

Due to the expressiveness of the constructs present in ALUNI KBs, un-
restricted and finite satisfiability are different problems, i.e., ALUNI does
not have the finite model property (cf. [5]). Unrestricted model reasoning
is a quite well investigated problem in DLs, and several DL reasoning sys-
tems that perform such kind of reasoning are available (e..g, Fact++3 or
Racer4).

Instead, finite model reasoning is less well studied, both from the theo-
retical and from the practical point of view. To the best of our knowledge,
no implementation of finite model reasoners has been attempted till now.
Some works provide theoretical results showing that finite model reasoning
over a KB can be done in EXPTIME for variants of expressive DLs, includ-
ing ALUNI [4, 5, 10]. Notice that this bound is tight, since (finite) model

3http://owl.man.ac.uk/factplusplus/
4http://www.racer-systems.com/

5



reasoning is already EXPTIME-hard even for much less expressive DLs (en-
joying the finite model property) [1]. These results are based on an encoding
of the finite model reasoning problem into the problem of finding particular
integer solutions to a system of linear inequalities. Such solutions can be
put in a direct correspondence with models of the KB in which the values
provided by the solution correspond to the cardinalities of the extensions
of concepts and roles. Also, the specific form of the system of inequalities
guarantees that the existence of an arbitrary solution implies the existence
of an integer solution. Moreover, from the encoding it is possible to deduce
the existence of a bound on the size of an integer solution, as specified by
the following theorem.

Theorem 1 ([5]) Let K be an ALUNI KB of size K, C an atomic con-
cept, ΨK,C the system of linear inequalities derived from K and C, and N the
maximum number appearing in number restrictions in K. Then, C is satis-
fiable in K if and only if ΨK,B admits a solution. Moreover, if a solution
exists, then there is one whose values are bounded by (K ·N)O(K).

In the following, we will exploit the above result to derive a technique for
reasoning on UML class diagrams that properly takes into account finiteness
of the domain of interest. The technique is a based on an encoding of UML
class diagrams in terms of DL KBs, which we present in the next section.

3 Formalizing UML Class Diagrams in DLs

UML class diagrams allow for modelling, in a declarative way, the static
structure of an application domain, in terms of concepts and relations be-
tween them. Here, we briefly describe the core part of UML class diagrams,
and specify the semantics of its constructs in terms of ALUNI. An in-depth
treatment on the correspondence between UML class diagrams and DLs can
be found in [2].

A class in a UML class diagram denotes a set of objects with common
features. Formally, a class C corresponds to a concept C. Classes may have
attributes and operations, but for simplicity we do not consider them here,
since they don’t play any role in the finite class unsatisfiability problem.

A (binary) association in UML is a relation between the instances of
two classes. An association A between two classes C1 and C2 is graphically
rendered as in Figure 3(a). The multiplicity m1..n1 on the binary association

6



m1..n1
C1

A
C2

m2..n2

C1 C2 . . . Cn

C

(a) (b)

Figure 3: (a) UML binary association with multiplicity constraints. (b) ISA
hierarchy.

specifies that each instance of the class C1 can participate at least m1 times
and at most n1 times to A, similarly for C2. ∗ is used to specify no upper
bound. 5

An association A between the instances of classes C1 and C2, can be
formalized as an atomic role A characterized by C1 v ∀A.C2 and C2 v
∀A−.C1.

For an association as depicted in Figure 3(a), multiplicities are formalized
by C1 v (≥ m1A) u (≤ n1A) and C2 v (≥ m2A

−) u (≤ n2A
−).

In UML, one can use a generalization between a parent class and a child
class to specify that each instance of the child class is also an instance of the
parent class. Hence, the instances of the child class inherit the properties
of the parent class, but typically they satisfy additional properties that in
general do not hold for the parent class. Several generalizations can be
grouped together to form a class hierarchy (also called ISA hierarchy), as
shown in Figure 3(b). Disjointness and completeness constraints can also be
enforced on a class hierarchy (graphically, by adding suitable labels). A class
hierarchy is said to be disjoint if no instance can belong to more than one
derived class, and complete if any instance of the base class belongs also to
some of the derived classes.

A class C generalizing a class C1 can be formalized as: C1 v C. A class
hierarchy as shown in Figure 3(b) is captured by Ci v C, for i = 1, . . . , n.

Disjointness among C1, . . . , Cn is expressed by Ci v
∧n

j=i+1 ¬Cj, for
i = 1, . . . , n− 1. The completeness constraint expressing that each instance
of C is an instance of at least one of C1, . . . , Cn is expressed by C v

⊔n
i=1Ci.

Here, we follow a typical assumption in UML class diagrams, namely that

5In UML, an association can have arbitrary arity and relate several classes, but for
simplicity we do not consider this case here (but see Conclusions). Aggregations, which
are a particular kind of binary associations are modeled similarly to associations.

7



all classes not in the same hierarchy are a priori disjoint. Another typical
assumption, called unique most specific class assumption, is that objects in
a hierarchy must belong to a single most specific class. Hence, under such
an assumption, two classes in a hierarchy may have common instances only
if they have a common subclass. We discuss in the next section the effect
of making the unique most specific class assumption when reasoning on an
UML class diagram.

The basic form of reasoning on UML class diagrams is (finite) satisfiabil-
ity of a class C, which amounts to checking whether the class diagram admits
a (finite) instantiation in which C has a nonempty extension. Formally, this
corresponds to checking whether the concept corresponding to C is (finitely)
satisfiable in the KB formalizing the diagram. As mentioned, unrestricted
and finite satisfiability in UML class diagrams (and also in ALUNI) are
different problems.

The formalization of UML class diagrams in terms of DLs [2], and the
fact that instantiations of the UML class diagram must be finite, allows one
to use on such diagrams the techniques for finite model reasoning in DLs
discussed in Section 2. Specifically, the EXPTIME upper bounds apply also
to finite model reasoning on UML class diagrams [2]. Instead, the exact lower
bound of reasoning on UML class diagrams as presented above is still open.
However, if one adds subsetting relations between associations or the ability
of specializing the typing of an association for classes in a generalization,
then both unrestricted and finite model reasoning are EXPTIME-hard (see
[2]). This justifies the approach taken in the next section, where we address
the problem of finite model reasoning on UML class diagrams also from a
practical point of view.

4 Finite Model Reasoning on UML Class Di-

agrams via CSP

We address now finite class satisfiability in UML class diagrams, and show
how it is possible to encode the problem as a constraint satisfaction problem
(CSP).

As mentioned, a technique for finite model reasoning in UML class dia-
grams can be derived from techniques developed in the context of DLs. Such
techniques are based on translating a DL knowledge base into a set of linear

8



inequalities [4, 5]. The formalization of UML class diagrams in terms of DLs
implies that the finite model reasoning techniques for the latter can be used
also for the former.

In the rest of this paper, we will deal directly with the UML class diagram
constructs, considered, from a formal point of view, as abbreviations for the
corresponding DL concepts and roles.

Intuitively, consider a simple UML class diagram D with no generaliza-
tions and hierarchies. Figure 3(a) shows a fragment of such a diagram, in
which we have two classes C1 and C2 and an association A between them.
It is easy to see that such a class diagram D is always satisfiable (assuming
mi ≤ ni) if we admit infinite models. Hence, only finite model reasoning is
of interest. We observe that, if D is finitely satisfiable, then it admits a finite
model in which all classes are pairwise disjoint. Exploiting this property, we
can encode finite satisfiability of class C1 in D in a constraint satisfaction
problem. The variables and the constraints of the CSP are modularly de-
scribed considering in turn each association of the class diagram. Let A be
an association between classes C1 and C2 such that the following multiplicity
constraints are stated (cf. Figure 3(a)):

• There are at least m1 and at most n1 links of type A (instances of the
association A) for each object of the class C1;

• There are at least m2 and at most n2 links of type A for each object of
C2.

In the special case in which neither C1 nor C2 participates in an ISA hierarchy,
the CSP is defined as follows:

• There are three non-negative variables c1, c2, and a, which stand for
the number of objects of the classes and the number of links6, respec-
tively (upper bounds for these variables follow from Theorem 1; in
practice, they can be set to a huge constant, e.g., maxint);

• There are the following constraints (we use, here and in what follows,
a syntax similar to that of opl[11]):

6The use of variables standing for the number of links stems from the technique pro-
posed in [5], which ensures soundness and completeness of reasoning. It remains to be
investigated whether a simpler encoding avoiding the use of such variables is possible.

9



1. m1 * c1 <= a;

2. n1 * c1 >= a;

3. m2 * c2 <= a;

4. n2 * c2 >= a;

5. a <= c1 * c2;

6. c1 >= 1;

Constraints 1–4 account for the multiplicity of the association; they can be
omitted if either m1 or m2 is 0, or n1 or n2 is ∞ (symbol ‘*’ in the class
diagram). Constraint 5 sets an upper bound for the number of links of type
A with respect to the number of objects. Constraint 6 encodes satisfiability
of class C1: we want at least one object in its extension. As an example,
consider the Restaurant class diagram, shown in Figure 4: if A stands for
served in, C1 stands for menu, and C2 stands for banquet, then m1 is 1, n1

is ∞, m2 is 1, and n2 is 1.
Finally, to avoid the system returning an ineffectively large solution, an

objective function that, e.g., minimizes the overall number of objects and
links, may be added.

It is possible to show that, from a solution of such a constraint system
we can construct a finite model of the class diagram in which the cardinality
of the extension of each class and association is equal to the value assigned
to the corresponding variable7 [9].

When either C1 or C2 are involved in ISA hierarchies, the constraints
are actually more complicated, because the meaning of the multiplicity con-
straints changes. As an example, the multiplicity 1..* of the order associ-
ation in Figure 4 states that a client orders at least one banquet, but the
client can be a person, a firm, both, or neither (assuming the generalization
is neither disjoint nor complete). In general, for an ISA hierarchy involving n
classes, 2n non-negative variables corresponding to all possible combinations
must be considered. For the same reason, in our example, we must consider
four distinct specializations of the order association, i.e., one for each possible
combination. Summing up, we have the following non-negative variables:

• person, order p, for clients who are persons and not firms;

• firm, order f, for clients who are firms and not persons;

7In fact, if one is interested just in the existence of a finite model, the nonlinear con-
straints a ≤ c1 ∗c2 can be dropped. Indeed, any solution of the resulting constraint system
can be transformed into one that satisfies also the nonlinear constraint by multiplying it
with a sufficiently large constant, cf. [5].

10



Figure 4: The Restaurant UML class diagram.

• person firm, order pf, for clients who are both firms and persons;

• client, order c, for clients who are neither firms nor persons;

plus the non-negative banquet variable.
The constraints which account for the order association are as follows:

/* 1 */ client <= order_c;

/* 2 */ firm <= order_f;

/* 3 */ person <= order_p;

/* 4 */ person_firm <= order_pf;

/* 5 */ banquet = order_c + order_f + order_p + order_pf;

/* 6 */ order_c <= client * banquet;

/* 7 */ order_f <= firm * banquet;

/* 8 */ order_p <= person * banquet;

/* 9 */ order_pf <= person_firm * banquet;

/* 10 */ client + firm + person + person_firm >= 1;

Constraints 1–4 account for the ‘1’ in the 1..* multiplicity; Constraint 5
translates the 1..1 multiplicity; Constraints 6–9 set an upper bound for

11



the number of links of type order with respect to the number of objects;
Constraint 10 encodes satisfiability of the client class.

We refer the reader to [5] for formal details of the translation and the
proof of its correctness. As for the implementation, the Restaurant example
has been encoded in opl as a CSP with 24 variables and 40 constraints. The
solution has been found by the underlying constraint programming solver,
i.e., ILOG’s Solver, [7], in less than 0.01 seconds.

The exponential blow-up in the number of variables and constraints due to
the presence of ISA hierarchies is a major obstacle when dealing with large
class diagrams, such as those describing real-world applications. To this end,
special care to reduce the size of the resulting CSP as much as possible is
mandatory.

In particular, if a given ISA hierarchy (with C as parent class and
{C1, . . . , Cn} as children) is complete, the variable for C can be removed.
Moreover, if the ISA is disjoint, we can omit all the variables that model in-
stances that belong to any combination of two or more derived classes, hence
reducing the overall number of variables to the number of classes in the hi-
erarchy. As an example, if the ISA among Client, Person, and Firm in the
Restaurant example is complete, variables client and order c are superflu-
ous. Similarly, if the ISA is disjoint, variables person firm and order pf

can be omitted.
In order to derive the set of combinations of classes (called, in what

follows, “types”) that may have common instances, we show now that we can
use CP technology again. Indeed, for a given UML class diagram, we can
set up and solve an auxiliary constraint problem. The constraint problem is
defined in such a way that the set of its solutions corresponds to the set of all
those types that are consistent with the ISA hierarchies of the diagram, i.e.,
those types that can be populated without violating any of the constraints
expressed by the ISA hierarchies. More precisely, assuming the classes of the
diagram are represented by integers between 1 and nclasses, the constraint
problem is defined as follows (we use again a pseudocode resembling the opl
syntax):

Given the set of ISA hierarchies of an UML class diagram

Find boolean legalType[1..nclasses] such that:

For each ISA (C1...Cn is-a C) {

12



for each i = 1..n: legalType[Ci] -> legalType[C];

If ISA is disjoint: at_most_one(i = 1..n)(legalType[Ci]);

If ISA is complete: legalType[C] -> exists i=[1..n] s.t. legalType[Ci];

}

legalType is a combination of at least one class;

Classes that belong to legalType must be connected by ISA hierarchies;

By computing all solutions of this auxiliary constraint problem, we obtain the
set of all types that are consistent with the ISA hierarchies. Given a solution
legalType[] (an array of booleans), the corresponding type is made of all
classes C such that legalType[C] = true). Only variables for types found in
this way need to be generated in order to solve the finite satisfiability problem.
It is worth noting that in practical circumstances, the number of all possible
types is not expected to be huge. In fact, well designed class diagrams, even
if the unique most specific class assumption is not made (cf. end of Section 3),
usually have a small amount of non-disjoint ISAs, since this helps to increase
the overall quality of the diagram, by making the partitions of concepts that
are important for the application explicit. Some experimental results that
show the applicability of the approach when reasoning on real-world class
diagrams are described in Section 5.

Once a UML class diagram is shown to be finitely satisfiable, a second prob-
lem is to return a model with non-empty classes and associations. To solve
this problem, we can use again constraint technology, by writing a constraint
program that encodes the semantics of the UML class diagram (cf. Sec-
tion 3), and uses the output of the finite satisfiability problem to fix the size
of the model. In fact, since in the finite satisfiability problem we have en-
forced the multiplicity constraints, we know that a finite model of the class
diagram exists, and we also know an admissible number of instances for each
class and association. We do not describe the relevant constraint program for
space reasons, but just observe that, for the Restaurant example (encoded in
opl with about 40 lines of code, which resulted in a CSP with 498 variables
and 461 constraints), the solution has been found by ILOG’s Solver in less
than 0.01 seconds, and no backtracking.

13



5 Implementation

In this section, we describe a system realized in order to automatically pro-
duce, given a UML class diagram as input, a constraint-based specification
that decides finite class satisfiability. Two important choices were made
in the design phase: the input language for class diagrams, and the out-
put constraint language. As for the former, we decided to use a standard
textual representation of UML class diagrams called “Managed Object For-
mat” (MOF) (cf. footnote 2). Concerning the output language, instead, in
order to use state-of-the-art solvers, we opted for the constraint program-
ming language opl. However, in order to have a strong decoupling between
the two front-ends of the system, we realized it in two modules: the first
one acts as a server, receiving a MOF file as input and returning a high-
level, object-oriented complete internal representation of the described class
diagram (actually, the system supports the concepts in the core UML, i.e.,
classes, associations, hierarchies among classes, and subset relationships be-
tween associations). A client module, then, traverses the internal model in
order to produce the opl specification encoding the finite satisfiability prob-
lem for the diagram (actually, subset relationships between associations are
not taken into account). With this decoupling, we are able to change the
language for the input (resp., output) by modifying only the MOF parser
(resp., the opl encoder) module of the system. Moreover, by decoupling the
parsing module from the encoder into opl, we are able to realize new tools
to make additional forms of reasoning at low cost.

As for the handling of ISA hierarchies, it has already been mentioned that
an exponential blow-up of the number of variables (one for each combination
of classes involved in the hierarchy) cannot be avoided in the worst case.
However, in case of disjoint or complete hierarchies, it is possible to strongly
reduce the number of generated variables (cf. Section 4).

Hence, the system works in two stages. In the first one, after having
built the internal representation of the input class diagram, it solves the
opl auxiliary constraint problem described in Section 4 in order to detect
all possible combinations of classes (the so-called “types”) belonging to the
same hierarchy that may have objects in common. In the second stage, it uses
this knowledge to build the opl program that models the finite satisfiability
problem for the class diagram.

In order to test whether using off-the-shelf tools for constraint program-
ming is effective to decide finite satisfiability of real-world diagrams, we used

14



our system to produce opl specifications for several class diagrams of the
“Common Information Model” (CIM)8, a standard model used for describ-
ing overall management information in a network/enterprise environment.
We don’t describe the model in detail, but just observe that the class dia-
grams we used were composed of about 1000 classes and associations, and
so can be considered good benchmarks to test whether current constraint
programming solvers can be effectively used to perform the kind of reasoning
shown so far.

Constraint specifications obtained from large class diagrams in the CIM
collection were solved very efficiently by opl. As an example, when the
largest diagram, consisting of 980 classes and associations, was given as input
to our system, we obtained an opl specification consisting of a comparable
number of variables and 862 constraints. Nonetheless, opl solved it in less
than 0.03 seconds of CPU time, by invoking ILOG Solver. This high effi-
ciency is achieved also because of the “structural” aspects usually present in
UML class diagrams that model real-world applications. In particular, mul-
tiplicity constraints on many associations had “0” or “1” as lower bounds,
or “∗” as upper bounds, and hence the corresponding opl constraints were
easily satisfiable. The consequence is that only a small portion of the con-
straints of the overall constraint model needed a deep search for finding a
solution. Moreover, the exponential explosion of the number of variables for
classes belonging to ISA hierarchies was not a problem, since the unique most
specific class assumption is implicitly made in these diagrams (hence, non-
disjointness among classes was always explicitly stated). This is encouraging
evidence that current CP technology can be effectively used in order to make
finite model reasoning on real-world class diagrams.

6 Conclusions

Finite model reasoning in UML class diagrams, e.g., checking whether a
class is forced to have either zero or infinitely many objects, is important
for assessing quality of the analysis phase in software development. Despite
the importance of finite model reasoning, no implementation of this task
has been attempted so far. In this paper we have shown how one can de-
velop such a system by relying on off-the-shelf tools for constraint modeling

8http://www.dmtf.org/standards/cim

15



and programming, using techniques for finite model reasoning in description
logics, and putting special care in taming the class-combination explosion.

For simplicity, in this paper we have dealt with binary associations only,
but in fact the technique can be straightforwardly extended to n-ary asso-
ciations9 as well, and in fact, our current implementation deals also with
them.

This paper can also be seen as the first attempt to obtain a practical, com-
putationally optimal finite model reasoner for expressive description logics.
Indeed, the techniques developed here apply to ALUNI knowledge bases
with primitive inclusion assertions [6]. More generally, the ideas of apply-
ing CSP tools and taking special care in limiting the “class combinations”
explosion, could be applied to more expressive description logics as well [10].

References

[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge University Press,
2003.

[2] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Rea-
soning on UML class diagrams. Artificial Intelligence, 168(1–2):70–118,
2005.

[3] Alexander Borgida, Maurizio Lenzerini, and Riccardo Rosati. Descrip-
tion logics for data bases. In Baader et al. [1], chapter 16, pages 462–484.

[4] Diego Calvanese. Finite model reasoning in description logics. In Proc.
of KR’96, pages 292–303, 1996.

[5] Diego Calvanese. Unrestricted and Finite Model Reasoning in Class-
Based Representation Formalisms. PhD thesis, Dip. di Inf. e Sist., Univ.
di Roma “La Sapienza”, 1996.

[6] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-
based representation formalisms. J. of Artificial Intelligence Research,
11:199–240, 1999.

9We do not consider multiplicities for n-ary associations. For a discussion, see [2].

16



[7] ILOG OPL Studio system version 3.6.1 user’s manual, 2002.

[8] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Mod-
eling Language User Guide. Addison Wesley Publ. Co., 1998.

[9] Maurizio Lenzerini and Paolo Nobili. On the satisfiability of depen-
dency constraints in entity-relationship schemata. Information Systems,
15(4):453–461, 1990.

[10] Carsten Lutz, Ulrike Sattler, and Lidia Tendera. The complexity of
finite model reasoning in description logics. In Proc. of CADE 2003,
pages 60–74, 2003.

[11] Pascal Van Hentenryck. The OPL Optimization Programming Language.
The MIT Press, 1999.

17


