
Finite Satisfiability of UML class diagrams by

Constraint Programming

Marco Cadoli1, Diego Calvanese2, Giuseppe De Giacomo1, Toni Mancini1

1 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
cadoli|degiacomo|tmancini@dis.uniroma1.it

www.dis.uniroma1.it/~cadoli|~degiacomo|~tmancini
2 Faculty of Computer Science

Free University of Bolzano/Bozen
Piazza Domenicani 3, I-39100 Bolzano, Italy

calvanese@inf.unibz.it

Abstract. Finite model reasoning in UML class diagrams, e.g., check-
ing whether a class is forced to have either zero or infinitely many objects,
is of crucial importance for assessing quality of the analysis phase in soft-
ware development. Despite the fact that finite model reasoning is often
considered more important than unrestricted reasoning, no implementa-
tion of the former task has been attempted so far. The main result of this
paper is that it is possible to use off-the-shelf tools for constraint model-
ing and programming for obtaining a finite model reasoner. In particular,
exploiting appropriate reasoning techniques, we propose an encoding as
a CSP of UML class diagram satisfiability. Moreover, we show also how
CP can be used to actually return a finite model of a class diagram. A
description of our system, which accepts as input class diagrams in the
MOF syntax, and the results of the experimentation performed on the
CIM knowledge base are given.

1 Introduction

The Unified Modelling Language (UML, [13], cf. www.uml.org) is probably the
most used modelling language in the context of software development, and has
been proven to be very effective for the analysis and design phases of the software
life cycle.

UML offers a number of diagrams for representing various aspects of the
requirements for a software application. Probably the most important diagram is
the class diagram, which represents all main structural aspects of an application.
A typical class diagram shows:

– classes, i.e., homogeneous collections of objects, i.e., instances;
– associations, i.e., relations between classes;
– ISA hierarchies between classes, i.e., relations establishing that each object

of a class is also an object of another class;

1..1
Curriculum

20..∗

enrolled
Student

Fig. 1. A UML class diagram.

1..1
Curriculum

1..1 1..1

20..∗

enrolledStudent

likes

Fig. 2. A UML class diagram with finitely inconsistent classes.

– multiplicity constraints on associations, i.e., restrictions on the number of
links between objects related by an association.

Actually, a UML class diagram represents also other aspects, e.g., the attributes
and the operations of a class, the attributes of an association, and the special-
ization of an association. Such aspects, for the sake of simplicity, will not be
considered in this paper.

An example of a class diagram is shown in Figure 1, which refers to an
application concerning management of administrative data of a university, and
exhibits two classes (Student and Curriculum) and an association (enrolled)
between them. The multiplicity constraints state that:

– Each student must be enrolled in at least one and at most one curriculum;
– Each curriculum must have at least twenty enrolled students, and there is

no maximum on the number of enrolled students per curriculum.

It is interesting to note that a class diagram induces restrictions on the number
of objects. As an example, referring to the situation of Figure 1, it is possible
to have zero, twenty, or more students, but it is impossible to have any number
of students between one and nineteen. The reason is that if we had, e.g., five
students, then we would need at least one curriculum, which in turn requires at
least twenty students.

In some cases the number of objects of a class is forced to be zero. As an
example, if we add to the class diagram of Figure 1 a further likes association,
with the constraints that each student likes exactly one curriculum, and that
each curriculum is liked by exactly one student (cf. Figure 2), then it is impos-
sible to have any finite non-zero number of students and curricula. In fact, the
new association and its multiplicity constraints force the students to be the ex-
actly as many as the curricula, which is impossible. Observe that, with a logical
formalization the UML class diagram, one can actually perform such form of
reasoning making use of automated reasoning tools1.

1 Actually, current CASE tools do not perform any kind of automated reasoning on
UML class diagrams yet.

1..1

Curriculum

TeachingAssist

1..∗

0..6

20..∗ 1..1

0..3

Student

assigned

enrolled

works

Fig. 3. Another finitely inconsistent class diagram.

Referring to Figure 2, note that the multiplicity constraints do not rule out
the possibility of having infinitely many students and curricula. When a class is
forced to have either zero or infinitely many instances, it is said to be finitely

inconsistent or finitely unsatisfiable. For the sake of completeness, we mention
that in some situations involving ISA hierarchies (not shown for brevity), classes
may be forced to have zero objects, and are thus said to be inconsistent or
unsatisfiable in the unrestricted sense.

Unsatisfiability, either finite or unrestricted, of a class is a symptom of a
bug in the analysis phase, since such a class is clearly superfluous. In particular,
finite unsatisfiability is especially relevant in the context of applications, e.g.,
databases, in which the number of instances is intrinsically finite.

Obviously the situation described by Figure 2 (in particular, the fact that a
curriculum is liked by exactly one student) is not realistic. Anyway, finite incon-
sistency may arise in more complex situations, cf. e.g. Figure 3. Here, for budget
reasons, each curriculum has at most six teaching assistants, and, for enforcing
effectiveness of service, each TA is assigned to at most three students. The rea-
son why there must be zero (or infinitely many) students is that eighteen, i.e.,
three times six, is less than twenty. Global reasoning on the whole class diagram
is needed to show finite inconsistency. For large, industrial class diagrams, such
reasoning is clearly not doable by hand.

If, in our application we have that the UML class diagram will always be
instantiated by a finite number of objects (as often is the case), then, for assess-
ing quality of the analysis phase in software development, we must take fully
into account such an assumption. This is reflected in focusing on finite model
reasoning.

In this paper we address the implementation of finite model reasoning on
UML class diagrams, a task that has not been attempted so far. This is done by
exploiting an encoding of UML class diagrams in terms of Description Logics
(DLs) [6, 4].

DLs [1] are logics for representing and reasoning on domains of interest in
terms of classes and relationships among classes. They are extensively used to
formalize conceptual models and object-oriented models in databases and soft-
ware engineering, and lay the foundations for ontology languages used in the
Semantic Web. From a technical point of view, DLs can be seen as multi-modal

logics [16] specifically tailored to capture the typical constructs of class-based
formalisms. Alternatively, they can be seen as well-behaved fragments of first-
order logic. Indeed, reasoning in such logics has been studied extensively, both
from a theoretical point of view, establishing EXPTIME-completeness of various
DL variants [9], and from a practical point of view, developing practical reason-
ing systems. State-of-the-art DL reasoning systems, such as Fact2 and Racer3,
are highly optimized and result among the best reasoners for modal logics.

The correspondence between UML class diagrams and DLs allows one to
use the current state-of-the-art DL reasoning systems to reason on UML class
diagrams. However, the kind of reasoning that such systems support is unre-
stricted (as in first-order logic), and not finite model reasoning. That is, the fact
that models (i.e., instantiations of the UML class diagram) must be finite is not
taken into account.

Interestingly, in DLs, finite model reasoning has been studied from a the-
oretical perspective, and its computational complexity has been characterized
for various cases [14, 10, 7, 15]. However, no implementations of such techniques
have been attempted till now. In this paper we reconsider such work, and on the
basis of it we present, to the best of our knowledge, the first implementation of
finite model reasoning in UML class diagrams.

The main result of this paper is that it is possible to use off-the-shelf tools for
constraint modelling and programming for obtaining a finite model reasoner. In
particular, exploiting the finite model reasoning technique for DLs presented
in [10, 7], we propose an encoding of UML class diagram satisfiability as a
Constraint Satisfaction Problem (CSP). Moreover, we show also how constraint
programming can be used to actually return a finite model of the UML class
diagram.

We built a system that accepts as input a class diagram written in the MOF
syntax, and translates it into a file suitable for ILOG’s oplstudio, which checks
satisfiability and returns a finite model, if there is one. The system allowed us to
test the technique on the industrial knowledge base CIM, obtaining encouraging
results.

The rest of the paper is organized as follows: in Section 2 we briefly de-
scribe the main constructs of UML class diagrams in terms of first-order logic.
In Sections 3 and 4 we then show how to encode the UML class diagram finite
satisfiability problem as a CSP, and, in Section 5 we show how to find, if possi-
ble, a finite model of a class diagram, with non-empty classes and associations.
Section 6 is devoted to some observations on complexity issues, while our system
is described in Section 7. Finally, Section 8 concludes the paper.

2 Formalization of UML Class Diagrams

UML class diagrams allow for modelling, in a declarative way, the static struc-
ture of an application domain, in terms of concepts and relations between them.

2 http://www.cs.man.ac.uk/~horrocks/FaCT/
3 http://www.sts.tu-harburg.de/~r.f.moeller/racer/

m1..n1

C1

A
C2

m2..n2

Fig. 4. Binary association in UML with multiplicity constraints.

C1

A

· · ·

C2

Cn

Fig. 5. n-ary association in UML.

We briefly describe UML class diagrams, and specify the semantics of the main
constructs in terms of first-order logic (FOL).

A class in a UML class diagram denotes a set of objects with common
features. Names of classes are unique in a UML class diagram. Formally, a class
C corresponds to a FOL unary predicate C. Classes may have attributes and
operations, but for simplicity we do not describe them here, since they have only
minor impact on the reasoning process.

An association in UML is a relation between the instances of two or more
classes. Names of associations are unique in a UML class diagram. A binary as-
sociation A between two classes C1 and C2 is graphically rendered as in Figure 4.
The multiplicity m1..n1 on the binary association specifies that each instance of
the class C1 can participate at least m1 times and at most n1 times to A, simi-
larly for C2. When the multiplicity is omitted, it is intended to be 0..∗. Observe
that an association can also relate several classes C1, C2, . . . , Cn, as depicted in
Figure 54.

An association A between the instances of classes C1, . . . , Cn, can be formal-
ized as an n-ary predicate A that satisfies the following FOL assertion:

∀x1, . . . , xn. A(x1, . . . , xn) → C1(x1) ∧ . . . ∧ Cn(xn)

For binary associations (see Figure 4), multiplicities are formalized by the FOL
assertions:

∀x. C1(x) → (m1 ≤ ♯{y | A(x, y)} ≤ n1)
∀y. C2(y) → (m2 ≤ ♯{x | A(x, y)} ≤ n2)

where we have abbreviated FOL formulas expressing cardinality restrictions.
Aggregations, which are a particular kind of binary associations are modeled

similarly.

4 In UML, differently from other conceptual modelling formalisms, such as Entity-
Relationship diagrams [2], multiplicities are look-across cardinality constraints [17].
This makes their use in non-binary associations difficult with respect to both mod-
elling and reasoning.

C1 C2 . . . Cn

C

Fig. 6. A class hierarchy in UML.

In UML one can use a generalization between a parent class and a child class
to specify that each instance of the child class is also an instance of the parent
class. Hence, the instances of the child class inherit the properties of the parent
class, but typically they satisfy additional properties that in general do not hold
for the parent class. Several generalizations can be grouped together to form a
class hierarchy (also called ISA hierarchy), as shown in Figure 6. Disjointness

and completeness constraints can also be enforced on a class hierarchy (graph-
ically, by adding suitable labels). A class hierarchy is said to be disjoint if no
instance can belong to more than one derived class, and complete if any instance
of the base class belongs also to some of the derived classes.

A UML class C generalizing a class C1 can be formally captured by means
of the FOL assertion:

∀x. C1(x) → C(x)

A class hierarchy as the one in Figure 6 is formally captured by means of the
FOL assertions:

∀x. Ci(x) → C(x), for i = 1, . . . , n

Disjointness among C1, . . . , Cn is expressed by the FOL assertions

∀x. Ci(x) →
∧n

j=i+1
¬Cj(x), for i = 1, . . . , n − 1

The completeness constraint expressing that each instance of C is an instance
of at least one of C1, . . . , Cn is expressed by:

∀x. C(x) →
∨n

i=1
Ci(x)

In UML class diagrams, it is typically assumed that all classes not in the same
hierarchy are a priori disjoint. Similarly, it is typically assumed that objects in
a hierarchy must belong to a single most specific class. Hence, two classes in a
hierarchy may have common instances only if they have a common subclass.

3 Finite Model Reasoning on UML Class Diagrams

As mentioned before, a technique for finite model reasoning in UML class dia-
grams can be derived from techniques developed in the context of Description
Logics (DLs) [1]. Such techniques are based on translating a DL knowledge base

into a set of linear inequalities [10, 7]. The first-order formalization of UML class
diagrams shown in the previous section can be rephrased in terms of DLs. Hence,
the finite model reasoning techniques for DLs can be used also for UML class
diagrams.

Intuitively, consider a simple UML class diagram D with only binary as-
sociations, and in which we do not make use of generalization and hierarchies.
Further, for each association, between two classes multiplicities are specified.
Figure 4 shows a fragment of such a diagram, in which we have two classes C1

and C2 and an association A between them. The multiplicities in the figure ex-
press that each instance of C1 is associated with at least m1 and at most n1

instances of C2 through the association A, similarly for C2. It is easy to see that
such a class diagram D is always satisfiable (assuming mi ≤ ni) if we admit
infinite models. Hence, only finite model reasoning is of interest. We observe
that, if D is finitely satisfiable, then it admits a finite model in which all classes
are pairwise disjoint. Exploiting this property, we can encode finite satisfiability
of D in a constraint system as follows. We introduce one variable for each class
and one for each association, representing the number of instances of the class
(resp., association) in a possible model of D. Then, for each association A we
introduce the constraints:

m1 ∗ c1 ≤ a ≤ n1 ∗ c1

m2 ∗ c2 ≤ a ≤ n2 ∗ c2

c1 ∗ c2 ≥ a

where c1, c2, and a are the variables corresponding to C1, C2, and A, respectively.
It is possible to show that, from a solution of such a constraint system we

can construct a finite model of D in which the cardinality of the extension of
each class and association is equal to the value assigned to the corresponding
variable5 [14].

The above approach can be extended to deal also with generalizations, dis-
jointness, and covering between classes. Intuitively, one needs to introduce one
variable for each combination of classes; similarly, for associations one needs to
distinguish how, among the possible combinations of classes, the association is
typed in its first and second component. This leads, in general, to the introduc-
tion of an exponential number of variables and constraints [10, 7]. We illustrate
this in the next section.

4 Finite Model Reasoning via CSP

We address the problem of finite satisfiability of UML class diagrams, and show
how it is possible to encode two problems as constraint satisfaction problems
(CSPs), namely:

1. deciding whether all classes in the diagram are simultaneously finitely satis-
fiable, and

5 In fact, if one is interested just in the existence of a finite model, one could drop the
nonlinear constraints of the form c1 ∗ c2 ≥ a.

Fig. 7. The “restaurant” UML class diagram.

2. finding –if possible– a finite model with non-empty classes and associations.

We use the “restaurant” class diagram, shown in Figure 7, as our running ex-
ample.

First we address the problem of deciding finite satisfiability. As mentioned
before, we use the technique proposed in [7], which is based on the idea of
translating the multiplicity constraints of the UML class diagram into a set of
inequalities among integer variables.

The variables and the inequalities of the CSP are modularly described con-
sidering in turn each association of the class diagram. Let a be an association
between classes c1 and c2 such that the following multiplicity constraints are
stated:

– There are at least min c1 and at most max c1 links of type a (instances of
the association a) for each object of the class c1 ;

– There are at least min c2 and at most max c2 links of type a for each object
of the class c2.

Referring to Figure 7, if a stands for served in, c1 stands for banquet, and c2

stands for menu, then min c1 is 1, max c1 is 1, min c2 is 1, and max c2 is ∞.
For the sake of simplicity, we start from the special case in which neither

c1 nor c2 participates in a ISA hierarchy, e.g., the related and the served in

associations of Figure 7.

The CSP is defined as follows:

– There are three non-negative variables c1, c2, and a, which stand for the
number of objects of the classes and the number of links, respectively (in
practice, upper bounds for these variables can be set to a huge constant, e.g.,
maxint);

– There are the following constraints (we use the syntax of the constraint
programming language opl [18]):

1. min_c1 * c1 <= a;

2. max_c1 * c1 >= a;

3. min_c2 * c2 <= a;

4. max_c2 * c2 >= a;

5. a <= c1 * c2;

6. a >= 1;

7. c1 >= 1;

8. c2 >= 1;

Constraints 1–4 account for the multiplicity of the association; they can be omit-
ted if either min = 0, or max = ∞ (symbol ‘*’ in the class diagram). Constraint 5
sets an upper bound for the number of links of type a with respect to the number
of objects. Constraints 6–8 define the satisfiability problem we are interested in:
we want at least one object for each class and at least one link for each associa-
tion. The latter constraints can be omitted by declaring the variables as strictly
positive. Finally, to avoid the system returning an ineffectively large solution, an
objective function that , e.g., minimizes the overall number of objects and links,
may be added. However, the addition of such or other objective functions is out
of the scope of this paper.

When either c1 or c2 are involved in ISA hierarchies, the constraints are
more complicated, because the meaning of the multiplicity constraints changes.
As an example, the multiplicity 1..* of the order association in Figure 7 states
that a client orders at least one banquet, but the client can be a person, a firm,
both, or neither (assuming the generalization is neither disjoint nor complete). In
general, for an ISA hierarchy involving n classes, O(2n) non-negative variables
corresponding to all possible combinations must be considered. For the same
reason, we must consider four distinct specializations of the order association,
i.e., one for each possible combination. Summing up, we have the following non-
negative variables:

– person, order p, for clients who are persons and not firms;
– firm, order f, for clients who are firms and not persons;
– person firm, order pf, for clients who are both firms and persons;
– client, order c, for clients who are neither firms nor persons;

plus the positive banquet variable.
The constraints (in the opl syntax) which account for the order association

are as follows:

/* 1 */ client <= order_c;

/* 2 */ firm <= order_f;

/* 3 */ person <= order_p;

/* 4 */ person_firm <= order_pf;

/* 5 */ banquet = order_c + order_f + order_p + order_pf;

/* 6 */ order_c <= client * banquet;

/* 7 */ order_f <= firm * banquet;

/* 8 */ order_p <= person * banquet;

/* 9 */ order_pf <= person_firm * banquet;

/* 10 */ client + firm + person + person_firm >= 1;

/* 11 */ order_c + order_f + order_p + order_pf >= 1;

Constraints 1–4 account for the ‘1’ in the 1..* multiplicity; Constraint 5 trans-
lates the 1..1 multiplicity; Constraints 6–9 set an upper bound for the number
of links of type order with respect to the number of objects; Constraints 10–11
define the satisfiability problem (banquet is already strictly positive).

We refer the reader to [7, 8] for formal details of the translation, and in partic-
ular for the proof of its correctness. As for the implementation, the “restaurant”
example has been encoded in opl as a CSP with 24 variables and 40 constraints.
The solution has been found by the underlying constraint programming solver,
i.e., ILOG’s Solver [12, 11], in less than 0.01 seconds.

5 Constructing a Finite Model

We now turn to the second problem, i.e., finding –if possible– a finite model with
non-empty classes and associations. The basic idea is to encode in the constraint
modelling language of opl the semantics of the UML class diagram (see Section 2
and [4, 3]). In particular we use arrays of boolean variables representing the
extensions of predicates, where the size of the arrays is determined by the output
of the first problem. Since in the first problem we have enforced the multiplicity
constraints, and obtained an admissible number of objects for each class, we
know that a finite model of the class diagram exists, and we also know the size
of the universe of such a finite model, which is the sum of the objects of the
classes.

Referring to our “restaurant” example, we have the following declarations
describing the size of our universe and two sorts:

int size = client + person + firm + person_firm + restaurant + menu +

characteristic_restaurant + dish + specialty + banquet + celebration;

range Bool 0..1;

range Universe 1..size;

where client, person etc. are the number of objects for each class, obtained as
the output of the first problem.

The arrays corresponding, e.g., to the client and banquet classes, and to the
order c association are declared as follows:

var Bool Client[Universe];

var Bool Banquet[Universe];

var Bool Order_C[Universe,Universe];

Now, we have to enforce some constraints to reflect the semantics of the
UML class diagram [4, 3], namely that:

1. Each object belongs to exactly one most specific class;
2. The number of objects (resp., links) in each class (resp., association) is co-

herent with the solution of the first problem;
3. The associations are typed, e.g., that a link of type order c insists on an

object which is a banquet and on another object which is a client;
4. The multiplicity constraints are satisfied.

Such constraints can be encoded as follows (for brevity, we show only some of
the constraints).

// AN OBJECT BELONGS TO ONE CLASS

forall(x in Universe)

Client[x] + Person[x] + Firm[x] + Person_Firm[x] + Restaurant[x] +

Characteristic_Restaurant[x] + Dish[x] + Specialty[x] + Banquet[x] +

Celebration[x] + Menu[x] = 1;

// ENFORCING SIZES OF CLASSES AND ASSOCIATIONS

sum(x in Universe) Client[x] = client;

sum(x in Universe) Banquet[x] = banquet;

sum(x in Universe, y in Universe) Order_C[x,y] = order_c;

// TYPES FOR ASSOCIATIONS

forall(x, y in Universe)

Order_C[x,y] => Client[x] & Banquet[y];

// MULTIPLICITY CONSTRAINTS ARE SATISFIED

forall(x in Universe)

Client[x] => sum(y in Universe) Order_C[x,y] >= 1;

Summing up, the “restaurant” example has been encoded in opl with about
40 lines of code. After instantiation, this resulted in a CSP with 498 variables
and 461 constraints. The solution has been found by ILOG’s Solver in less than
0.01 seconds, and no backtracking.

6 Notes on complexity

Few notes about the computational complexity are in order. It is known that
solving both problems of deciding finite satisfiability and finite model finding
are EXPTIME-complete [7]. Our encoding of the first problem in a CSP may
result in a number of variables which is exponential in the size of the diagram.
Anyway, since the exponentiality depends on the maximum number of classes
involved in the same ISA hierarchy, the actual size for real UML diagrams will
typically not be very large (especially when the most specific class assumption is
enforced, cf. Section 2). As for the second problem, our encoding is polynomial in
the size of the class diagram. Note that this does not contradict the EXPTIME

lower bound, due to the program complexity of modelling languages such as
opl. Indeed, in [5] it is shown that the program complexity of boolean linear
programming is NEXPTIME-hard.

7 Implementation

In this section we describe a system realized in order to automatically produce,
given a UML class diagram as input, a constraint-based specification that de-
cides its finite satisfiability (full handling of ISA hierarchies among classes and
associations is currently under development).

Two important choices have to be made in order to design such a system:
the input language for UML class diagrams, and the output constraint language.
As for the former, we decided to use a textual representation of UML class
diagrams. To this end, we relied on the standard language “Managed Object
Format” (MOF)6. To give the intuition of the language, a MOF description of
the class diagram depicted in Figure 7 is shown in Figure 8. For what concerns
the output language, instead, in order to use state-of-the-art solvers, we opted
for the constraint programming language opl.

However, in order to have a strong decoupling between the two front-ends of
the system, we realized it in two, strongly decoupled modules: the first one acts as
a server, receiving a MOF file as input and returning a high-level, object-oriented
complete internal representation of the described class diagram. A client module,
then, traverses the internal model in order to produce the opl specification.

In this way, we are able to change the language for the input (resp., output) by
modifying only the MOF parser (resp., the opl encoder) module of the system.
Moreover, by decoupling the parsing module from the encoder into opl, we are
able to realize new tools to make additional forms of reasoning at a very low
cost.

As for the handling of ISA hierarchies, as described in Section 4, an expo-
nential blow-up of the number of variables (one for each combination of classes
involved in the hierarchy) cannot be avoided in general. However, in case the
hierarchy is disjoint or complete, it is possible to reduce the number of generated
variables. It can be observed that, if an ISA is complete, the variable relative to
its base class can be avoided; even more interestingly, if an ISA is disjoint, all
variables that model instances that belong to any combination of two or more
derived classes can be ignored, thus reducing the overall number of variables to
the number of classes in the hierarchy.

The MOF language provides the “abstract” qualifier that, when applied to a
class C imposes that no instance may exist that belongs to class C and does not
belong to any of its subclasses. This is implicitly used to assert completeness of
the ISA hierarchy. Also, in MOF, the most specific class assumption is implicitly
enforced. Hence, in all experiments reflect such an assumption.

In order to test whether using off-the-shelf tools for constraint programming
is effective to decide finite satisfiability of real-world UML class diagrams, we

6 http://www.dmtf.org

used our system to produce opl specifications for several class diagrams of the
“Common Information Model” (CIM)7, a standard model used for describing
overall management information in a network/enterprise environment. We don’t
describe the model into details, since this is out of the scope of the paper. We just
observe that the class diagrams we used were composed of about 1000 classes
and associations, and so can be considered good benchmarks to test whether
current constraint programming solvers can be effectively used to make the kind
of reasoning shown so far.

Constraint specifications obtained by giving large class diagrams in the CIM
collection, were solved very efficiently by opl. As an example, when the largest
diagram, consisting of 980 classes and associations, has been given as input to our
system, we obtained an opl specification consisting of a comparable number of
variables and 862 constraints. Nonetheless, opl solved it in less than 0.03 seconds
of CPU time, by invoking ILOG Solver. This high efficiency is achieved also
because generated constraints are often easily satisfiable (cardinality constraints
for associations often have “0” or “1” as lower bounds, or “∗” as upper bounds).
This is encouraging evidence that current CP technology can be effectively used
in order to make finite model reasoning on real-world class diagrams.

8 Conclusions

Finite model reasoning in UML class diagrams, e.g., checking whether a class is
forced to have either zero or infinitely many objects, is of crucial importance for
assessing quality of the analysis phase in software development. Despite the fact
that finite model reasoning is often considered more important than unrestricted
reasoning, no implementation of this task has been attempted so far.

In this paper we showed that it is possible to use off-the-shelf tools for con-
straint modelling and programming for obtaining a finite model reasoner. In
particular, exploiting finite model reasoning techniques published previously, we
proposed an encoding as a CSP of UML class diagram satisfiability. Moreover,
we showed also how constraint programming can be used to actually return a
finite model of a class diagram.

We implemented a system which parses class diagrams written in the MOF
language and uses ILOG’s Solver for solving the finite satisfiability problem.
The results of the experimentation performed on the CIM class diagram, a large
industrial knowledge base, are encouraging, since determining satisfiability is
done in just few hundredths of second for a class diagram with 980 classes and
associations.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

7 http://www.dmtf.org/standards/cim

2. C. Batini, S. Ceri, and S. B. Navathe. Conceptual Database Design, an Entity-
Relationship Approach. Benjamin and Cummings Publ. Co., Menlo Park, Califor-
nia, 1992.

3. D. Berardi, A. Cal̀ı, D. Calvanese, and G. De Giacomo. Reasoning on UML class
diagrams. Technical Report 11-03, Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, 2003.

4. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class dia-
grams is EXPTIME-hard. In Proceedings of the 2003 Description Logic Work-
shop (DL 2003), pages 28–37. CEUR Electronic Workshop Proceedings, http:

//ceur-ws.org/Vol-81/, 2003.
5. M. Cadoli. The expressive power of binary linear programming. In Proc. of the

7th Int. Conf. on Principles and Practice of Constraint Programming (CP 2001),
volume 2239 of Lecture Notes in Computer Science, 2001.

6. A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. A formal framework for
reasoning on UML class diagrams. In Proceedings of the Thirteenth International
Symposium on Methodologies for Intelligent Systems (ISMIS 2002), volume 2366
of Lecture Notes in Computer Science, pages 503–513. Springer, 2002.

7. D. Calvanese. Finite model reasoning in description logics. In Proceedings of the
Fifth International Conference on the Principles of Knowledge Representation and
Reasoning (KR’96), pages 292–303, 1996.

8. D. Calvanese. Unrestricted and Finite Model Reasoning in Class-Based Represen-
tation Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Uni-
versità di Roma “La Sapienza”, 1996. Available at http://www.dis.uniroma1.

it/pub/calvanes/thesis.ps.gz.
9. D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expres-

sive description logics. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, chapter 23, pages 1581–1634. Elsevier Science Publishers
(North-Holland), Amsterdam, 2001.

10. D. Calvanese and M. Lenzerini. On the interaction between ISA and cardinal-
ity constraints. In Proceedings of the Tenth IEEE International Conference on
Data Engineering (ICDE’94), pages 204–213, Houston (Texas, USA), 1994. IEEE
Computer Society Press.

11. ILOG Solver system version 5.1 user’s manual, 2001.
12. ILOG OPL Studio system version 3.6.1 user’s manual, 2002.
13. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Modeling Language User

Guide. Addison Wesley Publ. Co., Reading, Massachussetts, 1998.
14. M. Lenzerini and P. Nobili. On the satisfiability of dependency constraints in

entity-relationship schemata. Information Systems, 15(4):453–461, 1990.
15. C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning in

description logics. In Proceedings of the Nineteenth International Conference on
Automated Deduction (CADE 2003), pages 60–74, 2003.

16. K. Schild. A correspondence theory for terminological logics: Preliminary report. In
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence
(IJCAI’91), pages 466–471, 1991.

17. B. Thalheim. Fundamentals of cardinality constraints. In G. Pernoul and A. M.
Tjoa, editors, Proceedings of the Eleventh International Conference on the Entity-
Relationship Approach (ER’92), pages 7–23. Springer, 1992.

18. P. Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, 1999.

class Client { /* Properties and methods (always omitted) */ };

class Person : Client {};

class Firm : Client {};

class Banquet {};

class Celebration {};

class Restaurant {};

class Menu {};

class Dish {};

class CharacteristicRestaurant : Restaurant {};

class Speciality : Dish {};

[association] class Order {

[Min (1), Max (1)] Client REF clior;

[Min (1)] Banquet REF baor;

};

[association] class Related {

[Min (1), Max (1)] Celebration REF cerel;

[Min (1), Max (1)] Banquet REF barel;

};

[association] class PlaceIn {

[Min (1)] Banquet REF bain;

[Min (1), Max (1)] Restaurant REF rein;

};

[association] class ServedIn {

[Min (1)] Banquet REF baser;

[Min (1), Max (1)] Menu REF meser;

};

[association] class IsComprised {

[Min (1)] Menu REF mecom;

[Min (1)] Dish REF dicom;

};

[association] class OfferM {

[Min (1)] Restaurant REF reof;

[Min (1)] Menu REF meof;

};

[association] class OfferS {

Speciality REF speof;

[Min (1)] CharacteristicRestaurant REF charof;

};

Fig. 8. MOF description of the class diagram in Figure 7.

