
Towards Implementing Finite Model Reasoning in

Description Logics

In Proc. of the 2004 Int. Workshop on Description Logics (DL 2004)

Marco Cadoli1, Diego Calvanese2, Giuseppe De Giacomo1

1 Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
lastname @dis.uniroma1.it

2 Faculty of Computer Science
Free University of Bolzano/Bozen

Piazza Domenicani 3, I-39100 Bolzano, Italy
calvanese@inf.unibz.it

Abstract

We describe our ongoing work that aims at understanding how one can develop
a system that performs finite model reasoning in Description Logics. In particular
we report on the preliminary results that we have obtained by encoding reasoning
services in DLs as specifications for constraint programming solvers. We have used
such an approach to reason with respect to finite models on UML class diagrams.

1 Introduction

Expressive Description Logics (DLs) do not enjoy the finite model property. This
means that a knowledge base expressed in such a DL may be satisfiable, though it ad-
mits only models with an infinite domain [9, 1]. The loss of the finite model property
is due to the interaction between cardinality constraints, the use of direct and inverse
roles, and general (possibly cyclic) inclusion assertions in the knowledge base. Hence,
for such DLs, techniques have been investigated to address reasoning with respect to
finite models only [10, 6, 8, 13]. Notably, the presence of cardinality constraints, to-
gether with the requirement of models to be finite, gives rise to combinatorial aspects
in the reasoning problems, and such aspects are taken into account by the proposed
techniques by resorting to the encoding of satisfiability into solving numerical depen-
dencies.

The recent interest in DLs as a means to formalize and reason on class based
formalisms for conceptual modeling, software engineering, and ontologies, has revived
the interest in finite model reasoning, since such formalisms are often used to represent
structures that are intrinsically finite (e.g., a databases, object repositories, etc.).



enrolled20..* 1..1

0..3 1..*

assignedworks

1..1 0..6

student curriculum

teaching
assistant

Figure 1: A finitely inconsistent class diagram

In this paper we focus on UML class diagrams.1 Finite model reasoning in UML

class diagrams is of crucial importance for assessing quality of the analysis phase in
software development. Finite unsatisfiability of a class diagram means that there
are some classes or associations which cannot have a finite number of instances. This
concept must be contrasted with unrestricted unsatisfiability, which means that classes
or associations cannot have any, i.e., both finite and infinite, number of instances.
Indeed, for the purpose of software engineering, finite model reasoning in UML class
diagrams is often considered more important than unrestricted reasoning.

Example 1 As an example, consider Figure 1, which states reasonable constraints
for a university scenario; e.g., there is a binary association enrolled between classes
student and curriculum, and the multiplicities on the association express that each
student is enrolled in exactly one curriculum, while each curriculum must enroll at least
20 students (‘*’ denotes that there is no constraints on the maximum multiplicity).
Such a diagram is satisfiable in the unrestricted sense. Indeed, suppose there is an
instance c1 of curriculum; then there must be at least 20 students enrolled in c1,
and since each such student must work with exactly one teaching assistant and each
teaching assistant can work with at most 3 students, there must be at least 7 teaching
assistants; since at most 6 teaching assistants can be assigned to c1, there must be a
second instance c2 of curriculum; considering that each student can be enrolled in at
most one curriculum, by applying the same line of reasoning, we can see that there
must be an infinite sequence of instances c3, c4, . . . of curriculum. However, this shows
also that the diagram in Figure 1 is not finitely satisfiable.

In this paper we address the implementation of finite model reasoning in DLs, a
task that has not been attempted so far. As a matter of fact, state-of-the-art DL
reasoning systems, such as Fact or Racer, perform unrestricted reasoning, and do
not address finite model reasoning. Interestingly, finite model reasoning on UML class
diagrams itself has, to the best of our knowledge, never been implemented in any kind
of system.

1http://www.omg.org/uml/

2



The main result of this paper is that it is possible to use off-the-shelf tools for
constraint modeling and programming for obtaining a finite model reasoner. In par-
ticular, exploiting the finite model reasoning technique presented in [10, 8], we propose
an encoding as Constraint Satisfaction Problem (CSPs) of knowledge base satisfiabil-
ity. Moreover, we show also how CSP can be used to actually return a finite model of
the knowledge base (a task needed for particular applications, as [4]).

In fact, in this paper, we focus on UML class diagrams without ISA relations
between associations, seen as a means of describing DL knowledge bases (see, e.g., [3]).
More precisely, such UML class diagrams correspond essentially to primitive ALUNI

knowledge bases, which consist of (possibly cyclic) inclusion assertions of the form
B v C, where B is boolean combination of atomic concepts and C is a concept of the
DL ALUNI [10]. Experimentation so far is in a preliminary stage, but the results we
have obtained are quite encouraging.

2 Finite Model Reasoning in DLs

The technique for finite model reasoning in DLs with number restrictions, inverse roles
and inclusion assertions was first presented in [10, 6], and is based on translating the
knowledge base in a set of linear inequalities. Intuitively, consider a simple knowledge
base K formed by inclusion assertions

> v ∀R−.A u ∀R.B

A v (≥ m1 R) u (≤ n1 R)
B v (≥ m2 R−) u (≤ n2 R−)

for each role R. Such assertions express that R is typed on A for the first component
and B for the second, and additionally expresses minimum and maximum cardinality
constraints on the participation to R. It is easy to see that such a knowledge base
K is always satisfiable (assuming mi ≤ ni) if we admit infinite models. Hence, only
finite model reasoning is of interest. We observe that, if K is finitely satisfiable, then
it admits a finite model in which all atomic concepts are pairwise disjoint. Exploiting
this property, we can encode finite satisfiability of K in a constraint system as follows.
We introduce one variable for each role and atomic concept, representing the number
of instances of the role (resp., concept) in a possible model of K. Then, for each R we
introduce the constraints

m1 · a 6 r 6 n1 · a

m2 · b 6 r 6 n2 · b

a · b > r

where a, b, and r are the variables corresponding to A, B, and R, respectively.
It is possible to show that, from a solution of such a constraint system, we can

construct a finite model of K in which the cardinality of the extension of each concept
and role is equal to the value assigned to the corresponding variable2.

2In fact, if one is interested just in the existence of a finite model, one could drop the nonlinear

constraints of the form a · b > r.

3



Figure 2: The “restaurant” UML class diagram

The approach above can be extended to deal also with inclusion assertions ex-
pressing ISA, disjointness, and covering between concepts. Intuitively, one needs to
introduce one variable for each combination of atomic concepts; similarly, for roles
one needs to distinguish how, among the possible combinations of atomic concepts,
the role is typed in its first and its second component. This leads, in general, to the
introduction of an exponential number of variables and constraints [10]. We illustrate
this, in the context of UML, in the next section.

3 Finite Model Reasoning via CSP

We address the problem of finite satisfiability of UML class diagrams, and show how it
is possible to encode two problems as constraint satisfaction problems (CSPs), namely:

1. deciding whether all classes in the diagram are simultaneously finitely satisfiable,
and

2. finding –if possible– a finite model with non-empty classes and associations.

We use the “restaurant” class diagram, shown in Figure 2, as our running example.

4



First we address the problem of deciding finite satisfiability. As mentioned, we use
the technique proposed in [6], which is based on the idea of translating the multiplicity
constraints of the UML class diagram into a set of inequalities among integer variables.

The variables and the inequalities of the CSP are modularly described considering
in turn each association of the class diagram. Let A be an association between classes
C1 and C2 such that the following multiplicity constraints are stated:

• there are at least min1 and at most max 1 links of type A (instances of the
association A) for each object of the class C1;

• there are at least min2 and at most max 2 links of type A for each object of the
class C2.

Referring to Figure 2, if A stands for served in, C1 stands for banquet, and C2 stands
for menu, then min1 is 1, max 1 is 1, min2 is 1, and max 2 is ∞.

For the sake of simplicity, we start from the special case in which neither C1 nor
C2 participates in a ISA hierarchy, e.g., the related and the served in associations of
Figure 2.

The CSP is defined as follows:

• there are three non-negative variables c1, c2, and a, which stand for the number
of objects of the classes C1 and C2 and the number of links of A, respectively;

• there are the following constraints (we use the syntax of the constraint program-
ming language opl [14]):

1. min_1 * c1 <= a;

2. max_1 * c1 >= a;

3. min_2 * c2 <= a;

4. max_2 * c2 >= a;

5. a <= c1 * c2;

6. a >= 1;

7. c1 >= 1;

8. c2 >= 1;

Constraints 1–4 account for the multiplicity of the association; they can be omitted
if either min i = 0, or max i = ∞ (symbol ‘*’ in the class diagram). Constraint 5
sets an upper bound for the number of links of type A with respect to the number
of objects. Constraints 6–8 define the satisfiability problem we are interested in: we
want at least one object for each class and at least one link for each association. The
latter constraints can be omitted by declaring the variables as strictly positive.

When either C1 or C2 are involved in ISA hierarchies, the constraints are more
complicated, because the meaning of the multiplicity constraints changes. As an
example, the multiplicity 1..* of the order association in Figure 2 states that a client

orders at least one banquet, but the client can be a person, a firm, both, or neither
(assuming the generalization is neither disjoint nor complete). In general, for an
ISA hierarchy involving n classes, O(2n) non-negative variables corresponding to all

5



possible combinations must be considered. For the same reason, we must consider four
distinct specializations of the order association, i.e., one for each possible combination.
Summing up, we have the following non-negative variables:

• person, order p, for clients who are persons and not firms;
• firm, order f, for clients who are firms and not persons;
• person firm, order pf, for clients who are both firms and persons;
• client, order c, for clients who are neither firms nor persons;

plus the positive banquet variable.
The constraints (in the opl syntax) which account for the order association are

as follows:

/* 1 */ client <= order_c;

/* 2 */ firm <= order_f;

/* 3 */ person <= order_p;

/* 4 */ person_firm <= order_pf;

/* 5 */ banquet = order_c + order_f + order_p + order_pf;

/* 6 */ order_c <= client * banquet;

/* 7 */ order_f <= firm * banquet;

/* 8 */ order_p <= person * banquet;

/* 9 */ order_pf <= person_firm * banquet;

/* 10 */ client + firm + person + person_firm >= 1;

/* 11 */ order_c + order_f + order_p + order_pf >= 1;

Constraints 1–4 account for the ‘1’ in the 1..* multiplicity; Constraint 5 translates
the 1..1 multiplicity; Constraints 6–9 set an upper bound for the number of links
of type order with respect to the number of objects; Constraints 10–11 define the
satisfiability problem (banquet is already strictly positive).

We refer the reader to [8, 6] for formal details of the translation, and in particular
for the proof of its correctness. As for the implementation, the “restaurant” example
has been encoded in opl as a CSP with 24 variables and 40 constraints. The solu-
tion has been found by the underlying constraint programming solver, i.e., ILOG’s
Solver [12, 11], in less than 0.01 seconds.

4 Constructing a Finite Model

We now turn to the second problem, i.e., finding –if possible– a finite model with non-
empty classes and associations. The basic idea is to encode in the constraint modeling
language of opl the semantics of the UML class diagram (see [3, 2]). In particular we
use arrays of boolean variables representing the extensions of predicates, where the
size of the arrays is determined by the output of the first problem. Since in the first
problem we have enforced the multiplicity constraints, and obtained an admissible
number of objects for each class (actually for each combination of classes), we know
that a finite model of the class diagram exists. We also know the size of the universe
of such a finite model, which is equal to the sum, over all combinations of classes, of
the number of objects in each combination of classes (recall that each combination of
classes is disjoint from all other combinations of classes).

6



Referring to our “restaurant” example, we have the following declarations describ-
ing the size of our universe and two sorts:

int size = client + person + firm + person_firm + restaurant + menu +

characteristic_restaurant + dish + specialty + banquet + celebration;

range Bool 0..1;

range Universe 1..size;

The arrays corresponding, e.g., to the client and banquet classes, and to the order c
association are declared as follows:

var Bool Client[Universe];

var Bool Banquet[Universe];

var Bool Order_C[Universe,Universe];

Now, we have to enforce some constraints to reflect the semantics of the UML

class diagram [3, 2], namely that:

1. each object belongs to exactly one class;
2. the number of objects (resp., links) in each class (resp., association) is coherent

with the solution of the first problem;
3. the associations are typed, e.g., that a link of type order c insists on an object

which is a banquet and on another object which is a client;
4. the multiplicity constraints are satisfied.

Such constraints can be encoded as follows (for brevity, we show only some of the
constraints).

// AN OBJECT BELONGS TO ONE CLASS

forall(x in Universe)

Client[x] + Person[x] + Firm[x] + Person_Firm[x] + Restaurant[x] +

Characteristic_Restaurant[x] + Dish[x] + Specialty[x] + Banquet[x] +

Celebration[x] + Menu[x] = 1;

// ENFORCING SIZES OF CLASSES AND ASSOCIATIONS

sum(x in Universe) Client[x] = client;

sum(x in Universe) Banquet[x] = banquet;

sum(x in Universe, y in Universe) Order_C[x,y] = order_c;

// TYPES FOR ASSOCIATIONS

forall(x, y in Universe)

Order_C[x,y] => Client[x] & Banquet[y];

// MULTIPLICITY CONSTRAINTS ARE SATISFIED

forall(x in Universe)

Client[x] => sum(y in Universe) Order_C[x,y] >= 1;

Summing up, the “restaurant” example has been encoded in opl with about 40
lines of code. After instantiation, this resulted in a CSP with 498 variables and 461
constraints. The solution has been found by ILOG’s Solver in less than 0.01 seconds,
and no backtracking.

7



5 Notes on Complexity

Few notes about the computational complexity are in order. It is known that solv-
ing both problems of deciding finite satisfiability and finite model finding for primi-
tive ALUNI knowledge bases (and hence for UML class diagrams) are EXPTIME-
complete [10, 7, 8]. Our encoding of the first problem in a CSP may result in a
number of variables which is exponential in the size of the diagram. Anyway, since
the exponentiality depends on the maximum number of classes involved in the same
ISA hierarchy, the actual size for real UML diagrams will not be very large.

As for the second problem, our encoding is polynomial in the size of the class
diagram. Note that this does not contradict the EXPTIME lower bound, due to the
program complexity of modeling languages such as opl. Indeed, in [5] it is shown that
the program complexity of boolean linear programming is NEXPTIME-hard.

6 Conclusions

In this paper we have reported on our ongoing investigation on implementing finite
model reasoning in DLs. We have shown how current state-of-the-art constraint solvers
can be used to perform such a kind of reasoning. The performance of such systems
in the experiments done so far is quite good, though these results still need to be
confirmed on larger cases, such as the CIM3 diagrams. This is ongoing work. We are
also building a prototype system for finite model reasoning that uses opl as reasoning
engine.

Our implementation can so far not deal with UML class diagrams containing as-
sociations between roles. The translation of such diagrams in a DL knowledge base
requires to introduce inclusion assertions between roles, or, alternatively, to reify roles
and thus introduce qualified number restrictions to encode multiplicities [2]. In [8, 6],
an extension of the technique for finite model reasoning illustrated here is proposed,
that can deal also with qualified number restrictions. However, such a method re-
quires to introduce a number of variables and constraints that is double exponential
in the size of the knowledge base. In [13] a more involved technique is presented, for
which the size of the constraint system stays simply exponential. However, numbers
appearing in number restrictions cannot be dealt with directly in the constraints and
need to be encoded using counters. Thus, the possibility of actually implementing
one or the other of these methods by making use of constraint solvers requires further
investigation.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

3http://www.dmtf.org/standards/cim/

8



[2] D. Berardi, A. Cal̀ı, D. Calvanese, and G. De Giacomo. Reasoning on UML class
diagrams. Technical Report 11-03, Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, 2003.

[3] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams
is EXPTIME-hard. In Proc. of the 2003 Description Logic Workshop (DL 2003),
pages 28–37. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/

Vol-81/, 2003.

[4] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. e-
Service composition by description logics based reasoning. In Proc. of the 2003
Description Logic Workshop (DL 2003), pages 75–84. CEUR Electronic Work-
shop Proceedings, http://ceur-ws.org/Vol-81/, 2003.

[5] M. Cadoli. The expressive power of binary linear programming. In Proc. of the
7th Int. Conf. on Principles and Practice of Constraint Programming (CP 2001),
volume 2239 of Lecture Notes in Computer Science, 2001.

[6] D. Calvanese. Finite model reasoning in description logics. In Proc. of the 5th Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR’96),
pages 292–303, 1996.

[7] D. Calvanese. Reasoning with inclusion axioms in description logics: Algo-
rithms and complexity. In Proc. of the 12th Eur. Conf. on Artificial Intelligence
(ECAI’96), pages 303–307. John Wiley & Sons, 1996.

[8] D. Calvanese. Unrestricted and Finite Model Reasoning in Class-Based Represen-
tation Formalisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Uni-
versità di Roma “La Sapienza”, 1996. Available at http://www.dis.uniroma1.
it/pub/calvanes/thesis.ps.gz.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expres-
sive description logics. In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, chapter 23, pages 1581–1634. Elsevier Science Publishers
(North-Holland), Amsterdam, 2001.

[10] D. Calvanese, M. Lenzerini, and D. Nardi. A unified framework for class based
representation formalisms. In Proc. of the 4th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’94), pages 109–120, 1994.

[11] ILOG Solver system version 5.1 user’s manual, 2001.

[12] ILOG OPL Studio system version 3.6.1 user’s manual, 2002.

[13] C. Lutz, U. Sattler, and L. Tendera. The complexity of finite model reasoning
in description logics. In Proc. of the 19th Int. Conf. on Automated Deduction
(CADE 2003), pages 60–74, 2003.

[14] P. Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, 1999.

9


