Intelligenza Artificiale 13 (2019) 21-36
DOI 10.3233/1A-190023
10S Press

21

Ontology-based data access — Beyond

relational sources

Elena Botoeva?, Diego Calvanese®*, Benjamin Cogrel®, Julien Corman® and Guohui Xiao

b

aDepartment of Computing, Imperial College London, London, U.K.
bFaculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

Abstract. The database (DB) landscape has been significantly diversified during the last decade, resulting in the emergence
of a variety of non-relational (also called NoSQL) DBs, e.g., XML and JsoN-document DBs, key-value stores, and graph DBs.
To enable access to such data, we generalize the well-known ontology-based data access (OBDA) framework so as to allow
for querying arbitrary data sources using SPARQL. We propose an architecture for a generalized OBDA system implementing
the virtual approach. Then, to investigate feasibility of OBDA over non-relational DBs, we compare an implementation of
an OBDA system over MongoDB, a popular jsoN-document DB, with a triple store.

This article is an extended and revised version of an article that appeared in the proceedings of the /7th International
Conference of the Italian Association for Artificial Intelligence (AI*IA) [4].

Keywords: Ontology-based data access, NoSQL, JSON, MongoDB, query optimization

1. Introduction

To cope with the requirements of a variety of mod-
ern applications and their differing needs with respect
to data management, in the last decade we have wit-
nessed a strong diversification in the landscape of
database (DB) management systems (DBMSs). Tra-
ditional relational DBMSs now coexist with so-called
NoSQL (“not only” sQL) DBs, which redefine the for-
mat of the stored data, and how it is queried. These
non-relational DBs usually adopt one of four main
data models: (i) Column-oriented DBMSs maintain
data tables similarly to traditional relational DBMSs,
but store such tables by column, rather than by
row. This allows for executing queries, which are
expressed in traditional query languages like SQL,
more efficiently for certain workloads. (ii) graph
databases organize data in the form of elements (i.e.,
the nodes) connected by various relations (i.e., the

*Corresponding author: Diego Calvanese, Faculty of Com-
puter Science, Free University of Bozen-Bolzano, Piazza Domeni-
cani 3, 39100 Bolzano, Italy. E-mail: calvanese @inf.unibz.it.

edges), and are equipped with query languages based
on graph navigation, such as SPARQL. (iii) Key-value
stores represent data as a collection of key-value
pairs, where keys are unique in a collection and
are used to access the data. (iv) Document stores
organize the data in documents, which have a hier-
archical structure, are accessed via a key, and are
encoded in some standard format, such as XML or
JsoN. Typically, they offer ad-hoc, in some cases quite
expressive querying mechanisms (e.g., the aggre-
gation framework of MongoDB), or even require
writing JavaScript functions (e.g., CouchDB!). This
wider choice of DBMSs offers the possibility to
match application needs more closely, allowing for
instance for more flexible data schemas, or more effi-
cient (though simple) queries.

As a result, accessing data using native query lan-
guages is getting more and more involved for users.
In this article, we rely on the ontology-based data
access (OBDA) framework as a uniform solution

Thttp://couchdb.apache.org/

1724-8035/19/$35.00 © 2019 — 10S Press and the authors. All rights reserved

mailto:calvanese@inf.unibz.it
http://couchdb.apache.org/

22 E. Botoeva et al. / Ontology-based data access — Beyond relational sources

to this problem. The OBDA paradigm [20, 26] has
emerged as a proposal to simplify access to relational
data for end-users, by letting them formulate high-
level queries over a conceptual representation of the
domain of interest, provided in terms of an ontology.
In the classical virtual OBDA approach, data is not
materialized at the conceptual level (which justifies
the term “virtual”), and instead queries are translated
automatically from the conceptual level into lower-
level ones that DB engines can directly evaluate. The
translation exploits a declarative specification of the
relationship between the ontology and the data at
the sources, provided in terms of mapping assertions.
This separation of concerns between query formula-
tion at the conceptual level and query execution at the
DB level has proven successful in practice, notably
when data sources have a complex structure, and end-
users have domain knowledge, but not necessarily
data management expertise [1, 7, 12]. Traditionally,
in OBDA, the DB is assumed to be relational, the
ontology is expressed in the OWL 2 QL profile of the
Web Ontology Language owL 2 [17], the mapping is
specified in R2RML [9], and queries are formulated in
SPARQL, the Semantic Web query language [13].

Extending the classical OBDA setting to arbitrary
DBs requires to generalize some of its components.
The first contribution of this work is to present such a
generalized approach that enjoys all benefits already
offered by OBDA. In particular, it allows for hid-
ing from the user low-level concerns such as data
storage and direct access to data (using the native
query language of each data source), and it provides
users with a high-level querying interface, closer to
application needs. One could argue that OBDA is
even more valuable in the NoSQL case compared
to the relational one, as the gap between these low
and high-level concerns tends to be wider. How-
ever, this extension also carries its own challenges,
such as handling different data formats, the need for
more advanced query optimization techniques due to
lower-level query languages, or a possibly increased
need for post-processing.

A second contribution is to investigate the appli-
cability of the generalized OBDA framework in the
practically significant case where the data source is
a document store that offers rich querying capabili-
ties, so that it is in principle feasible to fully delegate
query answering to the source DB engine. In our
investigation, we focus on MongoDB, a document-
based DBMS, and one of the most popular NoSQL
DBMSs as of today. MongoDB can be queried via
a very expressive language, the so-called MongoDB

aggregation framework, which has a more procedu-
ral flavor than SQL or SPARQL, and therefore can be
complex to manipulate. Such a setting appears par-
ticularly well-suited for exploiting the added value
offered by the OBDA paradigm.

Document-based DBMSs can also leverage the
denormalized structure of their data: a document-
based DB instance (i.e., a collection of documents)
can often be seen as a denormalized version of a
relational DB instance (where some joins are pre-
computed). Therefore a natural question is whether
OBDA over MongoDB can take advantage of such
structure in order to answer queries efficiently, while
at the same time offering a more user-friendly query
language. As a third contribution of this work, we
provide support for a positive answer. We do so
by instantiating the generalized OBDA framework
over MongoDB as an extension of the OBDA sys-
tem Ontop [6], and comparing its performance with
atriple store, which does not benefit from such denor-
malization. We adopt the triple store Virtuoso [11],
using as dataset an instance of the well-known Berlin
SPARQL Benchmark (BSBM) [3].

The rest of the article is structured as follows.
In Section 2, we recall the standard OBDA frame-
work over relational data sources. In Section 3, we
introduce our proposal for generalizing OBDA to
access arbitrary DBs, and present the architecture of
a generalized OBDA system. In Section 4, we intro-
duce MongoDB, describe our extension of Ontop
over MongoDB, and illustrate the generalized OBDA
architecture with a running example. In Section 5,
we evaluate the performance of this system and com-
pare it to the triple store Virtuoso using BSBM as
dataset. In Section 6, we discuss related work, and
we conclude the article with Section 7.

2. Ontology-based data access

We recall the traditional OBDA paradigm for
accessing relational DBs through an ontology [26].
An OBDA specification is a triple P = (T, M, S),
where 7 is an ontology modeling the domain of inter-
est in terms of classes and properties, S is a relational
DB schema, and M is a mapping consisting of a finite
set of mapping assertions. We note that here we use
the term “ontology” to denote a set of axioms involv-
ing only classes and properties, but not mentioning
individuals. In other words, 7 consists only of the
intensional part (typically called TBox) of an ontol-
ogy in the sense of owL 2. This choice is motivated

E. Botoeva et al. / Ontology-based data access — Beyond relational sources 23

by the fact that in OBDA, the extensional compo-
nent (typically called ABox) is provided by the DB
instance via the mappings, as illustrated below.

To define mapping assertions, we make use of
(RDF) term constructors, each of which is a function
f(x1,...,x,) mapping a tuple of DB values to an
IRI or to an RDF literal. Given a DB schema & and an
ontology 7, a mapping assertion between S and T
is an expression of one of the forms

o(x) ~ (f(x) rdf:type A), or
@(x, x") ~ (f(x) P f'(x)),

where A is a class name in 7, P is a (data or object)
property name in 7, ¢(x) and ¢(x, x) are arbitrary
(sQL) queries expressed over S, and f and f” are term
constructors [15, 20]. Mapping assertions allow one
to define how classes and properties in 7 should be
populated with values in a DB instance of S and with
objects constructed from such values via the term
constructors.

An OBDA instance is a pair (P, D), where P =
(T, M, S) is an OBDA specification and D is a DB
instance satisfying S. The semantics of (P, D) is
given with respect to the RDF graph M(D) induced
by M and D, defined by

{(f(o) raf:type A) | ¢ ~ (f(x) rdf:type A)in M}
and o € ans(p, D)
U

{(f(o) P f'(0) | ¢ ~ (f(x) P f'(x)) in M}
and (o0, 0) € ans(p, D),

where ans(¢, D) denotes the result of the evaluation
of ¢ over D. Then, we define a model of (P, D) to
be simply a model of 7 U M(D), i.e., a first-order
interpretation that satisfies all axioms in 7 and all
facts in M(D). We observe that M (D) provides a set
of extensional facts, but such facts are typically kept
virtual, i.e., they are not actually materialized.
Queries are usually formulated in SPARQL, the
Semantic Web query language that allows for formu-
lating expressive high-level queries over an RDF graph
[13, 19]. Such queries are answered over an OBDA
instance (P, D) according to the semantics of the
chosen SPARQL entailment regime, considering 7 as
the ontology, and M (D) as the RDF graph. Typically,
in OBDA, the ontology 7 is expressed in OWL 2 QL,
and the corresponding entailment regime is that of
OWL 2 QL [14]. We denote with ansq (g, (P, D)) the
answers to a SPARQL query g over an OBDA instance
(P, D) according to the OWL 2 QL entailment regime.

3. Generalized OBDA framework

In this section, we introduce a generalization of the
OBDA framework to arbitrary DBs, and then propose
an architecture for a generalized OBDA system.

3.1. OBDA over arbitrary databases

We assume to deal with a class D of DBs, e.g.,
relational DBs, XML DBs, or JSON stores, such as
MongoDB. Moreover, we assume that D comes
equipped with:

— Suitable forms of constraints, which might
express both information about the structure of
the stored data, e.g., the relational schema infor-
mation in relational DBs, and “constraints’ in the
usual sense of relational DBs, e.g., primary and
foreign keys. We call a collection of such con-
straints a D-schema (or simply, schema).

— A way to provide a (flat) relational view
to D-schemas and D-instances satisfying such
schemas: for a D-schema S, [[S] is the corre-
sponding relational schema, and for a D-instance
D satisfying S, [D] is a relational DB over [S]).
The function [[-] is called relational wrapper.

— A native query language O, such that, for a
query ¢ € Q and for a D-instance D, the answer
ans(p, D) to ¢ over D is defined (and is itself a
D-instance).

Now, given an ontology 7 and a D-schema S, a
mapping M is a set of classical mapping assertions
@ ~ h between [S] and 7, i.e., ¢ is a sQL query
over [S]. Then, an OBDA specification is a triple
(T, M, S). This is analogous to the relational case,
except that now S is a D-schema (equipped with a
relational wrapper) as opposed to a relational schema.
An OBDA instance consists of an OBDA specifica-
tion (7, M, S) and a D-instance D satisfying S. The
semantics of such an instance is derived naturally
from the relational instance [[D] corresponding to
D via the relational wrapper [[-].

Note that our assumption that a relational wrapper
is available for the class D of DBs is not restrictive in
any way, since any form of data can be represented
using relations, independently of how it is structured.
Observe also that the source query in a mapping asser-
tion in our generalized setting is not a native Q query,
but a sQL query. Our framework has the advantage of
having a uniform and expressive mapping language
that is independent of D and Q. It does not mean,
however, that the concrete user mapping language

24 E. Botoeva et al. / Ontology-based data access — Beyond relational sources

(SPARQL b
|
Rewriting Ontology T
qIT SPARQL Mapping/\/l
®Translation
+
@) 1) Q-query
-l |
©Evaluation
¥
T4 D-result
I
Post-processing
@y
T'q SPARQL-result
. J

Fig. 1. Query answering in OBDA.

must strictly follow this specification. When it does
not, the system should only be able to transform user
mapping assertions into classical ones.

When referring to OBDA, we typically assume that
it follows the virtual approach, in which materializing
the RDF graph is avoided, and instead (part of) query
answering is delegated to the DB. In this approach,
the query answering process can be depicted as in
Fig. 1, and consists of 4 main steps: (a) An input
SPARQL query ¢ is first rewritten with respect to the
ontology 7 into ¢, (according to the semantics of
the entailment regime, this step only rewrites the
basic graph patterns (BGPs) in g [14]). b The rewrit-
ten SPARQL query g, is translated into one or several
native queries ¥ € Q. When the DB engine does not
support (efficiently) some SPARQL operators, multiple
native queries might be required, and the evaluation
of the unsupported operators may be postponed to the
final post-processing step. ¢ The native queries y are
evaluated by the DB engine to produce D-results ry,. d
The results ry, of all queries v are combined and con-
verted into the SPARQL result r,; in the post-processing
step. In the generalized OBDA framework the post-
processing step may be more involved than in the
classical relational case, mostly due to the fact that
the DB system may offer limited querying capabili-
ties. In particular, some NoSQL DBs do not support
joins. Another reason for not delegating certain query
constructs to the DB is efficiency. For instance, in the
case of nested data (e.g., JSON documents contain-
ing arrays), the unnesting (i.e., flattening) of nested
objects into tuples may produce output objects that
are much larger than the input, and so it may be prefer-
able to perform unnesting as a post-processing step,
so as to reduce network load between DB and client.

[SPARQL j
@,
(1)

@}
D

Fig. 2. SPARQL to native query translation.

For the generalized OBDA framework, we propose
to translate SPARQL queries to native queries in two
steps (cf. Fig. 2): first translate the input SPARQL query
to an intermediate query, subject to transformations,
and then translate the (transformed) intermediate
query to a native query. The intermediate query lan-
guage, denoted 1Q, is expected to be a more high-level
language than Q, and can vary depending on Q, but
also on the considered fragment of SPARQL. On the
one hand, it should at least capture such fragment
(e.g., for BGPs, joins are sufficient, while for a frag-
ment with property paths, 1Q should include some
form of recursion). On the other hand, 1Q may include
other operators that are present/expressible in Q (e.g.,
an unnest operator for dealing with nested data). Note
that Relational Algebra (RA) as 1Q is sufficient for the
first-order fragment of SPARQL and for relational DBs.
Our framework, relying on the use of 1Q, provides sev-
eral advantages: (i) it offers a better support for query
optimization, since 1Q, unlike SPARQL, can take into
account the structure of the data, without necessarily
being as low-level as Q; (ii) the optimization tech-
niques devised for 1Q are independent of Q; (iii) the
translation from SPARQL to 1Q is standard and depends
only on the mapping (since 1Q subsumes RA, such a
translation has to extend the well-known translation
from SPARQL to RA).

3.2. Architecture of an OBDA system over
heterogeneous data sources

We propose an architecture for an OBDA system
able to answer SPARQL queries over heterogeneous
data sources. This architecture, depicted in Fig. 3, is
composed of an offline stage, independent from the

E. Botoeva et al. / Ontology-based data access — Beyond relational sources 25

Rewritten
SPARQL g7 |

SPARQL 1 .]
q—} Rewriting)

9\ Unfolding w.r.t.) q1 €1Q §Structural/semantic]

mappings J L optimization

® i

. i Nati -to-nati
SPARQL [5 (1 rocessing | e—NAGYE - ative 1Q-to-native
result 2 J results) queries equery translation

q2 € 1Q

Fig. 3. Proposed architecture for an OBDA system.

input SPARQL queries, and an online stage, dedicated
to query answering.

The offline stage consisting of steps (i) and @),
takes as input the ontology, mapping, and schema,
and produces two elements, to be used during the
online stage: the classified ontology, and the sat-
urated mapping [21, 23]. The former makes also
implied inclusion assertions between classes and
between properties explicit, while the latter is con-
structed by “saturating” the input mapping with
the classified ontology. The saturation is obtained
by adding to the existing mapping assertions addi-
tional ones that are derived by combining information
from the input mapping and from the ontology
axioms. For instance, if M contains an asser-
tion p(X) ~ (f(x) rdf:type A) and 7 an axiom
A subClassOf B, then My will contain also the
assertion @(X) ~ (f(x) rdf:type B).Saturating the
mapping essentially allows us to consider ontology
axioms already in the offline stage, and avoid (or
reduce) their use during query rewriting. In this way,
we anticipate to the offline stage operations that oth-
erwise would need to be performed in the online
stage, and this reduces the overall time required for
query rewriting, when multiple user queries need to
be executed over the ontology. We also observe that
the saturated mapping can be significantly simplified
for the online stage, by using query containment-
based optimization to remove redundant mapping
assertions.

The online stage handles individual SPARQL
queries, and can be split into 6 main steps: @ the input
SPARQL query is rewritten according to the classified
ontology; @ the rewritten query is unfolded w.r.t. the
saturated-mapping, by substituting each triple with
its mapping definitions; @ the resulting 1Q is sim-
plified by applying structural (e.g., replacing join of
unions by union of joins) and semantic (e.g., redun-
dant self-join elimination) optimization techniques;

@ the optimized 1Q is translated into one or multi-
ple native queries; ® these are evaluated by the DB
engine over the underlying DB (which is not explic-
itly shown as input in Fig. 3); and finally, ® the native
results are combined and transformed into SPARQL
results.

Such an architecture allows for steps @), G, @,
and @ to be independent of the actual class D of DBs
(white boxes in Fig.3). Steps @ and ® require an
implementation specific to 1Q (gray boxes), while @
and ® are specific to D (black boxes).

We emphasize that the structural and semantic opti-
mization step is crucial for OBDA to work in practice.
In particular, unfolded SPARQL queries often con-
tain significantly more joins than actually necessary,
since SPARQL atoms are triples, while data is typi-
cally stored in the form of n-ary entities (e.g., n-ary
relations in relational DBs). In the case of OBDA
over a document-based DB, these techniques can be
extended to take advantage of additional opportu-
nities for optimization offered by the structure of
the DB instance. Some of these optimization tech-
niques are illustrated on the example presented in
Section 4.4.

4. OBDA over MongoDB

We illustrate the generalized OBDA framework
by focusing on a specific NoSQL DB, namely
MongoDB,? a popular and representative instance
of document DBs. First, we introduce the data for-
mat and the query language of MongoDB, and we
briefly relate them to the nested relational model and
nested relational algebra. Then, we describe our pro-
totype implementation for answering SPARQL queries
over MongoDB. Finally, we illustrate the generalized

Zhttps://docs.mongodb.org/manual/

https://docs.mongodb.org/manual/

26

E. Botoeva et al. / Ontology-based data access — Beyond relational sources

{ _id: 23226,
name: "Olympus OM-D E-M10 Mark II",
offers: [
{ offerId: 258, price: 747.14, year: 2015, vendor: {
vendorId: 3785, name: "Yeppon Italia", homepage: "https://www.yeppon.it"}},
{ offerId: 895, price: 609.42, year: 2018, vendor: {
vendorId: 481, name: "amazon.it", homepage: "https://www.amazon.it"}},
{ offerId: 922, price: 759.99, year: 2017, vendor: {
vendorId: 481, name: "amazon.it", homepage: "https://www.amazon.it"}}
]
}
{ _id: 25887,
name: "Panasonic Lumix DMC-GX80",
offers: [
{ offerId: 311, price: 500.32, year: 2018, vendor: {
vendorId: 481, name: "amazon.it", homepage: "https://www.amazon.it"}}
]
}

Fig. 4. A collection D? of two MongoDB documents.

OBDA framework over MongoDB on an example
inspired by the BSBM benchmark.

4.1. MongoDB

MongoDB stores and exposes data as collections
of 750N-like documents.? A sample collection of two
MongoDB documents consisting of (nested) key-
value pairs and arrays, is given in Fig. 4, where each
document contains information about a product: its
id, name, and a list of offers, in the form of a JSON
array. Each offer has itself an id, price, year, and
vendor (in turn with id, name, and homepage).

In accordance with the generalized OBDA frame-
work defined in Section 3, we assume that an input
collection D of MongoDB documents complies to
a schema S. In other words, documents in D are
expected to represent objects of the same type, and
thus to follow the same structure.* So if a field (e.g.,
offersoroffers.vendor.homepage)hasan
array (resp., an object or a constant) as value in one
document, we assume that in every document this
field either has an array (resp., an object or a con-
stant) as value, or is absent (in which case the value
is considered to be null).

310N (or JavaScript Object Notation) is a format for organiz-

ing data in tree-shaped structures. So in spirit it is similar to XML,
but it is significantly more lightweight.

4This is not required by MongoDB itself, only by the OBDA
framework.

products
productld name
23226 Olympus OM-D E-M10 Mark I
25887 Panasonic Lumix DMC-GX80
vendors
vendorld name homepage
481 amazon.it http://www.amazon.it
3785 Yeppon Italia http://www.yeppon.it
offers
offerld price year product vendor
258 747.14 2015 23226 3785
311 500.32 2018 25887 481
895 609.42 2017 23226 481
922 759.99 2018 23226 481

Fig. 5. Relational view [D”] of the collection of Fig. 4, following
the BSBM schema.

Note that in a normalized relational DB
instance, this data would be spread across sev-
eral tables. Indeed, our example is inspired by
the e-commerce scenario of the BSBM bench-
mark [3], where the data is structured according to
a relational schema consisting of multiple tables.
Fig.5 provides the relational view corresponding
to this MongoDB collection, with distinct tables
for products, vendors, and offers (the relational

E. Botoeva et al. / Ontology-based data access — Beyond relational sources 27

schema in the BSBM benchmark is actually more
complex).

Note also that the JsoN data in Fig. 4 is denormal-
ized. In particular, it contains redundant information:
the name and homepage of vendor 481 are present
3 times. Document-based DBMSs like MongoDB
can take advantage of such redundancy. For instance,
retrieving all vendors (with id, name, and home-
page) of a given product over an instance of the
relational schema of Fig. 5 requires two (potentially
costly) join operations. But the same request over
the denormalized data does not require any join:
the relevant information is already grouped within a
document.

However, query execution can also be penal-
ized by redundancy. For instance, a value
for field offers.vendor.vendorId Iis
always associated to the same value for field
offers.vendor.name. But this type of con-
straint cannot be exploited by MongoDB (as
of now) for query optimization. Therefore in
order to retrieve the name(s) of vendor 481 for
instance, MongoDB would fetch into memory all
documents with an occurrence of 481 for field
offers.vendor.vendorId, even though one
document is sufficient in theory. Noticeably, this
problem could be avoided by choosing a different
document structure for the same data, with one
document for each vendor rather than for each
product, but with the drawback that the collection
would then contain redundant information about
products. In general, the choice of a particular
document structure is a trade-off, favoring some
queries, and penalizing others, and should be made
according to the expected query workload (provided
such information is available beforehand).

Like relational DBs, MongoDB allows for declar-
ing indexes. By default, it creates a unique index
over the (top-level) field _id , which serves as the
primary key in a collection. Indexes can drastically
speed up query execution. In particular, retrieving a
(whole) document by a unique value of an indexed
field (like the values of offers.offerId in
Fig. 4) can be done very efficiently by looking up the
value in the index, and then fetching from disk data
that is likely to be contiguous. On the other hand,
queries on values with non-unique occurrences (e.g.,
the values of offers.offer.vendorId) may
be less efficient, because multiple (non-contiguous)
documents may need to be fetched.

MongoDB provides an ad-hoc querying mecha-
nism for formulating expressive queries by means

db.products.aggregate ([
{$project: {
"name": true, "offerl": "S$offers",
"offer2": "S$offers"}},
{$unwind: "S$offerl"},
{$match: {"offerl.year": {$gte: 20163}}},
{$unwind: "S$offer2"},
{$match: {"offer2.year": {$gte: 20163}}},
{$project: {
"name": true, "offerl": true,
"offer2": true,
"sameVendor": {$and: [
{$ne: ["S$offerl.offerId",
"$offer2.offerId"]},
{$eq: ["S$offerl.vendorId",
"$offer2.vendorId"1}1}}},
{$match: {"sameVendor": true}},
{$project: {
"product": {$concat:["bsbm:product/", _id]}
"name": true,
"vendorName": "$offerl.vendor.name",
"pricel": "$offerl.price",
"price2": "$offer2.price"}}

Fig. 6. A MongoDB Aggregate Query (MAQ).

SELECT ?product ?productName
?pricel ?price2 ?vendorName
WHERE {
?product rdfs:label ?productName
?offerl bsbm:product ?product
?offer2 bsbm:product ?product
?offerl bsbm:price ?pricel
?offer2 bsbm:price ?price2
?offerl bsbm:year ?yearl
?offer2 bsbm:year ?year?2
?offerl bsbm:vendor ?vendor
?offer2 bsbm:vendor ?vendor
?vendor rdfs:label ?vendorName
FILTER (?offerl != ?offer2 &&
?yearl >= 2016 && ?year2 >= 2016)

Fig. 7. A SPARQL query corresponding to the MaQ of Fig. 6.

of the aggregation framework.> A MongoDB aggre-
gate query (MAQ) is a sequence of stages, each
of which takes one or two collections of docu-
ments as input, and produces another collection as
output. This language is powerful, but also more
low-level (less declarative) than some well known
query languages such as SQL or SPARQL. Because
of this, MAQs can be complex to read and manipu-
late. As an illustration, the MAQ of Fig. 6 retrieves

Shttps://docs.mongodb.com/manual/reference/operator/aggre
gation-pipeline/

https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/
https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/

28 E. Botoeva et al. / Ontology-based data access — Beyond relational sources

productsN

offers
v.name

_id name

offerld price year v.vendorld v.homepage

258 747.14 2015 3785
23226 Olympus OM-D E-M10 Mark II 895 609.42 2018 481
922 759.99 2017 481

25887 Panasonic Lumix DMC-GX80 311 500.32 2018 481

Yeppon Italia https://www.yeppon.it
amazon.it https://www.amazon.it
amazon.it https://www.amazon.it

amazon.it https://www.amazon.it

Fig. 8. Nested relational view [[D?Thnestea Of the collection of Fig. 4 (where vendor is abbreviated as v).

_id name

23226 Olympus OM-D E-M10 Mark IT 258 747.14 2015 3785
23226 Olympus OM-D E-M10 Mark IT 895 609.42 2018 481
23226 Olympus OM-D E-M10 Mark IT 922 759.99 2017 481
25887 Panasonic Lumix DMC-GX80 311 500.32 2018 481

offerld price year v.vendorld v.name v.homepage

Yeppon Italia https://www.yeppon.it
amazon.it https://www.amazon.it
amazon.it https://www.amazon.it
amazon.it https://www.amazon.it

Fig. 9. Unnesting the sub-relation of fers in the relation of Fig. 8.

v.vendorld v.name

v.homepage

productld name offerld price year

3785 Yeppon Italia https://www.yeppon.it 23226 Olympus OM-D E-M10 Mark IT 258 747.14 2015

23226 Olympus OM-D E-M10Mark IT 895 609.42 2018
481 amazon.it https://www.amazon.it 23226 Olympus OM-D E-M10 Mark I 922 759.99 2017
25887 Panasonic Lumix DMC-GX80 311 500.32 2018

Fig. 10. Nesting all attributes but v.vendorId, v.name, and v. homepage in the relation of Fig. 9.

all products offered twice by the same vendor since
2016. In comparison, the SPARQL query of Fig.7
retrieves the same information, but can be more eas-
ily understood. The more procedural flavor of MAQ
also means that the sequence of stages of an MAQ
is closer to its actual execution, whereas relational
DBsttriple stores hide from the user the complexity
of query planning (e.g., the ordering of joins). Hence,
from a user perspective, OBDA over MongoDB
appears indeed as a promising alternative to manually
devising MAQs.

4.2. The nested relational model

Alternatively, a collection of MongoDB docu-
ments can be viewed through the nested relational
model, an extension of the relational model in which
attributes can be also relation-valued, and not only
atomic. Relation-valued attributes are called sub-
relations. For instance, the MongoDB collection Db
of Fig.4 can be naturally represented in the nested

relational model as the relation [D?Tlnested in Fig. 8,
with a sub-relation for the field of fers.b

Nested relational algebra (NRA) [25] extends RA
to operate on nested data. It is of particular interest
for modeling operations on MongoDB collections,
since it is equivalent in expressive power to a frag-
ment of MAQ, as has been shown in [5]. NRA extends
RA with two operators: nest and unnest. Intuitively,
unnest flattens a sub-relation by concatenating each
tuple in the sub-relation with the remaining attributes
in the parent tuple. Instead, nest creates a sub-relation
by partitioning the input relation, such that each ele-
ment of the partition agrees on the values of the
attributes that are not being nested. As an illus-
tration, we first unnest the sub-relation offers,
which yields the relation of Fig.9. Then we nest all
attributes except for of fer . vendor . vendorId,
offer.vendor.vendorName, and offer.

SNotice though that the elements of a MongoDB array are
ordered, whereas this is not the case of tuples in a sub-relation.

E. Botoeva et al. / Ontology-based data access — Beyond relational sources 29

vendor . homepage into a sub-relation r, which
yields the relation of Fig. 10. As a result, tuples are
grouped by vendor.

4.3. Instantiation of OBDA for MongoDB

We built a proof-of-concept prototype for
answering SPARQL queries over MongoDB, called
Ontop/MongoDB, which extends the Ontop sys-
tem [6] and implements the architecture described
in Fig.3. The current implementation supports the
fragment of sPARQL including BGPs, FILTER, JOIN,
OpTIONAL, and UNION over MongoDB 3.4. In this
implementation of the virtual OBDA architecture,
NRA serves as 1Q, and MAQ as the native query lan-
guage. The system is designed to fully delegate query
execution to the MongoDB engine,’ thus minimizing
the amount of post-processing required in step ® of
Fig.3.

Ontop/MongoDB takes as input (in addition
to the MongoDB database instance) an OWL 2 QL
ontology, a mapping, and a set of constraints.
The constraints are user-defined unicity constraints
(UCs) or functional dependencies (FDs) that hold
over the JsoN documents being queried. Mon-
goDB may not be able to enforce such constraints,
but they may nonetheless hold over the data.
For instance, in the collection of Fig.4, an
FD holds from offers.vendor.vendorId to
offers.vendor.name, meaning that the value
of the former determines the value of the latter. These
constraints can be used for query optimization (e.g.,
to eliminate redundant joins, as illustrated in Sec-
tion 4.4). We also emphasize that it can be verified
whether a manually declared constraint actually holds
over the data, by evaluating an appropriate query over
the MongoDB instance. For instance, the MaQ of
Fig. 11 retrieves all sets of values (if any) that vio-
late the FD from offers.vendor.vendorIdto
offers.vendor.name,inany MongoDB collec-
tion with the same schema as the collection of Fig. 4.

Note also that if the MongoDB instance is a denor-
malized version of an existing relational DB instance,
then UCs and FDs can be directly inferred from keys
declared in the relational DB schema. For instance,
let us assume that the MongoDB collection of Fig. 4
is a denormalized version of the relational DB
instance of Fig. 5, and that the attribute vendorId
is declared as the primary key of table vendor.
Then the FD from offers.vendor.vendorId

7 An exception is the step that builds the returned RDF strings
(IRIs and literals) from the constants retrieved from the DB.

db.products.aggregate ([
{$unwind: "S$offers"},
{$project: {
"offers.vendor.vendorId": true,

"offers.vendor.name": true}},
{$group: {
_id: "$offers.vendor.vendorId",

names:
{$addToSet: "$offers.vendor.name"}}},
{$project: {count: {$size: "S$names" }}},
{$match: {count :{$gte: 2}}}
13

Fig. 11. MAQ retrieving possible violations of the FD from
offers.vendor.vendorId to offers.vendor.name,
based on the schema of the collection of Fig. 4.

to offers.vendor.name must hold over the
MongoDB collection.

In step @, in addition to applying relational
optimization techniques implemented by Ontop,
Ontop/MongoDB also applies techniques specific to
nested data, based on the equivalence with NRA men-
tioned above. In particular, it can take advantage of
the UCs and FDs just mentioned.

In step @, Ontop/MongoDB applies the NRA-
to-MAQ translation given in [5]. An important
consideration in this translation process is that one
has to take into account the internal limitations
that MongoDB puts on the size of in-memory
intermediate results during query evaluation (cur-
rently 16 MB for a single document, and 100 MB
for a collection). For example, a naive 1Q-to-MAQ
translation could produce an intermediate result
in which the content of all input documents is
merged into a single document, whose size might
then exceed the memory limitations. Another key
consideration is to take advantage of indexes avail-
able over the source JSON collection(s). Therefore
Ontop/MongoDB does not apply the translation of [5]
directly, but uses an optimized version, which makes
the full delegation of query answering to MongoDB
practically feasible.

4.4. Generalized OBDA by example

We illustrate the generalized OBDA framework
over MongoDB by elaborating on the running exam-
ple inspired by the BSBM benchmark. The OBDA
instance we consider is a pair (P?, D), where
PP = (TP, MP, SP), the database instance D is the
collection of documents given in Fig. 4, and S is the
schema defining the structure of such documents.
In addition, S? contains two manually declared
constraints, which hold over the data: (i) a UC for the

30 E. Botoeva et al. / Ontology-based data access — Beyond relational sources

SELECT * FROM products ~»
bsbm:product/{productId} rdfs:label {name} .

SELECT * FROM vendors ~
bsbm:vendor/{vendorId} rdfs:label {name} ;
bsbm:homepage {homepage} .

SELECT * FROM offers ~
bsbm:offer/{offerId} bsbm:price {price} ;
bsbm:year {year} ;
bsbm:product {product} ;
bsbm:vendor {vendor} .

Fig. 12. Mapping M? over the relational view of Fig. 5.

field offers.offerId, meaning that each value
of this field is unique in the whole collection;? (ii) an
FD from the field offers.vendor.vendorId
to the fields offers.vendor.name and
offers.vendor.homepage.

We illustrate the evaluation over this OBDA
instance of the SPARQL query ¢ given in Fig.7.
The example focuses on the steps that are most
relevant for the generalization of the OBDA frame-
work. In particular, we do not illustrate ontology
classification, mapping saturation, and SPARQL query
rewriting (respectively, steps @, (), and i) in Fig. 3),
because these are identical to the case of OBDA
over a relational database (for a detailed descrip-
tion, we refer to [14]). For this reason, we simplify
the example by assuming that 7? consists only of a
vocabulary (i.e., it contains no axiom), so that ontol-
ogy classification, mapping saturation, and SPARQL
query rewriting do not produce any change on the
respective inputs.

Mapping. The mapping M? is given in Fig. 12. The
SQL query ¢ in each mapping assertion is defined over
the relational schema [S?]] (corresponding to the DB
instance [D”] of Fig. 5). For brevity, we use a set of
RDF triples on the right-hand side of each mapping
assertion. In such triples, {a} is a placeholder for the
value of attribute a in each tuple in ans(¢, I[Db I, and
s1{a}s; stands for the concatenation of s, {a}, and s».
In our case, since 7 is empty, the saturated mapping
./\/ll%,, coincides with MP.

Note that the concrete mapping language currently
used by Ontop/MongoDB supports source queries
over S? (rather than [S])), i.e., it defines JSON-to-RDF
(rather than SQL-to-RDF) mappings. Ontop/MongoDB
converts internally such mapping assertions into SQL-

to-RDF ones. We only provide the latter here, to keep
the exposition simple.

Unfolding into an 1Q. The unfolding phase (step @
in Fig. 3) starts with the SPARQL query g7+, obtained
by rewriting ¢ w.r.t. the ontology 7” (since 77 is
empty, g7+ coincides with g in our case). Each triple
pattern in gz» is substituted with the corresponding
source SQL query in the saturated mapping ./\/ll%b.
This produces an RA query g;, with the guarantee
that for any DB instance D over the schema Sb,
ans(q1, [D]) = ans(q s, /\/ll’Tb(D)). This is in turn

equivalent to ansq(q, (Pb , D)), i.e., computing the
answer to the original SPARQL query g over the OBDA
instance according to the OWL 2 QL entailment regime
can be reduced to evaluating g; over the relational
view. The resulting query in our running example is
given in Fig. 13. As is conventional, symbols i, o,
and 7 respectively stand for inner join, selection, and
(possibly complex) projection.

IQ optimization. As mentioned in Section 4.3, in our
instantiation of the generalized OBDA framework,
NRA serves as the 1Q language.” In the 1Q optimization
phase (step @ in Fig. 3), Ontop/MongoDB rewrites
the unfolded RA query, expressed over the relational
schema [S’]), into a semantically equivalent NRA
query over the nested relational schema [S?Tnested
(corresponding to the DB instance [DPTnested OF
Fig. 8). While doing so, it applies a series of query
optimization techniques, some of which are NRA-
specific.

As an illustration, Fig. 14 provides a naive rewrit-
ing over [SPTheseea Of the query of Fig. 13, where
all sub-relations are simply unnested (in order
to “access” their attributes), and no optimiza-
tion is applied. Symbol y stands for unnest, and
Xofi—(,_,,,,) for unnesting the sub-relation oOf;
(which counts 6 attributes). The resulting 1Q requires a
total of 9 unnest operations and 9 binary joins, whose
execution may be costly.

In comparison, Fig.15 presents an optimized
rewriting over [S?Tnested, Which contains no join,
and only two unnest operations. A key technique to
obtain this optimized rewriting is to identify redun-
dant joins based on constraints holding over the
schema S?. For instance, each value of _id can
appear at most once in a MongoDB collec