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Abstract. The database (DB) landscape has been significantly diversified dur-
ing the last decade, resulting in the emergence of a variety of non-relational
(also called NoSQL) DBs, e.g., XML and JSON-document DBs, key-value stores,
and graph DBs. To enable access to such data, we generalize the well-known
ontology-based data access (OBDA) framework so as to allow for querying ar-
bitrary data sources using SPARQL. We propose an architecture for a generalized
OBDA system implementing the virtual approach. Then, to investigate feasibility
of OBDA over non-relational DBs, we compare an implementation of an OBDA
system over MongoDB, a popular JSON-document DB, with a triple store.

1 Introduction

The database (DB) landscape has been significantly diversified during the last decade
to satisfy the needs of a wide variety of modern applications. Traditional relational DB
management systems now coexist with the so-called NoSQL (not only SQL) DBs, which
redefine the format of the stored data, and how it is queried. These non-relational DBs
usually adopt one of the following four main data models: the column-family, key-
value, document, or graph data model, and while some of them can be queried through
well-known declarative query languages, such as SQL or SPARQL, others offer ad-hoc
querying mechanisms (e.g., the aggregation framework of MongoDB), or even require
writing JavaScript functions (e.g., in CouchDB1). This wider choice of DBMSs offers
the possibility to match application needs more closely, allowing for instance for more
flexible data schemas, or more efficient (though simple) queries.

As a result, accessing data using native query languages is getting more and more
involved for users. In this paper, we propose a generalization of the ontology-based
data access (OBDA) framework as a uniform solution to this problem. The OBDA
paradigm [22] has emerged as a proposal to simplify access to relational data for end-
users, by letting them formulate high-level queries over a conceptual representation of
the domain of interest, provided in terms of an ontology. In the classical virtual OBDA
approach, these queries are translated automatically into lower-level ones that DB en-
gines can handle. This is done by exploiting a declarative specification of the relation-
ship between the ontology and the data at the sources, provided in terms of mapping
assertions. This separation of concerns between query formulation at the conceptual

1 http://couchdb.apache.org/
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level and query execution at the DB level has proven successful in practice, notably
when data sources have a complex structure, and end-users have domain knowledge,
but not necessarily data management expertise [10,5]. Traditionally, in OBDA, the DB
is assumed to be relational, the ontology is expressed in the OWL 2 QL profile of the Web
Ontology Language OWL 2 [15], the mapping in specified in R2RML [7], and queries
are formulated in SPARQL, the Semantic Web query language [11].

Our generalization extends the classical OBDA setting to arbitrary DBs. The ap-
proach enjoys all benefits already offered by OBDA, in particular hiding from the user
low-level concerns such as data storage and access, and providing a high-level querying
interface, closer to application needs. In the NoSQL case, an additional advantage is
the possibility to formulate all queries in a familiar yet expressive language, namely
SPARQL, which is both widespread and very similar to SQL dialects.

We then investigate the feasibility of the generalized OBDA framework when query
answering is fully delegated to the DB engine, by focusing on MongoDB, a document-
based DB, which is also one of the most popular NoSQL DBs as of today. OBDA ap-
pears as a solution of choice for MongoDB: MongoDB offers a very expressive query
language, which however has a more procedural flavor than SQL or SPARQL, and can
become very complex to manipulate for advanced information needs. Document-based
DBs can leverage the denormalized structure of their data: a collection of documents
can be seen as a materialized view over a (normalized) relational DB instance, essen-
tially with joins being pre-computed. Therefore a natural question we try to answer in
this paper is whether OBDA over MongoDB can take advantage of such structure in or-
der to answer queries efficiently. We provide a first element towards a positive answer,
by instantiating the generalized OBDA framework over MongoDB as an extension of
the OBDA system Ontop [4], and comparing its performance with a triple store, which
does not benefit from such denormalization.

The rest of the paper is structured as follows. Section 2 recalls the standard OBDA
framework over relational data sources. Section 3 introduces our proposal for generaliz-
ing OBDA to access arbitrary DBs, and an architecture of a generalized OBDA system.
Section 4 introduces MongoDB, and describes our extension of Ontop over MongoDB.
Section 5 evaluates the performance of this system and compares it to the triple store
Virtuoso, using as dataset an instance of the well-known Berlin SPARQL Benchmark
(BSBM). Section 6 discusses related work, and Section 7 concludes the paper.

2 Ontology-based Data Access

We recall the traditional OBDA paradigm for accessing relational DBs through an on-
tology [22]. An OBDA specification is a triple P = 〈T ,M,S〉, where T is an ontology
modeling the domain of interest in terms of classes and properties, S is a relational
DB schema, andM is a mapping consisting of a finite set of mapping assertions. We
note that T consists of axioms involving classes and properties, and does not mention
individuals. In other words, T consists only of the intensional part of an ontology.

To define mapping assertions, we make use of (RDF) term constructors, each of
which is a function f(x1, . . . , xn) mapping a tuple of DB values to an IRI or to an RDF



literal. A mapping assertion [13] between S and T is an expression of the form

ϕ(x) (f(x) rdf:type A) or ϕ′(x,x′) (f(x) P f ′(x′)),

where A is a class name in T , P is a property name in T , ϕ(x) and ϕ′(x,x′) are
arbitrary (SQL) queries expressed over S , and f and f ′ are term constructors. Mapping
assertions allow one to define how classes and properties in T should be populated with
objects constructed from values in a DB instance of S.

An OBDA instance is a pair 〈P, D〉, where P = 〈T ,M,S〉 is an OBDA specifica-
tion and D is a DB instance satisfying S. The semantics of 〈P, D〉 is given with respect
to the RDF graphM(D) induced byM and D, defined by

{(f(o) rdf:type A) | o ∈ ans(ϕ,D) and ϕ (f(x) rdf:type A) inM} ∪
{(f(o) P f ′(o′)) | (o,o′) ∈ ans(ϕ′, D) and ϕ′  (f(x) P f ′(x′)) inM},

where ans(ϕ,D) denotes the result of the evaluation of ϕ over D. Then a model of
〈P, D〉 is simply a model of the ontology T ∪M(D). We observe that in this ontology,
M(D) provides the set of extensional facts, but such facts are typically kept virtual,
i.e., they are not actually materialized.

Queries are usually formulated in SPARQL, the Semantic Web query language that
allows for formulating expressive high-level queries over an RDF graph [11,17]. Such
queries are answered over the ontology T ∪ M(D), according to the semantics of
the chosen entailment regime. Typically, in OBDA, the ontology T is expressed in
OWL 2 QL, and the corresponding entailment regime is that of OWL 2 QL [12].

3 Generalized OBDA Framework

In this section, we introduce a generalization of the OBDA framework to arbitrary DBs,
and then propose an architecture for a generalized OBDA system.

3.1 OBDA over Arbitrary Databases

We assume to deal with a class D of DBs, e.g., relational DBs, XML DBs, or JSON
stores, such as MongoDB. Moreover, we assume that D comes equipped with:

– Suitable forms of constraints, which might express both information about the
structure of the stored data, e.g., the relational schema information in relational
DBs, and “constraints” in the usual sense of relational DBs, e.g., primary and for-
eign keys. We call a collection of such constraints a D-schema (or simply, schema).

– A way to view D-instances as flat relational DB instances: for a D-instance D
satisfying a D-schema S, [[D]] is a flat relational DB over the relational schema
[[S]]. The function [[·]] is called relational wrapper.

– A native query language Q, such that, for a query q ∈ Q and for a D-instance D,
the answer ans(q,D) of q over D is defined, and is itself a D-instance.
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Now, given a D-schema S, a mappingM is a set of classical mapping assertions
ϕ  h, where ϕ is a SQL query over [[S]]. Then, as in the relational case, an OBDA
specification is a triple 〈T ,M,S〉. An OBDA instance consists of an OBDA specifica-
tion 〈T ,M,S〉 and a D-instance D satisfying S. The semantics of such an instance is
derived naturally from the relational wrapper [[·]].

Note that our assumption that for the class D of DBs a relational wrapper is avail-
able is not in any way restrictive, since any form of data, independently of how it is
structured, can be represented using relations. Observe also that the source query in a
mapping assertion in our generalized setting is not a native Q query, but a SQL query.
Our framework has the advantage of having a uniform and expressive mapping lan-
guage that is independent of D andQ. It does not mean, however, that the concrete user
mapping language must strictly follow this specification. When it does not, the system
should only be able to transform user mapping assertions into classical ones.

By default, when referring to OBDA, we mean the virtual approach, which avoids
materializing the RDF graph, and instead delegates (part of) query answering to the DB.
In this approach, the query answering process can be depicted as in Figure 1, and done
in 4 main steps: (a) An input SPARQL query Q is first rewritten with respect to the
ontology T into Qr (according to the semantics of the entailment regimes, this step
only rewrites the basic graph pattern (BGPs) in Q [12]). (b) The rewritten SPARQL
query Qr is translated into one or several native queries q ∈ Q. When the DB engine
does not support (efficiently) some SPARQL operators, multiple native queries might
be required, whose evaluation could be postponed to the final post-processing step.
(c) The native queries q are evaluated by the DB engine. (d) The results of all queries
q are combined and converted into SPARQL results in the post-processing step. In the
generalized OBDA framework the post-processing step may be more involved than in
the classical relational case, mostly due to the fact that some new DB systems offer
limited querying capabilities. In particular, some NoSQL DBs do not support joins.
Another reason for not delegating certain query constructs to the DB is efficiency. For
instance, in the case of nested data (e.g., JSON documents containing arrays), it may be
preferable to perform the unnesting (i.e., flattening) of nested objects into tuples as a
post-processing step, so as to reduce network load between DB and client.
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For the generalized OBDA framework, we propose to translate SPARQL queries to
native queries in two steps (cf. Figure 2): first translate the input SPARQL query to
an intermediate query, subject to transformations, and then translate the (transformed)
intermediate query to a native query. The intermediate query language, denoted IQ, is
expected to be a more high-level language than Q, and can vary depending on Q, but
also on the considered fragment of SPARQL. On the one hand, it should at least capture
such fragment (e.g., for BGPs, joins are sufficient, while for a fragment with property
paths, IQ should include some form of recursion). On the other hand, IQ may include
other operators present/expressible inQ (e.g., an unnest operator for dealing with nested
data). Note that Relational Algebra (RA) as IQ is sufficient for the first-order fragment of
SPARQL and for relational DBs. Our framework relying on the use of IQ provides several
advantages: (i) It better supports optimizations since IQ, unlike SPARQL, can take into
account the structure of the data, without necessarily being as low-level as Q. (ii) The
optimization techniques devised for IQ are independent of Q. (iii) The translation from
SPARQL to IQ is standard and depends only on the mapping (since IQ strictly subsumes
RA, such a translation has to extend the well-known translation from SPARQL to RA).

3.2 Architecture of an OBDA System over Heterogeneous Data Sources

We propose an architecture of an OBDA system able to answer SPARQL queries over
heterogeneous data sources. This architecture, depicted in Figure 3, assumes an offline
and an online query answering stages.

The offline stage (steps i and ii ) takes as input the ontology, the mapping, and
the schema, and produces two elements, to be used during the online stage: the clas-
sified ontology, and the saturated mapping [20,18], which is constructed by saturating
the input mapping with the classified ontology. Notably, the saturated mapping can be
significantly simplified for the online stage, by using query containment-based opti-
mization to remove redundant mapping assertions.

The online stage handles individual SPARQL queries, and can be split into 6 main
steps: 1 the input SPARQL query is rewritten according to the classified ontology; 2 the
rewritten query is unfolded w.r.t. the saturated-mapping by substituting each triple with
its mapping definitions; 3 the resulting IQ is simplified by applying structural (e.g.,
replacing join of unions by union of joins) and semantic (e.g., redundant self-join elim-
ination) optimization techniques; 4 the optimized IQ is translated into one or multiple



{ _id: 23226 ,

productName: "Olympus OM-D E-M10 Mark II",

offers: [

{ offerId: 258, price: 747.14 , vendor: {

vendorId: 3785, name: "Yeppon Italia", homepage: "https :// www.yeppon.it"} },

{ offerId: 895, price: 609.42 , vendor: {

vendorId: 481, name: "amazon.it", homepage: "https :// www.amazon.it"} },

{ offerId: 922, price: 759.99 , vendor: {

vendorId: 481, name: "amazon.it", homepage: "https :// www.amazon.it"} } ]

}

{ _id: 25887 ,

productName: "Panasonic Lumix DMC -GX80",

offers: [

{ offerId: 311, price: 500.32 , vendor: {

vendorId: 481, name: "amazon.it", homepage: "https :// www.amazon.it"} } ]

}

Fig. 4. A collection of two MongoDB documents

native queries; 5 these are evaluated by the DB engine; 6 the native results are com-
bined and transformed into SPARQL results.

Such an architecture allows for steps i , ii , 1 , and 2 to be independent of the
actual class D of DBs (white boxes in Figure 3). Steps 3 and 6 require an implemen-
tation specific to IQ (gray boxes), while 4 and 5 are specific to D (black boxes).

We emphasize that the structural and semantic optimization step is crucial for
OBDA to work in practice. In general, SPARQL queries are not aware of the structure
of the stored data, hence the unfolded query may contain significantly more joins than
necessary. In the case of OBDA over a document-based DB, these techniques can be
extended to take advantage of additional opportunities for optimization offered by the
structure of the DB instance.

4 OBDA over MongoDB

We illustrate the generalized OBDA framework by focusing on a specific NoSQL DB,
namely MongoDB,2 a popular and representative instance of document DBs.

4.1 MongoDB

MongoDB stores and exposes data as collections of JSON-like documents.3 A sample
collection of two MongoDB documents consisting of (nested) key-value pairs and ar-
rays, is given in Figure 4, where each document contains information about a product:
its id, name, and a list of offers, in the form of a JSON array. Each offer has itself an id,
price, and vendor (in turn with id, name and homepage).

Note that in a normalized relational DB instance, this data would be spread across
several tables. Indeed, our example is inspired by the e-commerce scenario of the

2 https://docs.mongodb.org/manual/
3 JSON, or JavaScript Object Notation, is a tree-shaped format for structuring data.

https://docs.mongodb.org/manual/


product
nr label

23226 Olympus OM-D E-M10 Mark II
25887 Panasonic Lumix DMC-GX80

vendor
nr label homepage

481 amazon.it http://www.amazon.it
3785 Yeppon Italia http://www.yeppon.it

offer
nr price product vendor

258 747.14 23226 3785
311 500.32 25887 481
895 609.42 23226 481
922 759.99 23226 481

Fig. 5. Relational view of the collection in Figure 4, following the BSBM schema

BSBM benchmark [2], where the data is structured according to a relational schema
consisting of multiple tables. Figure 5 provides the relational view corresponding to the
above MongoDB collection, with distinct tables for products, offers, and vendors (the
relational schema in the BSBM benchmark is actually more complex).

Note also that the JSON data in Figure 4 is denormalized. In particular, it contains
redundant information: the name and homepage of vendor 481 are present 3 times.
Document-based DBMSs like MongoDB can take advantage of such redundancy. For
instance, retrieving all vendors (with id, name, and homepage) of a given product over
an instance of the relational schema of Figure 5 requires 2 (potentially costly) join op-
erations. But the same request over the denormalized data does not require any join:
the relevant information is already grouped within a document. However, query ex-
ecution can also be penalized by redundancy. For instance, given the value 481 for
offers.vendor.vendorId, the value of offers.vendor.name associated to it can be retrieved
from one document only. But in order to locate such data, MongoDB would check all
documents with an occurrence of 481 for field offers.vendor.vendorId. Noticeably, this
problem can be avoided by choosing a different document structure for the same data,
with one document for each vendor rather than for each product, and consequently with
redundant information about products. In general, the choice of a particular document
structure is a trade-off, favoring some queries, and penalizing others. Thus, it should be
done depending on the expected query workload, provided such information is available
beforehand.

Like relational DBs, MongoDB allows for declaring indexes. By default, it creates a
unique index over the (top-level) field _id, which serves as the primary key in a collec-
tion. Indexes can drastically speed up query execution. In particular, retrieving a (whole)
document by a unique value of an indexed field (like the values of offers.offerId in
Figure 4) can be done very efficiently by looking up the value in the index, and then
fetching from disk data that is likely to be contiguous. On the other hand, queries on
values with non-unique occurrences (e.g., the values of offers.offer.vendorId) may be
less efficient, because multiple (non-contiguous) documents might need to be fetched.

MongoDB provides an ad-hoc querying mechanism for formulating expressive
queries by means of the aggregation framework4. A MongoDB aggregate query (MAQ)
is a sequence of stages, each of which takes one or two collections of documents as

4 https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/

https://docs.mongodb.com/manual/reference/operator/aggregation-pipeline/


db.bios.aggregate ([

{$project: {

"productName": true , "offer1": "$offers", "offer2": "$offers" }},

{$unwind: "$offer1"},

{$unwind: "$offer2"},

{$project: {

"productName": true , "offer1": true , "offer2": true ,

"sameVendor": { $and: [

{$ne: ["$offer1.offerId", "$offer2.offerId"]},

{$eq: ["$offer1.vendorId", "$offer2.vendorId"]} ]}}},

{$match: {"sameVendor": true} },

{$project: {

"productName": true , "vendorName": "$offer1.vendor.label",

"price1": "$offer1.price", "price2": "$offer2.price" }}

])

Fig. 6. A MongoDB Aggregate Query (MAQ)

SELECT ?productName ?vendorName ?price1 ?price2

WHERE {

?product rdfs:label ?productName .

?offer1 bsbm:product ?product . ?offer1 bsbm:price ?price1 .

?offer1 bsbm:vendor ?vendor . ?vendor rdfs:label ?vendorName .

?offer2 bsbm:product ?product . ?offer2 bsbm:price ?price2 .

?offer2 bsbm:vendor ?vendor .

FILTER (? offer1 != ?offer2) }

Fig. 7. A SPARQL query corresponding to the MAQ in Figure 6

input, and produces another collection as output. A fragment of this language has been
shown in [3] to be equivalent in expressive power to Nested Relational Algebra (NRA).

Because the language is powerful, MAQs can be complex to read and to manipulate.
As an illustration, the MAQ of Figure 6 retrieves all products offered twice by the same
vendor. In comparison, the SPARQL query of Figure 7 satisfies the same information
need, but in a more concise fashion. The MAQ language also has a more procedural
(less declarative) flavor than SQL/SPARQL, in that the sequence of stages of an MAQ is
closer to its actual execution, whereas relational DBs/triple stores hide from the user
the complexity of query planning (e.g., the ordering of joins). Hence, from a user per-
spective, OBDA over MongoDB appears indeed as a promising alternative to manually
devising MAQs.

4.2 Extension of Ontop for MongoDB

We built a proof-of-concept prototype for answering SPARQL queries over MongoDB,
called Ontop/MongoDB, which extends the Ontop system [4] and implements the ar-
chitecture described in Figure 3, The current implementation supports the fragment of



SPARQL including BGPs, FILTER, JOIN, OPTIONAL, and UNION over MongoDB 3.4.
In this implementation of the virtual OBDA architecture, NRA serves as IQ, and MAQ
as the native query language. The system is designed to fully delegate query execution
to the MongoDB engine,5 thus minimizing the amount of post-processing required in
step 6 of Figure 3. We now provide some details on the input accepted by Ontop/Mon-
goDB, and on the implementation of steps 3 and 4 .

Ontop/MongoDB takes as input an OWL 2 QL ontology, a mapping, and a set of con-
straints. In the current implementation, the source query ϕ of each mapping assertion is
relatively inexpressive: it can either retrieve a whole collection, or apply a simple filter
to it. From the paths mentioned in this mapping, the system extracts the structure of the
JSON documents being queried.

The constraints are user-defined functional dependencies that hold over the JSON
documents being queried. For instance, in the collection of Figure 4, the value of
path offers.vendor.vendorID uniquely defines the values of paths offers.vendor.name
and offers.vendor.homepage. Note that, although MongoDB does not enforce such con-
straints, they can still hold over the data, and can be used for semantic optimization,
e.g., to eliminate redundant joins. Note also that if the JSON collection is a denormal-
ized version of an existing relational DB instance (as is the case for BSBM), then such
dependencies can be directly inferred from keys declared in the relational schema.

In step 3 , in addition to relational optimization techniques implemented by Ontop,
Ontop/MongoDB also applies techniques specific to nested data, based on the equiva-
lence with NRA mentioned above. In particular, it can take advantage of the constraints
just mentioned. In step 4 , Ontop/MongoDB uses an optimized version of the NRA-to-
MAQ translation given in [3], which in theory makes full delegation of query answering
to MongoDB feasible, but, if left unoptimized, may produce queries not executable in
practice. An important consideration here is the internal limitations put by MongoDB
on the size of in-memory intermediate results during query evaluation (16 MB for a sin-
gle document, and 100 MB for a collection). Another purpose of this optimization is to
take advantage of indexes available over the source JSON collection.

5 Evaluation

We have carried out an evaluation that aims at determining whether OBDA over Mon-
goDB is a realistic solution performance-wise, and in particular whether it is able
to leverage the document structure of MongoDB collections. We focus on answering
queries over datasets that do not fit into memory. In such a setting, a key concern for
performance is to limit disk access, i.e., the number of non-contiguous pages that need
to be fetched into memory.

To this end, we compare Ontop/MongoDB to the triple store Virtuoso [9] represent-
ing a diametrically opposite approach to answering SPARQL queries, as far as the data
and index structure are concerned. Indeed, Virtuoso stores data as quads (i.e., triples
extended with the graph name), and for each element of the quads it maintains an ex-
tensive index structure, which is in particular highly optimized for retrieving (multiple)

5 An exception is the step that builds the returned RDF strings (IRIs and literals) from the con-
stants retrieved from the DB.



triples sharing a constant value6. Comparatively, retrieving all documents for a given
value of an indexed field may be inefficient in MongoDB if the value is not unique in
the index, as it requires fetching multiple (non-contiguous) documents from disk. On
the other hand, when the value is unique, MongoDB can fetch the whole document
containing this value very efficiently, whereas for Virtuoso fetching the same data may
require multiple disk accesses.

We expect the evaluation to reflect these differences: (i) that Ontop/MongoDB out-
performs Virtuoso on queries containing a unique constant in an indexed field and fetch-
ing a single document; (ii) that Virtuoso outperforms Ontop/MongoDB on queries con-
taining only constants with multiple occurrences in the JSON collection.

An additional goal of the experiments is to determine whether the cost of query
rewriting itself (i.e., generating the MAQ) introduces an excessive overhead.

5.1 Dataset and Evaluation Environment

As dataset we used an instance of the well-known BSBM benchmark [2], which emu-
lates an e-commerce scenario, centered on offered products. The number of products in
the instance is 4 million, giving 1.2 billion RDF triples, whose total size is 156 GB.

BSBM also provides a representation of this dataset as a relational DB instance,
composed of 10 tables (product, offer, vendor, etc.). Based on the relational schema
of this instance, we generated a 118 GB collection of JSON documents containing the
same data. The structure of the documents in this collection extends the one of Figure 4,
grouping in each document all information pertaining to a single product.

The latest version of BSBM comes with 11 queries, numbered from 1 to 12 (there
is no query 6 anymore). Among these, 3 were discarded, because they contain SPARQL
features not (yet) supported by Ontop/MongoDB (DESCRIBE queries, bound operator,
and variables over predicates). We instantiated 10 versions of each query, replacing
constant placeholders with values randomly sampled from the data. One version of
each query was set aside for a cold run, and the 8 · 9 remaining queries were shuffled as
a query mix. Execution times reported below are averaged over these 9 versions.

The systems being compared are Virtuoso v7.2.4 (over the RDF triples), and On-
top/MongoDB with MongoDB v3.4.2 (over the JSON collection). Queries were run on a
24 cores Intel Xeon CPU at 3.47 GHz, with a 5.4 TB 15k RPM RAID-5 hard-drive clus-
ter. 8 GB of RAM were dedicated to each system (MongoDB and Virtuoso) for caching
and intermediate operations. The OS page cache was also flushed every 5 seconds, to
ensure that each system could only exploit these 8 GB for caching. The query timeout
was set to 500 s. For each constant appearing in a query, the corresponding field in the
MongoDB collection was indexed.

An executable for Ontop/MongoDB is available online, together with the SPARQL
queries, mapping, constraints, and both datasets (JSON and RDF), so that the experiment
can be reproduced. The generated MAQs are also provided.7

6 http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme/
7 https://www.dropbox.com/sh/nz8dfas5ijpr76y/AACJzxHZUInrHi6Vq3Lk8f8ra?dl=0

http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme/
https://www.dropbox.com/sh/nz8dfas5ijpr76y/AACJzxHZUInrHi6Vq3Lk8f8ra?dl=0


Table 1. Execution times (ms) for Ontop/MongoDB and Virtuoso, over the BSBM benchmark (4
million products). Values are averaged over 9 versions of each query

Query 1 2 4 5 7 8 10 12

Ontop/MongoDB
rw 26 179 102 NA 417 838 22 35

eval 2672 43 3713 NA 53 66 34 40
Virtuoso eval 258 308 403 1179 3995 1897 3966 327

5.2 Results and Analysis

As a first element of answer, we observed that all MAQs generated by Ontop/MongoDB
are optimal with respect to the document structure, in the sense that cross-document
operations are only used for joins that cannot be performed within each document.

Table 1 reports the execution times for both systems. For Ontop/MongoDB, we
distinguish query rewriting time (“rw”), i.e., the time spent generating the MAQ, from
its actual evaluation (“eval”) by MongoDB. Rewriting time does not depend on the size
of the data, but only on the query, mapping, ontology, and constraints, which are less
likely to grow out of proportion. Still, for some of the cheaper MAQs (< 100 ms), this
overhead represents the major part of the execution time. This can be partly explained
by the wide range of optimizations performed by Ontop/MongoDB. But it is also an
aspect to improve, for OBDA over MongoDB to be considered a viable alternative to
MongoDB itsef, at least in applications with high performance requirements.

We now focus on query evaluation times. For each of the 9 versions of Query 5,
the evaluation either timed out, or exceeded MongoDB’s memory limitations (see Sec-
tion 4.2). This is explained by the fact that this query contains an anti-join, which re-
quires a (close to) full collection scan from MongoDB. For the 7 remaining queries,
we observe a sharp contrast in performance between the two systems, which matches
the above expectations. Queries 1 and 4 present a very favorable setting for Virtuoso:
the SPARQL BGPs are of limited size (≤ 5 triple patterns), and each of them contains
3 constants. On the other hand, because none of these constants is unique in the JSON
collection, the evaluation by Ontop/MongoDB requires fetching multiple documents
from disk. As expected, for these two queries, evaluating the SPARQL query with Vir-
tuoso was one order of magnitude faster than evaluating the corresponding MAQ with
Ontop/MongoDB. As for the 5 remaining queries, they all represent a setting where
MongoDB can fully benefit from denormalization. First, all 5 queries require data con-
tained in one document only. In addition, they all contain a constant in an indexed field,
where the index is either declared as a unique (Queries 2, 7, 8 and 10), or contains only
unique values (Query 12). For each of these queries, the evaluation was one to two or-
ders of magnitude faster for MongoDB. This confirms that Ontop/MongoDB was able
to generate MAQs that take full advantage of the document (and index) structure.

6 Related Work

The idea of using wrappers to access external data sources dates back to the 90s; see
e.g., the Garlic data integration system [19]. In recent years, several practical systems



were developed for querying MongoDB via SQL: Drill8, Dremio9, Studio 3T10, and the
MongoDB Connector for Spark11. With such systems, users can query MongoDB col-
lections as nested tables. SQL queries are automatically translated to (basic) MongoDB
queries, and post-processing is often required to compute advanced query constructs.

Another line of relevant research is the SQL++ extension of the SQL language for
accessing, e.g., JSON data [16]. SQL++ has been supported by the DB engines Couch-
base12 and AsterixDB13.

There already exist several mapping language proposals extending R2RML for con-
verting non-relational data sources to RDF, e.g., RML [8], xR2RML [14], KR2RML [21],
and D2RML [6]. These languages extend the relational model used in R2RML to more
general cases (e.g., CSV, JSON, and Web Services). Their corresponding systems are
mostly used for data conversion; the xR2RML implementation also supports SPARQL
query answering by partially materializing the relevant RDF graph.

Finally, the approach of [1] is comparable in spirit to ours, in that it also aims at
delegating query execution to a NoSQL source engine, and relies on an object-oriented
(OO) intermediate representation, similar to our “relational view”. A key difference
though is that the mapping is from the ontology vocabulary to the OO layer, rather than
from the source DB to the ontology vocabulary. The aim is to simplify the mapping
specification, and make it independent of the underlying source DB. The expressivity
of such a mapping is thus limited, essentially mapping OWL classes to (possibly nested)
relations.

7 Conclusions

In this paper, we have presented a generalized OBDA framework for arbitrary (not
only relational) DBs. It provides a convenient uniform querying interface, by means
of a high-level vocabulary coupled with a familiar query language (SPARQL), as an
alternative to the variety of ad-hoc query languages provided by native NoSQL DBs.
We also propose a practical architecture for a generalized virtual OBDA approach, that
allows one to answer SPARQL queries over arbitrary data sources.

We have instantiated this framework in the specific case of MongoDB, as an ex-
tension, called Ontop/MongoDB, of the OBDA system Ontop, and have compared its
performance to that of a triple store. The evaluation we have carried out shows that On-
top/MongoDB was able to generate MAQs that take full advantage of the denormalized
structure of the data.

As a continuation of this work, we plan to evaluate the impact of the different tech-
niques implemented within Ontop/MongoDB to optimize the generated MAQ, using a
wider range of queries, but also different document structures for the same dataset.

8 https://drill.apache.org/
9 https://www.dremio.com/

10 https://studio3t.com/whats-new/how-to-query-mongodb-with-sql/
11 https://docs.mongodb.com/spark-connector/
12 http://couchbase.com/
13 https://asterixdb.apache.org/

https://drill.apache.org/
https://www.dremio.com/
https://studio3t.com/whats-new/how-to-query-mongodb-with-sql/
https://docs.mongodb.com/spark-connector/
http://couchbase.com/
https://asterixdb.apache.org/
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