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Abstract. In ontology-based data access (OBDA), access to (multiple) incom-
plete data sources is mediated by a conceptual layer constituted by an ontology. In
such a setting, to correctly compute answers to queries, it is necessary to perform
complex reasoning over the constraints expressed by the ontology. We consider
the case of ontologies expressed in DL-Lite, a family of DLs that, in the context of
OBDA, provide an optimal tradeoff between expressive power and computational
complexity of reasoning; notably conjunctive query answering is LOGSPACE in
the size of the data. However, query answering with reasoning comes at a price:
the justification of the presence of tuples in answers is no longer trivial, and re-
quires explanation. In this paper, we characterize reasoning in DL-Lite, through
deduction rules for building proofs, and we provide several novel contributions:
(i) For standard ontology level reasoning, explanation is relatively simple, and
our contribution comes mainly from a novel focus on brevity of proofs. (ii) Mo-
tivated by the use of DL-Lite for OBDA, we analyze and provide explanation for
reasoning in finite models. (iii) We provide a facility for the explanation of an
answer to a conjunctive query over a DL-Lite ontology. This algorithm is able to
exploit the relational query engine to extract from the data the information nec-
essary for finding the explanation more efficiently, and thus scales to large data
sets. The presented approach has been implemented in a prototype for construct-
ing explanations. 1

1 Introduction

Semantic data models such as the Extended ER model (EER) and UML are well known
to provide a view of an application domain that is closer to the users’ conceptualization
of it than standard databases. As a result, there have long been proposals for querying
databases through interfaces that offer such conceptual schemas to users (e.g., [2]).

On the other hand, Description Logics (DLs) [3] are a family of knowledge represen-
tation schemes developed over the past three decades that deal with concepts (unary re-
lationships) and roles (binary relationships), which can be built up from atomic symbols
using special concept and role constructors. These logics have precise formal seman-
tics, and support sound and complete reasoning about judgments such as whether one
concept subsumes/is more general than another, or whether a concept is unsatisfiable.

1 Preliminary results on the research reported in this paper appeared in the Working Notes of the
2008 Workshop on Description Logics [1].
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One application of DLs is providing the formal foundation of web ontology lan-
guages such as OWL-DL2. More relevantly to this paper, it is known that EER and
UML conceptual models can be translated into sets of DL axioms (called “TBoxes”),
as in [4,5]. As a result, it is possible to use DL reasoners to detect inconsistencies in
EER and UML models (e.g., classes that cannot possibly have any instances).

However, it is also well known that more expressive DLs (those with more con-
structors) tend to have a higher complexity of reasoning. The DL DL-Lite [6] was in-
troduced to capture as much as possible of EER and UML conceptual models while
still having effective reasoning. Moreover, in various contexts, such as data integration
and ontology-based data access [7], data sources can be queried through a conceptual
schema (or an ontology) that provides a formalization of the domain of interest. The
key difficulty in such a setting is that the data stored in the sources is in general in-
complete w.r.t. the constraints imposed by the schema, and hence have to be considered
under the “open world assumption”. As a consequence, sophisticated reasoning may be
required to obtain answers. For example, if the schema specifies that Undergrads are
Students, and Students must be enrolled in at least two courses, then, in answering
the query q(x)← Undergrads(x) ∧ enrolledIn(x, y), a system should be able to infer
that all instances of Undergrads should be returned, without checking for each of it if
there is an explicitly mentioned course it is enrolled in. Nevertheless, when the schema
is expressed in DL-Lite, conjunctive queries can be answered with low data complexity
(LOGSPACE, as in ordinary databases), while fully taking into account the constraints
imposed by the schema [6].

Reasoning comes however at a price: end-users of information systems that do more
than simple fact retrieval require some sort of facility for having answers explained to
them. For example, in the area of deductive databases there has been work on explaining
answers returned by Datalog-query processors [8,9]. Finding such explanations is non-
trivial since the performance systems that do query answering are optimized, and do
not use straightforward inference rules, such as back-chaining.

In the field of DLs, starting from [10], there have been papers studying the explana-
tion of deductions such as concept subsumption [11,12] and knowledge base inconsis-
tency [13,14,15,16]. More generally, the work on the Inference Web [17] has produced
a substrate on which general explanation facilities for reasoners can be built.

Here we consider the problem of explaining reasoning and query answering for DL-
LiteA, the most expressive variant of the DL-Lite family considered in [6]. As for any
DL, there are standard judgments such as concept/role subsumption, concept/role satis-
fiability and consistency of an ontology, requiring more or less standard explanations.
Because of its use for database conceptual modeling, and the fact that databases are
almost always considered to represent finite structures in which the conceptual models
are interpreted, one important novel feature of the above reasoning tasks is the pos-
sibility of requiring finite models (which for DL-Lite enable additional inferences be-
cause the logic lacks the finite-model property). Example 3 in Section 3.4 illustrates
first in English and then using inference rules the kind of reasoning that is needed in fi-
nite models. A second distinguishing feature of DL-Lite is the emphasis on conjunctive
query answering, which requires new kinds of explanations. Considering the query in

2 http://www.w3.org/2007/OWL/

http://www.w3.org/2007/OWL/
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Algorithm: breadth-first search for finding disjoint ancestors.
Input: concept B; set T of disjointness and acyclic concept inclusion assertions.
Output: all pairs of concepts X , Y that are �-ancestors of B and are declared disjoint in T .
/* The search is breadth-first in the sense that, if (X1, Y1) and (X2, Y2) are two output pairs, and
max(dist(B,X1), dist(B, Y1)) < max(dist(B,X2), dist(B, Y2)), then (X1, Y1) is output
first. */
/* Data structures: queues q1 and q2 hold pairs (V, k), where V is a node and k is an integer
representing the distance from B to V . */
{

new(q1);
q1.enter(B, 0); /* start outer BFS from node B */
while (not q1.empty()) {

(X , n) ← q1.leave();
for all D in parents(X , T ) { q1.enter(D, n+1); }
new(q2);
q2.enter(B, 0); /* start new BFS from node B */
while (not q2.empty()) {

(Y , m) ← q2.leave();
if (m > n) then exit loop /* to look at smallest m+n pairs only */
for all D in parents(Y , T ) { q2.enter(D, m+1); }
if disjoint(X , Y , T ) then

print X + ”, ” + Y + ” are a source of unsatisfiability at proof length ” + (n+m);
}

}
}

Fig. 1. Breadth-first search algorithm for finding disjoint ancestors

Student(BOB)
{ by Subconcept rule from

PhD � Student { Axiom 1 }
PhD(BOB) { DB fact } }

supervisedBy(BOB, @1) (*)
{ by Subconcept rule from

PhD � dom(supervisedBy) { Axiom 2 }
PhD(BOB) { DB fact } }

teaches(@1, @2)
{ by Subconcept rule from

Professor � dom(teaches) { Axiom 4 }
Professor (@1)
{ by Subconcept rule from

rng(supervisedBy) � Professor { Axiom 3 }
supervisedBy(BOB, @1) { see (*) } } }

Fig. 2. Proof tree generated from Step 4 for Q5(BOB)

Example 4, the kind of explanation needed in this case for the answer BOB is shown in
Figure 2.

The rest of the paper has the following structure: Section 2 provides formal back-
ground on DL-Lite and general desiderata for explanations; Section 3 considers the
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relatively straightforward reasoning tasks associated with DL-Lite, characterizing them
in terms of inference rules, but also looks at the more unusual notion of finite-
model reasoning; Section 4 considers in detail the task of explaining why some
value is returned as one of the answers to a conjunctive query posed to a DL-Lite
ontology.

2 Background

In this section we provide the formal background for the techniques and results in the
rest of the paper. Specifically, we first introduce the Description Logic we deal with,
and then provide some basic notions about explanations.

2.1 The DL-Lite Family of Description Logics

Description Logics (DLs) [3] are logics that represent the domain of interest in terms
of concepts, denoting sets of objects, and roles, denoting binary relations between (in-
stances of) concepts. Complex concept and role expressions are constructed starting
from a set of atomic concepts and roles by applying suitable constructs, that depend on
the DL at hand. In this paper, we deal with the DL-Lite family [6,18], which comprises
tractable DLs particularly suited for accessing through an ontology large amounts of
data managed through relational database technology. Specifically, we consider DL-
LiteA [19], one of the most expressive members of the family still enjoying LOGSPACE

data complexity of query answering3.
Concepts and roles in DL-LiteA are formed according to the following syntax:

B −→ A | ∃Q
C −→ B | ¬B

Q −→ P | P−

R −→ Q | ¬Q

where A, B, and C respectively denote an atomic concept, a basic concept, and a gen-
eral concept (or simply, concept), whereas P , Q, and R respectively denote an atomic
role, a basic role, and a general role (or simply, role).

Intuitively, a basic role of the form P− denotes the inverse of the relation denoted
by role P . A basic concept of the form ∃P (resp., ∃P−) denotes the projection of the
relation denoted by P on its first (resp., second) component. An arbitrary concept ¬B
(resp., an arbitrary role ¬Q) denotes the complement of B (resp., Q).

A DL knowledge base (KB) K = (T ,A) represents the domain of interest and
consists of two parts, a TBox T , representing intensional knowledge, and an ABox
A, representing extensional knowledge. In DL-LiteA, a TBox is formed by a set of
assertions of the following forms:

B � C concept inclusion assertion
Q � R role inclusion assertion
(funct Q) functionality assertion

3 We ignore here the distinction, present in DL-LiteA, between abstract objects and data values.
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The concept inclusion assertion B � C expresses that all instances of the (basic) con-
cept B are also instances of the (general) concept C. Analogously for a role inclusion
assertion. A functionality assertion expresses the (global) functionality of a basic role4.

Example 1. The following TBox

PhD � Student (1)

∃takes � Student (2)

∃takes− � Course (3)

audits � (¬takes) (4)

asserts that PhDs are a subclass of Students, who are the only ones who can take
things, while things taken must be Courses; the last axiom is used to express that takes
and audits are disjoint.

An ABox is formed by a set of membership assertions on atomic concepts and on atomic
roles of the form

A(d) P (d1, d2)

stating respectively that the object (denoted by the constant) d is an instance of A, and
that the pair (d1, d2) of objects is an instance of the role P .

Formally, the semantics of a DL is given in terms of interpretations, where an inter-
pretation I = (ΔI , ·I) consists of an interpretation domain ΔI and an interpretation
function ·I that assigns to each concept C a subset CI of ΔI , and to each role R a
binary relation over ΔI . In particular, for the constructs of DL-LiteA we have:

AI ⊆ ΔI

(∃Q)I = {o | ∃o′. (o, o′) ∈ QI}
(¬B)I = ΔI \BI

P I ⊆ ΔI ×ΔI

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}
(¬Q)I = ΔI ×ΔI \QI

An interpretation I satisfies an inclusion assertion B � C (resp., Q � R) if BI ⊆ CI

(resp., QI ⊆ RI). Furthermore, I satisfies an assertion (funct Q) if the binary relation
QI is a function, i.e., (o, o1) ∈ QI and (o, o2) ∈ P I implies o1 = o2. To specify the
semantics of membership assertions, we extend the interpretation function to constants,
by assigning to each constant a a distinct object aI ∈ ΔI . Note that this implies that,
as usual in DLs, we enforce the unique name assumption on constants [3]. An inter-
pretation I satisfies a membership assertion A(d) (resp., P (d1, d2)) if dI ∈ AI (resp.,
(dI1 , dI2 ) ∈ P I ). A model of a KB K = (T ,A) is an interpretation that satisfies all
assertions in T andA. A KB is satisfiable if it has at least one model. A KBK logically
implies (an assertion) α, written K |= α, if all models of K satisfy α. Specifically, a
concept C1 (resp., role R1) is subsumed by a concept C2 (resp., role R2) w.r.t. K if
K |= C1 � C2 (resp., K |= R1 � R2). A concept C (resp., role R) is satisfiable w.r.t.
K if there is a model I of K such that CI 	= ∅ (resp, RI 	= ∅). Satisfiability and sub-
sumption are the fundamental reasoning tasks over a TBox. Unsatisfiable concepts are
typically the result of modeling errors, and should be removed from a KB. Subsumption
is the basis of classification, making the structure of the modeled knowledge explicit.

4 In order to guarantee the computational properties that allow for dealing efficiently with large
amounts of data, DL-LiteA requires that, roughly, functional roles cannot be specialized in
TBoxes [18,19].
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In DL-LiteA, due to the interaction of inclusion and functionality assertions, there
may be inferences that do not hold in arbitrary models, but that do hold when only
models with a finite domain are considered. In other words, reasoning w.r.t. arbitrary
models differs from finite model reasoning. All the above reasoning tasks can be defined
for the latter case as well.

We are also interested in query answering over DL-LiteA KBs, and specifically in
answering conjunctive queries. A conjunctive query (CQ) over a DL-LiteA KB K has
the form

Q(x)← conj (x,y)

where conj (x,y) is a conjunction of atoms of the form A(z) or P (z1, z2), with A
and P respectively atomic concepts and roles of K, and z, z1, z2 either constants in
K or variables in x or y. The variables x are the so-called distinguished variables
(which will be bound with constants in the KB), while y are the non-distinguished
variables (which are existentially quantified). For example, the following simple query
q(w)← PhD(w) ∧ takes(w, z) asks for PhDs who are taking something.

Given an interpretation I, the conjunctive query Q(x) ← conj (x,y) is interpreted
as the set Q(x)I of tuples o of elements of ΔI such that, when we assign o to x, the
first-order formula ∃y.conj (x,y) evaluates to true in I.

The reasoning service we are interested in is (conjunctive) query answering: given a
knowledge base K and a conjunctive query Q(x) over K, compute the certain answers
to Q(x) over K, i.e., the tuples d of constants in K such that dI ∈ Q(x)I for every
model I of K. We observe that query answering (properly) generalizes a well known
reasoning service in DLs, namely instance checking, i.e., logical implication of an ABox
assertion. In particular, instance checking can be expressed as the problem of answering
(boolean) conjunctive queries constituted by just one ground atom.

2.2 Explanations

It is widely accepted that an explanation corresponds to a formal proof. A formal proof
is constructed from premises using rules of inference. Although [20] suggests a specific
XML-based syntax for inference rule schemas to be used in constructing proofs, we
will use the more concise notation used in Programming Languages, and first applied
to DLs in [21], which is illustrated in the following inference rule, expressing in one
way the transitivity of the � relationship:

Isa-trans

T � B1 � B2

T � B2 � B3

T � B1 � B3

B1, B2, B3 concepts

Here, the name of the rule schema is Isa-trans; the antecedent requires that from the
TBox T one can deduce B1 � B2 and also B2 � B3; the consequent allows one to
also deduce from the same TBox that B1 � B3; the side-condition of the rule requires
B1, B2, and B3 to be concept expressions.

The rules of inference used and the proof itself have certain intuitively desirable
properties as far as the understandability of the resulting explanation5. These include:

5 Ideally, empirical user studies would support these claims; as it is, we rely on our and the
readers’ intuitions.
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– Simplicity: while some rules of inference (e.g., concluding p from q and “if q then
p”) are self-evident, others may be so complex that in explaining an inference step
one needs to also explain the validity of the inference rule, in addition to explaining
the antecedents. Such rules should be avoided, if possible.

– Brevity: all things being equal, shorter proofs are preferred, since they take less time
to present and understand; note that one way in which to make proofs shorter is to
find portions, called lemmas, that are re-used.

Note that the above principles may conflict (e.g., a simpler proof may be longer), and
therefore in general there is likely to be no single “ideal” explanation system – more
likely one with “knobs” that can be adjusted.

Although not frequently articulated, an explanation involves not only a proof but
also a proof presentation strategy. For example, there is a decided preference for tree-
shaped proofs, produced by rules of inference with a single conclusion, and zero or
more antecedents. So-called “natural deduction proofs” produce such proofs, and many
explanation facilities for description logics and the semantic web follow these principles
(e.g., [10,17,22]). One of the advantages of such proofs is that they support interactive
and gradual unfolding of only relevant parts under user control. These ideals are exem-
plified by Horn logic, where the explanation of goal g provides as a first step the rule
p ∧ q → g from which g was deduced, and then allows the user to choose follow-up
questions concerning the derivation of p and/or q.

While it is possible to present proofs using a very mechanical approach, which pro-
duces the same format for all rules of inference, this is not a necessity, and flexibility
can lead to improvements. For example, most inference systems from sets of axioms
have a reiteration rule of the form

Given
T , ψ � ψ

ψ any axiom

which allows any axiom from the theory to be used in a proof. It is better to replace
this by a scheme where all axioms in T are numbered, and whenever some other in-
ference rule uses ψ as an antecedent, ψ is listed, with its number as justification. More
interestingly, certain sub-proofs may be judged to be too trivial/obvious, and can there-
fore be eliminated from the proof when presented as an explanation. A simple example
of this involves conjunction exploitation, where we simply allow a proof to use axiom
p ∧ q, when what is required is p. In a similar vein, in [10] some kinds of inheritance
were explained by indicating the ancestor from which the inherited constraint was ob-
tained, without explicitly listing all the intermediate concepts through which inheritance
passed.

Of course, there is also the possibility of generating graphical explanation proof
trees, or natural language text [23].

3 Explanations of Standard Inferences

3.1 Modified Syntax of DL-LiteA

A number of notions in DL-LiteA (and their notation), such as existential constraints, in-
verses of roles, and complements of concepts or roles are, in our opinion, mathematically
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too sophisticated for users familiar only with notations like UML diagrams6. For this
reason, we propose to alter the surface syntax shown to users.

As far as ¬ is concerned, we observe that the restricted occurrence of negated con-
cepts (resp., roles) in DL-LiteA, in axioms of the form B1 � ¬B2 (resp., Q1 � ¬Q2),
means that these are really only used to describe that two (un-negated) concepts (resp.,
roles) are disjoint. Hence, we replace each assertion of the form B1 � ¬B2 (resp.,
Q1 � ¬Q2) by the assertion (disjoint B1 B2) (resp., (disjoint Q1 Q2)), having the
same semantics. This eliminates ¬ from our axioms, and also from our explanations.

Next, we propose to eliminate the notations ∃P and ∃P−, and replace them by the
more familiar notions of “the current domain” and “the current range of role P ”, re-
spectively, written as dom(P ) and rng(P )7. As a result of the above simplifications,
concept inclusion assertions will now only relate atomic concepts and/or current do-
mains/ranges of roles. And in addition to subsumption, we have axioms for disjointness
of concepts.

The above transformation also has the desirable effect of eliminating role inverses
from concept inclusions. The remaining use of role inverses is in functionality as-
sertions of the form (funct P−), and in role inclusion assertions. In general, ontol-
ogy designers are encouraged to declare names for inverse roles (as in UML and
OWL 1.1) by using an assertion of the form (inverseRoles P idForInvOfP) (e.g.,
(inverseRoles makes madeBy) ) and then using idForInvOfP instead of P−.

Unfortunately, this will not allow us to completely ignore the role inverse notation,
as illustrated by the following example.

Example 2. Suppose the TBox T contains the role inclusion assertions:

P1 � P−
2 P2 � P3 P1 � P−

4 P4 � P5 P3 � ¬P5

Observe that P1 is unsatisfiable in T . The reason is that the first two inclusions imply
(by Isa-trans and IsaInv below) thatP1 � P−

3 ; similarly, the next two inclusions imply
that P1 � P−

5 . By the last inclusion, P3 and P5 are disjoint, and hence so are P−
3 and

P−
5 . Hence, P1, being subsumed by two disjoint roles, is unsatisfiable. Note that in this

proof we referred to P−
3 and P−

5 in explaining the unsatisfiability of P1, even though
neither of these role inverses appears in the TBox.

Therefore, we will in general not be able to avoid the need of confronting the user with
role inverses, when she has not specified an alternate name for the inverse of a role8.

In the following subsections we present the rules of inference required for sound
and complete reasoning about a variety of judgments. Because these will be relatively
simple, we will not spend any time on issues of proof presentation.

3.2 TBox Reasoning

Subsumption reasoning in DL-LiteA is a particularly simple form of structural sub-
sumption, in part because there are no nested concepts. Therefore, one does not need

6 Ideally, this would be supported by experimental results.
7 The use of the word “current” is meant to emphasize the distinction from OWL “domain”,

which describe the potential set of objects to which a property may apply.
8 We might consider prompting the user for an explicit name for the inverses that are needed

before any particular explanation is begun.
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any of the complications suggested in [10], such as atomic concepts, normalized con-
cepts, etc.; the standard IsA-inference rules for reiteration (givens), reflexivity, and tran-
sitivity suffice. The rule for givens is shown in Section 2.2, as is the transitivity rule for
concepts; we assume that the latter rule applies also to roles. The reflexivity rule is:

Isa-refl
T � X � X

X a concept or a role

We also need inference rules to relate the domains and ranges of a role and its inverse. In
such rules (and ones further one), Q denotes a (basic) role, i.e., either an atomic role P
or the inverse P− of an atomic role. Moreover, we assume the syntactic simplification
(P−)− = P .

Dom-rng-inv T � dom(Q) � rng(Q−)
Q a role

Rng-dom-inv T � rng(Q) � dom(Q−)
Q a role

Finally, the following inference rules take into account role subsumption when consid-
ering domains, ranges, and inverses:

Isa-dom
T � Q1 � Q2

T � dom(Q1) � dom(Q2)
Q1, Q2

roles Isa-rng
T � Q1 � Q2

T � rng(Q1) � rng(Q2)
Q1, Q2

roles

IsaInv
T � Q1 � Q2

T � Q−
1 � Q−

2

Q1, Q2

roles

Let us now introduce the ⊥ symbol, denoting the empty set in all interpretations9.
By the definition of �, we therefore have the following additional inference rule:

Nothing T � ⊥ � X
X a concept or a role

By definition, an unsatisfiable/inconsistent concept or role must be subsumed by ⊥.
In any DL, a concept or role can be shown to be unsatisfiable indirectly, by finding,
via Isa-trans, a superconcept that itself is “directly” unsatisfiable. In DL-LiteA, a con-
cept will be said to be “directly” unsatisfiable due to subsumption by disjoint concepts,
or due to being the current domain or range of an unsatisfiable role (which fall out of
rules Isa-dom and Isa-rng, when Q2 = ⊥), or subsumption by another unsatisfiable
concept. Similarly, a role can only be unsatisfiable due to subsumption by another un-
satisfiable role, subsumption by disjoint roles, or due to its current domain or range
being unsatisfiable. Hence, we need the following inference rules:

Inc-disj
T � X � X1 T � X � X2

T , (disjoint X1 X2) � X � ⊥
X, X1, X2 concepts or roles

Inc-role-d
T � dom(P ) � ⊥
T � P � ⊥

P atomic
role Inc-role-r

T � rng(P ) � ⊥
T � P � ⊥

P atomic
role

In the absence of unsatisfiability, all reasoning about � reduces to simple classifica-
tion of atomic concepts and expressions denoting the current domains/ranges of roles,

9 This will serve as both the empty concept and the empty role, and we assume the convention
that dom(⊥) = ⊥, rng(⊥) = ⊥, and ⊥− = ⊥.
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i.e., computing the so-called Hasse diagram GT induced by the� assertions in the TBox
T . Once this is done, explainingB1 � B2 for satisfiable concepts involves only finding
the shortest path between them.

The proof of unsatisfiability of a concept or role, though polynomially computable,
can in fact be quite cumbersome because it can involve a chain of alternate demonstra-
tions of role unsatisfiability and concept unsatisfiability, connected by the unsatisfiabil-
ity of role domains and ranges. Moreover, in order to find shortest proofs, one needs
to consider both indirect and direct ways of showing unsatisfiability. For lack of space,
we consider here only the core of the algorithm searching for proofs of direct concept
unsatisfiability w.r.t. a TBox T without unsatisfiable roles.

If a concept B is unsatisfiable w.r.t. T , there must be �-paths from B to two con-
cepts, say X , Y , asserted to be disjoint. For shortest proofs, we require that the sum
of the lengths of these paths be minimal. To find this, an algorithm can start from B
and explore in breadth-first order paths to �-ancestorsX and Y until two disjoint such
concepts are found (see Figure 1, where parents(X ,T ) returns the set of concepts Y
such that X � Y is in T , while disjoint(X ,Y ,T ) is a predicate that returns true if
(disjointX Y ) is in T ). Supposing that the lengths of the paths to these concepts are n
and m respectively, with n ≥ m, then the length of this explanation is n+m.10 Unfor-
tunately, this may not be the shortest explanation: if there exist disjoint conceptsX ′ and
Y ′ that are, respectively, j and k steps away fromB, these yield an explanation of length
j + k, which could be less than n +m even if j > n, as long as 0 < k < n+m− j.
However, once we have detected the first pair X , Y at distance n + m, to detect the
shortest explanation, we only have to search up to the limit when j = n+m. Adapting
the algorithm in Figure 1 for this task is straightforward, as is keeping track of the paths
leading fromB toX and Y . Interestingly, the algorithm will also find indirect proofs of
unsatisfiability, where the paths fromB share an initial fragment π; these have a shorter
presentation, omitting one of the π.

3.3 ABox Reasoning

In DL-LiteA, one infers new facts about existing individuals by applying inclusion
axioms on concepts and roles, and recognizing that P (a, b) entails dom(P )(a) and
rng(P )(b). This is formalized by the following inference rules:

Subconcept
T � B1 � B2 〈T ,A〉 � B1(a)

〈T ,A〉 � B2(a)
B1, B2 concepts;
a an individual

Subrole
T � P1 � P2 〈T ,A〉 � P1(a, b)

〈T ,A〉 � P2(a, b)
P1, P2 atomic roles;
a, b individuals

Subrole-inv
T � P1 � P−

2 〈T ,A〉 � P1(a, b)

〈T ,A〉 � P2(b, a)
P1, P2 atomic roles;
a, b individuals

Dom-intro
〈T ,A〉 � P (a, b)

〈T ,A〉 � dom(P )(a)

P an atomic role;
a, b individuals

10 For simplicity, in the algorithm we assume that the set of concept inclusion assertions contains
no cycle. Such cycles would make all involved concepts equivalent. Either they are detected a
priori, or we would need to add to the algorithm a loop-checking condition.
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Rng-intro
〈T ,A〉 � P (a, b)

〈T ,A〉 � rng(P )(b)
P an atomic role;
a, b individuals

To detect unsatisfiability in a KB, one simply looks for objects belonging to concepts
which can be deduced to be subsumed by ⊥, or for objects violating functionality con-
straints. The one nontrivial aspect is when we prefer shorter explanations. In the case of
unsatisfiable ABoxes, one wants the shortest derivation of a conflict from the original
ABox – one with fewest rule applications. To find this, one can use a strategy similar to
the one described above for finding the shortest proof of unsatisfiability, assuming that
the graph also has instance as well as subclass edges.

We note that while the above looks for evidence of knowledge base unsatisfiability,
this is not the same problem as diagnosing errors in the knowledge base. Pinpointing
[13], and related orthogonal techniques are much more likely to be useful for this task.

3.4 Reasoning in Finite Models

As mentioned, DL-LiteA does not enjoy the finite model property, and hence inferences
that hold specifically in finite models require to be explained.

Example 3. Consider the following TBox

(funct tutors)
dom(tutors) � TA

Student � rng(tutors)
TA � Student

Since, tutors is a function, there can be at most as many values in its range as in
its domain. Since the current range of tutors contains all Students, there can be at
most as many Students as values in the domain of tutors. And since dom(tutors)
is contained in the set of TAs, there can be at most as many Students as TAs. If, in
addition, now one has that TA � Student , this implies that there are at most as many
TAs as Students, and therefore the number of TAs and Students is the same. In an
infinite model, this leads to no new conclusions, even if one recalls that TA is a subset
of Student . However, in a finite model, these two facts imply that the extensions of TA
and Student must be identical, which means that a new subsumption has been inferred:
Student � TA.

Clearly, the above pattern can be generalized by replacing tutors with the composition
of an arbitrary set of roles Q1 ◦Q2 ◦ · · · ◦Qk, obtaining rule Same-cardinality:

T � (funct Q1 ◦ · · · ◦Qk)
T � dom(Q1 ◦ · · · ◦Qk) � B1

T � B2 � rng(Q1 ◦ · · · ◦Qk)
T � B1 � B2

T � B2 � B1

B1, B2 concepts;
Q1, . . . , Qk basic roles

The remaining question is how one can deduce properties of a composition of roles,
given only DL-LiteA axioms. First, the following rule captures that if all roles are func-
tions, then their composition will be a function:

Func-comp
T , (funct Q1), . . . , (funct Qk) � (funct Q1 ◦ · · · ◦Qk)

Q1, . . . , Qk

basic roles
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And since the current domain of a composition is contained in the current domain of
the first role, we also have:

Dom-comp
T � dom(Q1) � B1

T � dom(Q1 ◦ · · · ◦Qk) � B1

However,B2 � rng(Q1◦· · ·◦Qk) does not follow fromB2 � rng(Qk) alone, because
the current range of the composition may be smaller, if not all values in dom(Qk) are
reached by Q1 ◦ · · · ◦ Qk−1. So one also needs the entire current domain of Qk to be
contained in the current range of Q1 ◦ · · · ◦Qk−1, leading to the rule:

Rng-comp

T � dom(Qk) � rng(Q1 ◦ · · · ◦Qk−1)
T � B2 � rng(Qk)

T � B2 � rng(Q1 ◦ · · · ◦Qk)
k ≥ 2

It follows from results in [24] that these are all the possible additional subsumption
inferences needed for the finite model case.

As far as explanations are concerned, this is a prime example where the user will
need separate explanations for the rules of inference themselves.

4 Explaining Answers to Conjunctive Queries over a DL-Lite
ABox

Consider first the simpler issue of answering conjunctive queries over a regular
database. To explain whyQ(b) is true in a database requires showing why the database,
treated as an interpretation, makes the body of the query evaluate to true. For con-
junctive queries, this means exhibiting the values used for the existentially quantified
variables in the body of the query. For example, if MIMI is an answer to query

Q0(x)← Student(x), supervisedBy(x, y), teaches(y, z)

one would need to locate some “witness” values ANNA and ENG101 for variables
y and z, and then explain that Student(MIMI), supervisedBy(MIMI,ANNA) and
teaches(ANNA,ENG101) are atoms present in the database. In general, it is possible
that a value/tuple11 appears in the answer for multiple reasons. In the above example,
there may be alternate bindings of y and z, which together with x = MIMI, satisfy the
query. In these case the user needs to be given the option of seeing an enumeration of
the different explanations. The principle of minimality would not seem to enter into the
choice of explanations here because all explanations are identical in form.

In the case of DL-LiteA, the difficulty is that the ABox is not a closed database,
but instead must be “completed” according to the axioms. For example, if we have
Student(MIMI) and Student � Person , then we must also add Person(MIMI); and
if we have Professor (GINA) and Professor � dom(teaches), then one can conclude

11 In this example, and the rest of this paper, we deal only with queries that return a single value.
This is only a presentation strategy – the theory and implementation we present applies equally
to queries that have multiple variables in the head.
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that there is some (hypothetical) individual, say @c, representing what GINA teaches,
and that teaches(GINA,@c) holds. Such hypothetical individuals may also get ad-
ditional properties of their own. Unfortunately, the result can be an infinite database
since the axioms may contain cyclic dependencies; e.g., Person � dom(hasParents),
rng(hasParents) � Person .

From theoretical results [6], we know that from the TBox T and the ABoxA one can
derive a (generally infinite) canonical model can(T ,A)12, by introducing “hypothetical
individuals”, whose existence is posited by axioms, as illustrated in the example above.
A crucial property of can(T ,A) is that each conjunctive query Q(x) can be answered
by evaluating it, as in regular databases, over only a finite “small” portion of can(T ,A),
whose size depends on Q(x). We exploit this fact to explain whyQ(b) holds, by essen-
tially constructing the finite part of can(T ,A) that is needed to justify the truth of the
query body for Q(b).

In order to generate the relevant part of can(T ,A), we resort to the algorithm for
query answering in DL-LiteA. Query answering in DL-LiteA [6] is performed by first
rewriting the original query Q(x) into a set S = {Q0(x), . . . , Qn(x)} of alternate
queries, then evaluating these over the original ABox (treated as a closed database),
and finally returning the union of the results. Each query in S expresses necessary
conditions on values x to satisfy the original query Q(x), and the entire set S has the
property that the answer to the original query Q(x) is the union of the answers to the
queries in S when executed over the ABox.

Example 4. Consider the following TBox T

PhD � Student (5)

PhD � dom(supervisedBy) (6)

rng(supervisedBy) � Professor (7)

Professor � dom(teaches) (8)

and the query Q0(x) ← Student(x), supervisedBy(x, y), teaches(y, z). The DL-
LiteA rewriting algorithm would rewrite Q0 into the following set of queries:

Q0(x)← Student(x), supervisedBy (x, y), teaches(y, z)
Q1(x)← PhD(x), supervisedBy(x, y), teaches(y, z)
Q2(x)← PhD(x), supervisedBy(x, y),Professor (y)
Q3(x)← PhD(x), supervisedBy(x, y), supervisedBy(w, y)
Q4(x)← PhD(x), supervisedBy(x, y)
Q5(x)← PhD(x),PhD(x)
Q6(x)← PhD(x)

We recall briefly, using the above query as an example, the basic steps of the rewrit-
ing algorithm that are necessary to understand its use in our explanation setting; for
the full details we refer to [6]. Essentially, the algorithm makes use of replacement and
unification steps. A replacement can be applied to an atom when the corresponding
predicate appears on the right hand side of an inclusion axiom; e.g., query Q1(x) is
obtained from Q0(x) by replacing Student(x) with PhD(x), due to axiom (5). Sim-
ilarly, Q2(x) is obtained from Q1(x) by making use of axiom (8), which can be seen

12 The canonical model corresponds to what in databases is called chase of a database w.r.t. a set
of constraints [6].
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in FOL as ∀v.∃w.Professor (v) ← teaches(v, w) 13. On the other hand, a unification
step collapses two atoms with the same predicate when the corresponding arguments
can be unified; e.g., query Q4(x) is obtained from Q3(x) by unifying the two atoms
supervisedBy(x, y) and supervisedBy(w, y). Unifications are essential in order to en-
able replacements where a variable is required to occur only once, as per the previous
technical footnote.

Note that the algorithm need not produce a linearly ordered set of rewritings: if the
TBox had an additional axiom MSc � Student , there would also be four rewritings
Q1b, . . . , Q4b paralleling Q1, . . . , Q4, with MSc replacing PhD .

The key observation is that the replacement rewriting steps correspond to the “inverses”
of the additions made to the canonical model of the knowledge base. Hence, we can use
them to guide the explanation of why a certain individual is in the answer to the original
query. Suppose that an individual b is part of the answer toQ(x), and we want to explain
why. In our example, suppose the ABox contains PhD(BOB), and no other facts about
BOB, and we want to explain why BOB is in the answer to Q0(x). To do so, we proceed
as follows.

Step 1. SinceQ(b) was true, we select from S the rewritings that produce b as an answer
when directly evaluated over the ABox (viewed as a closed database)14. Let Qk(x) be
one such rewriting. We (re)compute the derivation ofQk(x) fromQ(x), building a data
structure that tracks how (changed) atoms in one query are derived from the predecessor
query. This is easy for substitutions, if we replace each atom in the query by a stack/list
whose top is the most recently rewritten form of the original atom. For unifications, we
put a pointer on the stack from one of the unified atoms to the stack of the other atom.

In our example, BOB would be returned by both Q5(x) and Q6(x), so the derivation
of Q5(x) and Q6(x) from Q(x) is reconstructed. The derivation of Q5 would yield
roughly the following data structure:

[ [ PhD(x), axiom1, Student(x) ],
[ PhD(x), axiom2, supervisedBy(x,y) ],
[ pointer(atom(2)), unify(w,x), supervisedBy(w,y),
axiom3, Professor(y), axiom4, teaches(y,z) ] ]

Step 2. SinceQk(b) is true, there is an assignment θ of ABox individuals to the variables
in the head and body of Qk(x) such that θ(x) = b, and for each atom β in Qk(x), θ(β)
is an ABox fact.

In our example, the ABox contains PhD(BOB), and forQ5(x) (orQ6(x)), we would
start with θ(x) = BOB.

Step 3. Traversing backwards the sequence of rewritings from Qk(x) to Q(x), we ex-
tend the substitution θ to the variables in the intervening queries, by keeping track of
unifications, or assigning to such variables newly introduced Skolem constants (corre-
sponding to objects introduced by the inclusion assertions). More precisely, when going

13 Technical note: a replacement where a variable is removed from the resulting query (w, in the
example) is allowed only when such a variable does not occur anywhere else in the query.

14 By completeness of the query answering algorithm [6], at least one such rewriting Qk(x) will
always exist.



1454 A. Borgida, D. Calvanese, and M. Rodriguez-Muro

supervisedBy(BOB, @1) (*)
{ by meaning of domain, from

dom(supervisedBy)(BOB)
{ by Subconcept rule from

PhD � dom(supervisedBy) { Axiom 2 }
PhD(BOB) { DB fact } } }

Fig. 3. Domain rule expansion

backwards fromQi toQi−1, from whichQi was generated, if no variable has been elim-
inated when rewriting Qi−1 to Qi, then θ need not be extended. When a variable z has
been eliminated because it has been unified with a variable y, then we set θ(z) = θ(y).
While when a variable z has been eliminated in Qi by replacing an atomR(y, z) (resp.,
R(z, y)) with A(y), due to inclusion axiomA � dom(R) (resp.,A � rng(R)), then we
set θ(z) = @c, where @c is a fresh constant representing a new hypothetical individual.
In this way, when one reaches the original query Q(x), θ will have assigned to each
variable appearing in it either an ABox individual or a Skolem constant. In analogy to
the case of standard databases, one then initially shows to the user θ(Q(x)), i.e., the set
of atoms of the original query to which θ has been applied.

In our example, we would get θ(x) = BOB for Q5(x), and the following new as-
signments: θ(y) = @1 for Q4(x), θ(w) = θ(x) = BOB for Q3(x), and θ(z) = @2
forQ1(x). The resulting initial explanation shown to the user would be the sequence of
ground atoms matching the query conjuncts:

Q0(BOB)← Student(BOB), supervisedBy(BOB,@1), teaches(@1,@2)

Step 4. The data structure constructed in Step 1, together with the substitutions gathered
in Step 1 unifications, as well as Steps 2 and 3, yields a complete proof tree of the
atoms in the original query (see Figure 2). Note that the leftmost part of this proof
tree (its first level) corresponds to the initial explanation we suggested in Step 3. In
an interactive session, users can control the iterative expansion of this proof tree to
lower depths in whatever order they desire. It is interesting to note that pointers in the
data structure become Lemmas – previously justified atoms, thereby providing a much
shorter global proof. So unification in the rewriting algorithm has an interesting benefit
for explanation.

We observe that an explanation always exists, and that the above algorithm will al-
ways provide one. Note also that one can manipulate here the proof tree, to make proof
steps more understandable to humans. For example, in this case one can expand the
rules dealing with domain and range. This could lead to the modified proof fragment
depicted in Figure 3.

Several issues need to be addressed at this point. First is the selection of the rewrit-
ing(s) Qk(x) from S in Step 1. For this, we need an efficient way of finding only the
indexes j of those rewritings that actually make Q(b) be true. This can be done by as-
sociating to each of the queries Qi(x) in S a distinct tag, and returning such tags as
part of the answer. Originally, if S = {Q1(x), . . . , Qn(x)}, then the rewriting would
normally have been written in SQL as:
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SELECT x FROM ... WHERE Q1(x) UNION
SELECT x FROM ... WHERE Q2(x) UNION ...

We would instead use the query

SELECT x, 1 AS tag FROM ... WHERE Q1(x) UNION
SELECT x, 2 AS tag FROM ... WHERE Q2(x) UNION ...

Secondly, in order to execute Step 3, for each of the tag values j actually
occurring in the answer, we need to get the ABox tuples that would contribute
to making the body of query Qj(b) be true. In our example, if the ABox was
{PhD(BOB),Student(MIMI ), supervisedBy(BOB,ALICE)}, then tags 4, 5 and 6
would all be returned for answer x = BOB of Q(x), and we would obtain the set of
atoms {PhD(BOB), supervisedBy(BOB,ALICE)} ∪ {PhD(BOB)} ∪ {PhD(BOB)}.

Note that in case more than one rewriting returns the answer b, and the rewritings are
not reducible one to the other by unification, then we have alternate explanations for
why Q(b) holds. In this case, it seems that explanations involving fewer rewritings are
preferable since they involve less abstract reasoning. In our example, the explanation
based onQ4, shown in Figure 4, seems clearly preferable to the previous explanation for
Q5(BOB) because it is shorter (involving fewer rewritings of the original query). All
things being equal, we also believe an explanation would be preferred if it introduces
fewer hypothetical (Skolem) individuals.

Moreover,Q5 is preferable toQ6 because both atoms would be supported by ground-
ing to the same atomic value, thereby saving a unification step in the explanation, which
would have resulted in a pointer/Lemma call in the explanation.

Therefore, to find the better rewritings first, we need a search strategy that tests
whether a rewriting is satisfied in the database of atoms selected above, before applying
any other replacement or unification. And one which uses replacements that introduce
Skolem constants as late as possible.

We have implemented the above-described algorithm for generating explanations in
a prototype Prolog program, which exploits Prolog’s unification technique (for unifying
conjunctive query atoms, testing applicability of axiom replacements, and for finding
database substitutions), and its backtracking control structure (through an invertible

Student(BOB)
{ by Subconcept rule from

PhD � Student { Axiom 1 }
PhD(BOB) { DB fact } }

supervisedBy(BOB, ALICE)
teaches(ALICE, @1)
{ by Subconcept rule from

Professor � dom(teaches) { Axiom 4 }
Professor (@1)
{ by Subconcept rule from

rng(supervisedBy) � Professor { Axiom 3 }
supervisedBy(BOB, ALICE) { DB fact } } }

Fig. 4. Alternate (shorter) explanation for Q(BOB)
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append predicate) to search through all possible sequences of rewritings of length less
than n = max{tag value returned by the query}.

5 Conclusions

The paper tackles the problem of explaining DL-Lite reasoning, viewed in part as (i) re-
quiring inference rules for building proofs, and (ii) finding short proofs. (The use of
inference rules makes possible, among others, a connection to generic explanation soft-
ware available on the Semantic Web [17].) In general, an alternate, more accessible
syntax is introduced for DL-Lite, and an algorithm for finding shortest proofs of incon-
sistency is presented. Of greater novelty and complexity is the explanation of reasoning
in finite models, which is particularly relevant for conceptual models of databases.

Since DL-Lite is intended to support efficient conjunctive query evaluation over a
DL KB, we address for the first time explanation for this. In particular, we provide a
theoretically sound technique and a prototype implementation for finding explanations
of the fact that some value b is returned as an answer to query Q(x) over knowledge
base (T ,A). These explanations are minimal length in the sense that fewest transfor-
mations steps are applied from the original query. The performance system used for
query-answering is used to retrieve a minimal set of tuples needed to explain the truth
of Q(b), thus making the explanation component scalable even for very large ABoxes.

Future work includes a component for finding all different explanations for some
conclusion (which is useful for the case when the conclusion is no longer desired), and
especially explaining why a value e was NOT returned by a conjunctive query.
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