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Institute of Information Systems
Vienna Univ. of Technology, Austria

Abstract

Two-way regular path queries (2RPQs) have received in-
creased attention recently due to their ability to relate pairs
of objects by flexibly navigating graph-structured data. They
are present in property paths in SPARQL 1.1, the new stan-
dard RDF query language, and in the XML query language
XPath. In line with XPath, we consider the extension of
2RPQs with nesting, which allows one to require that objects
along a path satisfy complex conditions, in turn expressed
through (nested) 2RPQs. We study the computational com-
plexity of answering nested 2RPQs and conjunctions thereof
(CN2RPQs) in the presence of domain knowledge expressed
in description logics (DLs). We establish tight complexity
bounds in data and combined complexity for a variety of DLs,
ranging from lightweight DLs (DL-Lite, EL) up to highly ex-
pressive ones. Interestingly, we are able to show that adding
nesting to (C)2RPQs does not affect worst-case data com-
plexity of query answering for any of the considered DLs.
However, in the case of lightweight DLs, adding nesting to
2RPQs leads to a surprising jump in combined complexity,
from P-complete to EXP-complete.

1 Introduction
Both in knowledge representation and in databases, there has
been great interest recently in expressive mechanisms for
querying data, while taking into account complex domain
knowledge (Calvanese, De Giacomo, and Lenzerini 2008;
Glimm et al. 2008). Description Logics (DLs) (Baader et al.
2003), which on the one hand underlie the W3C standard
Web Ontology Language (OWL), and on the other hand are
able to capture at the intensional level conceptual modeling
formalisms like UML and ER, are considered particularly
well suited for representing a domain of interest (Borgida
and Brachman 2003). In DLs, instance data, stored in a
so-called ABox, is constituted by ground facts over unary
and binary predicates (concepts and roles, respectively), and
hence resembles data stored in graph databases (Consens
and Mendelzon 1990; Barceló et al. 2012). There is a crucial
difference, however, between answering queries over graph
databases and over DL ABoxes. In the former, the data is
assumed to be complete, hence query answering amounts to
the standard database task of query evaluation. In the latter,
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it is typically assumed that the data is incomplete and addi-
tional domain knowledge is provided by the DL ontology (or
TBox). Hence query answering amounts to the more com-
plex task of computing certain answers, i.e., those answers
that are obtained from all databases that both contain the ex-
plicit facts in the ABox and satisfy the TBox constraints.
This difference has driven research in different directions.

In databases, expressive query languages for querying
graph-structured data have been studied, which are based
on the requirement of relating objects by flexibly navigat-
ing the data. The main querying mechanism that has been
considered for this purpose is that of one-way and two-way
regular path queries (RPQs and 2RPQs) (Cruz, Mendelzon,
and Wood 1987; Calvanese et al. 2003), which are queries
returning pairs of objects related by a path whose sequence
of edge labels belongs to a regular language over the (binary)
database relations and their inverses. Conjunctive 2RPQs
(C2RPQs) (Calvanese et al. 2000) are a significant extension
of such queries that add to the navigational ability the pos-
sibility of expressing arbitrary selections, projections, and
joins over objects related by 2RPQs, in line with conjunc-
tive queries (CQs) over relational databases. Two-way RPQs
are present in the property paths in SPARQL 1.1 (Harris
and Seaborne 2013), the new standard RDF query language,
and in the XML query language XPath (Berglund and oth-
ers 2010). An additional construct that is present in XPath is
the possibility of using existential test operators, also known
as nesting, to express sophisticated conditions along naviga-
tion paths. When an existential test 〈E〉 is used in a 2RPQ
E′, there will be objects along the main navigation path for
E′ that match positions of E′ where 〈E〉 appears; such ob-
jects are required to be the origin of a path conforming to
the (nested) 2RPQ E. It is important to notice that existen-
tial tests in general cannot be captured even by C2RPQs,
e.g., when tests appear within a transitive closure of an RPQ.
Hence, adding nesting effectively increases the expressive
power of 2RPQs and of C2RPQs.

In the DL community, query answering has been inves-
tigated extensively for a wide range of DLs, with much of
the work devoted to CQs. With regards to the complex-
ity of query answering, attention has been paid on the one
hand to combined complexity, i.e., the complexity measured
considering as input both the query and the DL knowledge
base (constituted by TBox and ABox), and on the other
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hand to data complexity, i.e., when only the ABox is con-
sidered as input. For expressive DLs that extend ALC, CQ
answering is typically coNP-complete in data-complexity
(Ortiz, Calvanese, and Eiter 2008), and 2EXP-complete
in combined complexity (Glimm et al. 2008; Lutz 2008;
Eiter et al. 2009). For lightweight DLs, instead, CQ answer-
ing is in AC0 in data complexity for DL-Lite (Calvanese et
al. 2007), and P-complete for EL (Krisnadhi and Lutz 2007).
For both logics, the combined complexity is dominated by
the NP-completeness of CQ evaluation over plain relational
databases. There has also been some work on (2)RPQs and
C(2)RPQs. For the very expressive DLs ZIQ, ZOQ, and
ZOI, where regular expressions over roles are present also
in the DL, a 2EXP upper bound has been shown via tech-
niques based on alternating automata over infinite trees (Cal-
vanese, Eiter, and Ortiz 2009). For the Horn fragments of
SHOIQ and SROIQ, P-completeness in data complexity
and EXP/2EXP-completeness in combined complexity are
known (Ortiz, Rudolph, and Simkus 2011). For lightweight
DLs, tight bounds for answering 2RPQs and C2RPQs have
only very recently been established by Bienvenu, Ortiz, and
Simkus (2013): for (C)(2)RPQs, data complexity is NL-
complete in DL-Lite and DL-LiteR, and P-complete in EL
and ELH. For all of these logics, combined complexity is P-
complete for (2)RPQs and PSPACE-complete for C(2)RPQs.

Motivated by the expressive power of nesting in XPath
and SPARQL, in this paper we significantly advance these
latter lines of research on query answering in DLs, and study
the impact of adding nesting to 2RPQs and C2RPQs. We es-
tablish tight complexity bounds in data and combined com-
plexity for a variety of DLs, ranging from lightweight DLs
of the DL-Lite and EL families up to the highly expressive
ones of the SH and Z families. Our results are summarized
in Table 1. For DLs containing at least ELI, we are able
to encode away nesting, thus showing that the worst-case
complexity of query answering is not affected by this con-
struct. Instead, for lightweight DLs (starting already from
DL-Lite!), we show that adding nesting to 2RPQs leads to a
surprising jump in combined complexity, from P-complete
to EXP-complete. We then develop a sophisticated rewriting-
based technique that builds on (but significantly extends) the
one proposed by Bienvenu, Ortiz, and Simkus (2013), which
we use to prove that the problem remains in NL for DL-
Lite. We thus show that adding nesting to (C)2RPQs does
not affect worst-case data complexity of query answering
for lightweight DLs.

For lack of space, some proofs have been relegated to the
appendix of the long version (Bienvenu et al. 2014).

2 Preliminaries
We briefly recall the syntax and semantics of description
logics (DLs). As usual, we assume countably infinite, mu-
tually disjoint sets NC, NR, and NI of concept names, role
names, and individuals. We typically use A for concept
names, p for role names, and a, b for individuals. An inverse
role takes the form p− where p ∈ NR. We let N±R =NR ∪
{p− | p∈NR} and denote by r elements of N±R .

A DL knowledge base (KB) consists of a TBox and an

ABox, whose forms depend on the DL in question. In the
DL ELHI⊥, a TBox is defined as a set of (positive) role
inclusions of the form r v r′ and negative role inclusions of
the form ru r′ v ⊥ with r, r′ ∈ N±R , and concept inclusions
of the form C v D, where C and D are complex concepts
formed according to the following syntax:1

C ::= > | ⊥ | A | ∃r.C | C u C

with A ∈ NC and r ∈ N±R .
Some of our results refer specifically to the lightweight

DLs that we define next. ELHI is the fragment of ELHI⊥
that has no ⊥. ELH and ELI are obtained by additionally
disallowing inverse roles and role inclusions, respectively.
DL-LiteR is also a fragment of ELHI⊥, in which concept
inclusions can only take the formsB1vB2 andB1uB2v⊥,
for Bi a concept name or concept of the form ∃r.> with
r ∈ N±R . DL-Lite is the fragment of DL-LiteR that disallows
(positive and negative) role inclusions.

An ABox is a set of assertions of the form C(a) or r(a, b),
where C is a complex concept, r ∈ N±R , and a, b ∈ NI. We
use Ind(A) to refer to the set of individuals in A.

Semantics. The semantics of DL KBs is based upon inter-
pretations, which take the form I = (∆I , ·I), where ∆I is
a non-empty set and ·I maps each a ∈ NI to aI ∈ ∆I , each
A ∈ NC to AI ⊆ ∆I , and each p ∈ NR to pI ⊆ ∆I ×∆I .2
The function ·I can be straightforwardly extended to com-
plex concepts and roles. In the case of ELHI⊥, this is done
as follows: >I = ∆I , ⊥I = ∅, (p−)I = {(c, d) | (d, c) ∈
pI}, (∃r.C)I = {c | ∃d : (c, d) ∈ rI , d ∈ CI}, and
(C u D)I = CI ∩ DI . An interpretation I satisfies an in-
clusion G v H if GI ⊆ HI , and it satisfies an assertion
C(a) (resp., r(a, b)) if aI ∈ AI (resp., (aI , bI) ∈ rI). A
model of a KB (T ,A) is an interpretation I which satisfies
all inclusions in T and assertions in A.

Complexity. In addition to P and (co)NP, our results refer
to the complexity classes NL (non-deterministic logarithmic
space), PSPACE (polynomial space), and (2)EXP ((double)
exponential time), cf. (Papadimitriou 1993).

3 Nested Regular Path Queries
We now introduce our query languages. In RPQs, nested
RPQs and their extensions, atoms are given by (nested) reg-
ular expressions whose symbols are roles. The set Roles
of roles contains N±R , and all test roles of the forms {a}?
and A? with a ∈ NI and A ∈ NC. They are interpreted as
({a}?)I = (aI , aI), and (A?)I = {(o, o) | o ∈ AI}.
Definition 3.1. A nested regular expression (NRE), denoted
by E, is constructed according to the following syntax:

E ::= σ | E · E | E ∪ E | E∗ | 〈E〉

where σ ∈ Roles.
1We slightly generalize the usual ELHI⊥ by allowing for neg-

ative role inclusions.
2Note that we do not make the unique name assumption (UNA),

but all of our results continue to hold if the UNA is adopted.
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2RPQ C2RPQ N2RPQ / CN2RPQ

data combined data combined data combined

Graph DBs & RDFS NL-c NL-c NL-c NP-c NL-c P-c / NP-c

DL-Lite NL-c P-c NL-c PSPACE-c NL-c EXP-c

Horn DLs (e.g., EL, Horn-SHIQ) P-c P-c P-c PSPACE-c P-c EXP-c

Expressive DLs (e.g., ALC, SHIQ) coNP-h EXP-c coNP-h 2EXP-c coNP-h EXP-c / 2EXP-c

Table 1: Complexity of query answering. The ‘c’ indicates completeness, the ‘h’ hardness. New results are marked in bold.
For existing results, refer to (Bienvenu, Ortiz, and Simkus 2013; Pérez, Arenas, and Gutierrez 2010; Barceló Baeza 2013;
Calvanese, Eiter, and Ortiz 2009; Ortiz, Rudolph, and Simkus 2011) and references therein.

We assume a countably infinite set NV of variables (dis-
joint from NC, NR, and NI). Each t ∈ NV ∪ NI is a term. An
atom is either a concept atom of the formA(t), withA ∈ NC

and t a term, or a role atom of the form E(t, t′), with E an
NRE and t, t′ two (possibly equal) terms.

A nested two-way regular path query (N2RPQ) q(x, y) is
an atom of the form E(x, y), where E is an NRE and x, y
are two distinct variables. A conjunctive N2RPQ (CN2RPQ)
q(~x) with answer variables ~x has the form ∃~y.ϕ, where ϕ is
a conjunction of atoms whose variables are among ~x ∪ ~y.

A (plain) regular expression (RE) is an NRE that does not
have subexpressions of the form 〈E〉. Two-way regular path
queries (2RPQs) and conjunctive 2RPQs (C2RPQs) are de-
fined analogously to N2RPQs and CN2RPQs but allowing
only plain REs in atoms.

Given an interpretation I, the semantics of an NRE E is
defined by induction on its structure:

(E1 · E2)I = EI1 ◦ EI2 ,
(E1 ∪ E2)I = EI1 ∪ EI2 ,

(E∗1 )I = (EI1 )∗,

〈E〉I = {(o, o) | there is o′ ∈ ∆I s.t. (o, o′) ∈ EI}.
A match for a C2NRPQ q(~x) = ∃~y.ϕ in an interpreta-

tion I is a mapping from the terms in ϕ to ∆I such that
(i) π(a) = aI for every individual a of ϕ, (ii) π(x) ∈ AI for
every concept atom A(x) of ϕ, and (iii) (π(x), π(y)) ∈ EI
for every role atom E(x, y) of ϕ. Let ans(q, I) = {π(~x) |
π is a match for q in I}. An individual tuple~awith the same
arity as ~x is called a certain answer to q over a KB 〈T ,A〉
if (~a)I ∈ ans(q, I) for every model I of 〈T ,A〉. We use
ans(q, 〈T ,A〉) to denote the set of all certain answers to q
over 〈T ,A〉. In what follows, by query answering, we will
mean the problem of deciding whether ~a ∈ ans(q, 〈T ,A〉).
Example 3.1. We consider an ABox of advisor relation-
ships of PhD holders3. We assume an advisor relation be-
tween nodes representing academics. There are also nodes
for theses, universities, research topics, and countries, re-
lated in the natural way via roles wrote, subm(itted), topic,
and loc(ation). We give two queries over this ABox.
q1(x, y) = (advisor · 〈wrote · topic ·Physics?〉)∗ (x, y)

3Our examples are inspired by the Mathematics Genealogy
Project (http://genealogy.math.ndsu.nodak.edu/ ).

Query q1 is an N2RPQ that retrieves pairs of a person x and
an academic ancestor y of x such that all people on the path
from x to y (including y itself) wrote a thesis in Physics.

q2(x, y, z) = advisor−(x, z), advisor∗(x,w),
advisor− · 〈wrote · 〈topic ·DBs?〉 · subm · loc · {usa}?〉(y, z),(
advisor · 〈wrote · 〈topic ·Logic?〉 · subm · loc ·EU?〉

)∗
(y, w)

Query q2 is a CN2RPQ that looks for triples of individu-
als x, y, z such that x and y have both supervised z, who
wrote a thesis on Databases and who submitted this thesis to
a university in the USA. Moreover, x and y have a common
ancestor w, and all people on the path from x to w, includ-
ing w, must have written a thesis in Logic and must have
submitted this thesis to a university in an EU country.

It will often be more convenient to deal with an automata-
based representation of (C)N2RPQs, which we provide next.
Definition 3.2. A nested NFA (n-NFA) has the form
(A, s0, F0) where A is an indexed set {α1, . . . , αn}, where
each αl ∈ A is an automaton of the form (S, s, δ, F ), where
S is a set of states, s ∈ S is the initial state, F ⊆ S is the
set of final states, and

δ ⊆ S × (Roles ∪ {〈j1, . . . , jk〉 |
l < ji ≤ n, for i ∈ {1, . . . , k}})× S

We assume that the sets of states of the automata in A
are pairwise disjoint, and we require that {s0} ∪ F0 are
states of a single automaton in A. If in each transition
(s, 〈j1, . . . , jk〉, s′) of each automaton in A we have k = 1,
then the n-NFA is called reduced.

When convenient notationally, we will denote an n-NFA
(A, s0, F0) by As0,F0 . Moreover, we will use Si, δi, and Fi
to refer to the states, transition relation, and final states of αi.
Definition 3.3. Given an interpretation I, we define AIs0,F0

inductively as follows. Let αl be the (unique) automaton in
A such that {s0}∪F0 ⊆ Sl. Then (o, o′) ∈ AIs0,F0

if there is
a sequence s0o0s1 · · · ok−1skok, for k ≥ 0, such that o0 =
o, ok = o′, sk ∈ F0, and for i ∈ {1, . . . , k} there is a
transition (si−1, σi, si) ∈ δl such that either
– σi ∈ Roles and (oi−1, oi) ∈ σIi , or
– σi = 〈j1, . . . , jk〉 such that, for every m ∈ {1, . . . , k},

there exists om ∈ ∆I with (oi, om) ∈ AIs′,F ′ , where s′

and F ′ are the initial and final states of αjm respectively.
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Note that an n-NFA As0,F0 such that there are no transi-
tions of the form (s, 〈j1, . . . , jk〉, s′) in the unique αl with
{s0} ∪ F0 ⊆ Sl is equivalent to a standard NFA.

For every NRE E one can construct in polynomial time
an n-NFA As0,F0

such that EI = AIs0,F0
for every inter-

pretation I. This is an almost immediate consequence of the
correspondence between regular expressions and finite state
automata. Moreover, any n-NFA can be transformed into an
equivalent reduced n-NFA by introducing linearly many ad-
ditional states. In the following, unless stated otherwise, we
assume all n-NFAs are reduced.

4 Upper Bounds via Reductions
In this section, we derive some upper bounds on the com-
plexity of answering (C)N2RPQs in different DLs, by means
of reductions to other problems. For simplicity, we assume
in the rest of this section that query atoms do not employ
test roles of the form {a}?. This is without loss of generality,
since each symbol {a}? can be replaced by Aa? for a fresh
concept name Aa, by adding the ABox assertion Aa(a).

We start by showing that answering CN2RPQs can be
polynomially reduced to answering non-nested C2RPQs us-
ing TBox axioms that employ inverses, conjunction on the
left, and qualified existential restrictions.

Proposition 4.1. For each CN2RPQ q, one can compute in
polynomial time an ELI TBox T ′ and C2RPQ q′ such that
ans(q, 〈T ,A〉) = ans(q′, 〈T ∪ T ′,A〉) for every KB 〈T ,A〉.

Proof. Let q be an arbitrary CN2RPQ whose role atoms are
given by n-NFAs, that is, they take the form As0,F0

(x, y).
For each atom As0,F0

(x, y) in q and each αi ∈ A, we use
a fresh concept name As for each state s ∈ Si, and define a
TBox Tαi that contains:

• > v Af for each f ∈ Fi,
• ∃r.As′ v As for each (s, r, s′) ∈ δi with r ∈ N±R ,
• As′ uA v As for each (s,A?, s′) ∈ δi with A ∈ NC, and
• As′ u Asj v As for each (s, 〈j〉, s′) ∈ δi, with sj the

initial state of αj .

We denote by TA the union of all Tαi
with αi ∈ A, and de-

fine T ′ as the union of TA for all atoms As0,F0
(x, y) ∈ q. To

obtain the query q′ we replace each atom As0,F0
(x, y) by the

atom α′i(x, y), where αi is the unique automaton in A with
{s0}∪F0 ⊆ Si, andα′i is obtained fromαi by replacing each
transition of the form (s, 〈j〉, s′) ∈ δi with (s,Asj?, s′),
for sj the initial state of αj . Note that each α′i is a stan-
dard NFA. We show in the appendix that ans(q, 〈T ,A〉) =
ans(q′, 〈T ∪ T ′,A〉), for every KB 〈T ,A〉.

It follows that in every DL that contains ELI, answering
CN2RPQs is no harder than answering plain C2RPQs. From
existing upper bounds for C2RPQs (Calvanese, Eiter, and
Ortiz 2009; Ortiz, Rudolph, and Simkus 2011), we obtain:

Corollary 4.2. Answering CN2RPQs is:

• in 2EXP in combined complexity for all DLs contained in
SHIQ, SHOI, ZIQ, or ZOI.

• in EXP in combined complexity and P in data complexity
for all DLs contained in Horn-SHOIQ.
We point out that the 2EXP upper bound for expressive

DLs can also be inferred, without using the reduction above,
from the existing results for answering C2RPQs inZIQ and
ZOI (Calvanese, Eiter, and Ortiz 2009).4 Indeed, these DLs
support regular role expressions as concept constructors, and
a nested expression 〈E〉 in a query can be replaced by a con-
cept ∃E.> (or by a fresh concept name AE if the axiom
∃E.> v AE is added to the TBox). Hence, in ZIQ and
ZOI, nested expressions provide no additional expressive-
ness and CN2RPQs and C2RPQs coincide.

The construction used in Proposition 4.1 also allows us to
reduce the evaluation of a N2RPQ to standard reasoning in
any DL that contains ELI.
Proposition 4.3. For every N2RPQ q and every pair of in-
dividuals a, b, one can compute in polynomial time an ELI
TBox T ′, and a pair of assertions Ab(b) and As(a) such
that (a, b) ∈ ans(q, 〈T ,A〉) iff 〈T ∪ T ′,A ∪ {Ab(b)}〉 |=
As(a), for every DL KB 〈T ,A〉.

From this and existing upper bounds for instance check-
ing in DLs, we easily obtain:
Corollary 4.4. Answering N2RPQs is in EXP in combined
complexity for every DL that contains ELI and is contained
in SHIQ, SHOI, ZIQ, or ZOI.

5 Lower Bounds
The upper bounds we have stated in Section 4 are quite gen-
eral, and in most cases worst-case optimal.

The 2EXP upper bound stated in the first item of Corol-
lary 4.2 is optimal already for C2RPQs and ALC. Indeed,
the 2EXP hardness proof for conjunctive queries in SH by
Eiter et al. (2009) can be adapted to use an ALC TBox and
a C2RPQ. Also the EXP bounds in Corollaries 4.2 and 4.4
are optimal for all DLs that contain ELI, because standard
reasoning tasks like satisfiability checking are already EXP-
hard in this logic (Baader, Brandt, and Lutz 2008). For the
same reasons, the P bound for data complexity in Corol-
lary 4.2 is tight for EL and its extensions (Calvanese et al.
2006).

However, for the lightweight DLs DL-LiteR and EL, the
best combined complexity lower bounds we have are NL
(resp., P) for N2RPQs and PSPACE for CN2RPQs, inherited
from the lower bounds for (C)NRPQs (Bienvenu, Ortiz, and
Simkus 2013). This leaves a significant gap with respect to
the EXP upper bounds in Corollaries 4.2 and 4.4.

We show next that these upper bounds are tight. This is the
one of the core technical results of this paper, and probably
the most surprising one: already evaluating one N2RPQ in
the presence of a DL-Lite or EL TBox is EXP-hard.
Theorem 5.1. In DL-Lite and EL, N2RPQ answering is
EXP-hard in combined complexity.

Proof. We provide a reduction from the word problem for
Alternating Turing Machines (ATMs) with polynomially

4For queries that do not contain inverse roles, that is, (1-way)
CRPQs, the same applies to ZOQ and its sublogics.
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bounded space, which is known to be EXP-hard (Chandra,
Kozen, and Stockmeyer 1981). An ATM is given as a tuple
M = (Σ, S∃, S∀, δ, sinit , sacc , srej ), where Σ is an alpha-
bet, S∃ is a set of existential states, S∀ is a set of universal
states, δ ⊆ (S∃ ∪ S∀)×Σ ∪ {b} × (S∃ ∪ S∀)×Σ ∪ {b} ×
{−1, 0,+1} is a transition relation, b is the blank symbol,
and sinit , sacc , srej ∈ S∃ are the initial state, the acceptance
state and the rejection state, respectively.

Consider a word w ∈ Σ∗. We can w.l.o.g. assume that
Σ = {0, 1}, thatM uses only |w| tape cells and that |w| ≥ 1.
Let m = |w|, and, for each 1 ≤ i ≤ m, let w(i) denote the
ith symbol of w. Let S = S∃ ∪ S∀. We make the following
further assumptions:

(i) The initial state is not a final state: sinit 6∈ {sacc , srej}.
(ii) Before entering a state sacc or srej , M writes b in all

m tape cells.
(iii) There exist functions δ1, δ2 : S × Σ ∪ {b} → S ×

Σ∪{b}×{−1, 0,+1} such that {δ1(s, σ), δ2(s, σ)} =
{(s′, σ′, d) | (s, σ, s′, σ′, d) ∈ δ} for every s ∈ S \
{sacc , srej} and σ ∈ Σ∪{b}. In other words, non-final
states of M give rise to exactly two successor configu-
rations described by the functions δ1, δ2.

Note that the machine M can be modified in polynomial
time to ensure (i-iii), while preserving the acceptance of w.

We next show how to construct in polynomial time a DL-
Lite KB K = (T ,A) and a query q such that M accepts
w iff a ∈ ans(q,K) (we return to EL later). The high-level
idea underlying the reduction is to use a KB to enforce a
tree that contains all possible computations of M on w. The
query q selects a computation in this tree and verifies that it
corresponds to a proper, error-free, accepting run.
Generating the tree of transitions. First we construct K,
which enforces a tree whose edges correspond to the pos-
sible transitions of M . More precisely, each edge encodes
a transition together with the resulting position of the
read/write head of M , and indicates whether the transition
is given by δ1 or δ2. This is implemented using role names
rp,t,i, where p ∈ {1, 2}, t ∈ δ, and 0 ≤ i ≤ m+ 1. To mark
the nodes that correspond to the initial (resp., a final) con-
figuration of M , we employ the concept name Ainit (resp.,
Afinal ), and we use A∃ and A∀ to store the transition type.

We let A = {Ainit(a), A∃(a)}, and then we initiate the
construction of the tree by including in T the axiom

Ainit v ∃rp,(sinit ,σ,s′,σ′,d),1+d. (1)

for each σ ∈ Σ∪{b} and p ∈ {1, 2} such that δp(sinit , σ) =
(s′, σ′, d). To generate further transitions, T contains

∃r−p,(s,σ,s′,σ′,d),i v ∃rp′,(s′,σ∗,s′′,σ′′,d′),i+d′ (2)

for each (s, σ, s′, σ′, d) ∈ δ, 1 ≤ i ≤ m, σ∗ ∈ Σ ∪ {b}
and p, p′ ∈ {1, 2} such that δp′(s′, σ∗) = (s′′, σ′′, d′). Note
that a transition t′ = (s′, σ∗, s′′, σ′′, d′) ∈ δ can follow t =
(s, σ, s′, σ′, d) ∈ δ only if σ∗ is the symbol written on tape
cell i, for i the position of the read/write head after executing
t. This is not guaranteed by (2). Instead, we “overestimate”
the possible successive transitions, and use the query q to
select paths that correspond to a proper computation.

We complete the definition of T by adding inclusions to
label the nodes according to the type of states resulting from

transitions. For each 1 ≤ i ≤ m, p ∈ {1, 2} and transition
(s, σ, s′, σ′, d) ∈ δ, we have the axiom

∃r−p,(s,σ,s′,σ′,d),i vAQ, where

- AQ = Afinal if s′ ∈ {sacc , srej},
- AQ = A∃, if s′ ∈ S∃ \ {sacc , srej}, and
- AQ = A∀, if s′ ∈ S∀ \ {sacc , srej}.

We turn to the construction of the query q, for which we
employ the n-NFA representation. We construct an n-NFA
αq = (A, s, F ) where A hasm+1 automata {α0, . . . , αm}.
Intuitively, the automaton α0 will be responsible for travers-
ing the tree representing candidate computation paths. At
nodes corresponding to the end of a computation path, α0

launches α1, . . . , αm which “travel” back to the root of the
tree and test for the absence of errors along the way. We start
by defining the tests α1, . . . , αm. Afterwards we define α0,
which selects a set of paths that correspond to a full compu-
tation, and launches these tests at the end of each path.
Testing the correctness of a computation path. For each 1 ≤
l ≤ m, the automaton αl = (Sl, sl, δl, Fl) is built as follows.
We let Sl = {σl | σ ∈ Σ}∪{bl}∪{s′l}. That is, Sl contains
a copy of Σ ∪ {b} plus the additional state s′l. We define
the initial state as sl = bl and let Fl = {s′l}. Finally, the
transition relation δl contains the following tuples:

(T1) (σl, r
−
p,(s,σ,s′,σ′,d),i, σl) for all 1 ≤ i ≤ m, p ∈ {1, 2},

all transitions (s, σ, s′, σ′, d) ∈ δ, and each σl ∈ Sl \
{s′l} with l 6= i− d;

(T2) (σ′l, r
−
p,(s,σ,s′,σ′,d),i, σl) for all 1 ≤ i ≤ m, s ∈ S and

p ∈ {1, 2} with δp(s, σ) = (s′, σ′, d) and l = i− d;
(T3) (σl, Ainit?, s

′
l) for σ = w(l).

The working of αl can be explained as follows. Each state
σl ∈ Sl \ {s′l} corresponds to one of the symbols that may
be written in position l of the tape during a run of M . When
αl is launched at some node in a computation tree induced
by K, it attempts to travel up to the root node, and the only
reason it may fail is when a wrong symbol is written in po-
sition l at some point in the computation path. Recall that
in each final configuration of M , all symbols are set to the
blank symbol, and thus the initial state of αl is bl.

Consider a word w′ ∈ Roles∗ of the form

r−pk,tk,ik · · · r
−
p1,t1,i1

·Ainit? (3)

that describes a path from some node in the tree induced
by K up to the root node a. We claim that w′ is accepted
by every αl (1 ≤ l ≤ m) just in the case that t1, . . . , tk
is a correct sequence of transitions. To see why, first sup-
pose that every αl accepts w′, and let (pos0, st0, tape0) be
the tuple with pos0 = 1, st0 = sinit and tape0 contains
for each 1 ≤ l ≤ m, the symbol σl corresponding to the
state of αl when reading Ainit . Clearly, due to (T3), the tu-
ple (pos0, st0, tape0) describes the initial configuration of
M on input w. For 1 ≤ j ≤ k, if tj = (s, σ, s′, σ′, d),
then we define (posj , stj , tapej) as follows: posj = ij ,
stj = s′, and tapej contains for each 1 ≤ i ≤ m, the state
of αi when reading r−pj ,tj ,ij . A simple inductive argument
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shows that for every 1 ≤ j ≤ k, the tuple (posj , stj , tapej)
describes the configuration of M after applying the tran-
sitions t1, . . . , tj from the initial configuration. Indeed, let
us assume that (posj−1, stj−1, tapej−1) correctly describes
the configuration after executing t1, . . . , tj−1 and tj =
(s, σ, s′, σ′, d). After executing tj , the read/write head is in
position posj−1 + d and the state is s′. Since the only way
to enforce an r−pj ,tj ,ij -edge is via axioms (1) and (2), we
must have posj = posj−1 + d and stj = s′. It remains to
show that tapej describes the tape contents after executing
tj . Consider some position 1 ≤ l ≤ m. There are two cases:

1. l 6= ij − d. In this case, we know that the symbol in
position l is not modified by executing tj . We have to
show that σl ∈ tapej−1 implies σl ∈ tapej . This follows
from the construction of αl. In particular, when reading
rpj ,tj ,ij

−, it must employ a transition from (T1).
2. l = ij − d. In this case, after executing tj , we must have
σ′ in position l. We have to show that σl ∈ tapej−1 im-
plies σ′l ∈ tapej . This again follows from the construc-
tion of αl. In particular, when reading rpj ,tj ,ij

−, there
is only one possible transition available in (T2), namely
(σ′l, rpj ,tj ,ij

−, σl).

Conversely, it is easy to see that any word of the form (3)
that appears in the tree induced byK and represents a correct
computation path will be accepted by all of the αl.
Selecting a proper computation. It remains to define α0,
which selects a subtree corresponding to a full candidate
computation ofM , and then launches the tests defined above
at the end of each path. We let α0 = (S0, s0, δ0, F0), where
S0 = {s↓, cL, cR, s↑, sl, stest , sf}, s0 = s↓, F0 = {sf},
and δ0 is defined next.

The automaton operates in two main modes: moving
down the tree away from the root and moving back up to-
wards the root. Depending on the type of the state of M , in
state s↓ the automaton either selects a child node to process
next, or chooses to launch the test automata. If the tests are
successful, it switches to moving up. To this end, δ0 has the
following transitions:

(s↓, A∃?, cL), (s↓, A∃?, cR), (s↓, A∀?, cL),

(s↓, Afinal?, stest), and (stest , 〈1, . . . ,m〉, s↑).

The transitions that implement a step down or up are:

- (cL, r1,t,i, s↓) for every 1 ≤ i ≤ m and t ∈ δ,
- (cR, r2,t,i, s↓) for every 1 ≤ i ≤ m and t ∈ δ,
- (s↑, r

−
1,t,i, sl) for every 1 ≤ i ≤ m and t ∈ δ, and

- (s↑, r
−
2,t,i, s↑) for every 1 ≤ i ≤ m and t ∈ δ.

After making a step up from the state s↑ via an r−1,t,i-edge,
the automaton enters the state sl. Depending on the encoun-
tered state of M , the automaton decides either to verify the
existence of a computation tree for the alternative transition,
to keep moving up, or to accept the word. This is imple-
mented using the following transitions of δ0:

(sl, ?A∀, cR), (sl, ?A∃, s↑), and (sl, ?Ainit , sf ).

a1

s

s

pv2

s
pg

t t

a2pv1pv2
t

ϕ1 : g → g
ϕ2 : v1 ∧ v2 → g
ϕ3 : → v2

pg pg

Figure 1: Example ABox in the proof of Theorem 5.2

To conclude the definition of αq = (A, s, F ), set s =
s↓ and F = {sf}. Note that αq has a constant number of
states, so it can be converted into an equivalent NRE Eq in
polynomial time. The desired query is q(x, y) = Eq(x, y).

The above DL-Lite TBox T can be easily rephrased in
EL. Indeed, we simply take a fresh concept name Ap,t,i for
each role rp,t,i, and replace every axiom C v∃rp,t,i by C v
∃rp,t,i.Ap,t,i and every axiom ∃r−p,t,ivC byAp,t,ivC.

The above lower bound for answering N2RPQs hinges on
the support for existential concepts in the right-hand-side of
inclusions. If they are disallowed, then one can find a poly-
nomial time algorithm (Pérez, Arenas, and Gutierrez 2010).
However, it was open until now whether the polynomial-
time upper bound is optimal. We next prove P-hardness of
the problem, already for plain graph databases.
Theorem 5.2. Given as input an N2RPQ q, a finite interpre-
tation I and a pair (o, o′) ∈ ∆I ×∆I , it is P-hard to check
whether (o, o′) ∈ ans(q, I).

Proof. To simplify the presentation, we prove the lower
bound for a slight reformulation of the problem. In partic-
ular, we show P-hardness of deciding ~c ∈ ans(q, 〈∅,A〉),
where q is an N2RPQ andA is an ABox with assertions only
of the form A(a) or r(a, b), where A ∈ NC and r ∈ NR.

We provide a logspace reduction from the classical P-
complete problem of checking entailment in propositional
definite Horn theories. Assume a set T = {ϕ1, . . . , ϕn}
of definite clauses over a set of propositional variables V ,
where each ϕi is represented as a rule v1∧. . .∧vm → vm+1.

Given a variable g ∈ V , we define an ABox A, an
N2RPQ q, and tuple (a1, a2) such that T |= g iff (a1, a2) ∈
ans(q, 〈∅,A〉). We may assume w.l.o.g. that ϕ1 = g → g.
We define the desired ABox asA = A1∪A2, using the role
names s, t, and pv , where v ∈ V . The ABox A1 simply en-
codes T and contains for every ϕi = v1∧ . . .∧vm → vm+1,
the following assertions:

pvm+1
(eim+1, e

i
m), . . . , pv1(ei1, e

i
0), s(ei0, f).

The ABox A2 links variables in rule bodies with their oc-
currences in rule heads. For every pair of rules ϕi = v1 ∧
. . . ∧ vm → vm+1 and ϕj = w1 ∧ . . . ∧ wn → wn+1, and
each 1 ≤ l ≤ m with vl = wn+1, it contains the assertion
t(eil−1, e

j
n+1). See Figure 1 for an example.

The existence of a proof tree for g, which can be lim-
ited to depth |V |, is expressed using the query q(x, y) =
E|V |(x, y), with E1, E2, . . . , E|V | defined inductively:

E1 =
⋃
v∈V

(
pv · t · pv

)
· s
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Ei =
⋃
v∈V

(
pv · t · pv

)
·
(
〈Ei−1〉 ·

⋃
v∈V

pv
)∗ · s (i > 1)

Finally, we let a1 = e1
1 and a2 = f .

6 Concrete Approach for Horn DLs
Our complexity results so far leave a gap for the data com-
plexity of the DL-Lite family: we inherit NL-hardness from
plain RPQs, but we only have the P upper bound stemming
from Proposition 4.1. In this section, we close this gap by
providing an NL upper bound.

This section has an additional goal. We recall that the up-
per bounds in Corollaries 4.2 and 4.4 rely on reductions
to answering (C)2RPQs in extensions of ELI, like Horn-
SHOIQ, ZIQ, and ZOI. Unfortunately, known algo-
rithms for C2RPQ answering in these logics use automata-
theoretic techniques that are best-case exponential and not
considered suitable for implementation. Hence, we want to
provide a direct algorithm that may serve as a basis for prac-
ticable techniques. To this end, we take an existing algorithm
for answering C2RPQs in ELH and DL-LiteR due to Bien-
venu et al. (2013) and show how it can be extended to handle
CN2RPQs and ELHI⊥ KBs.

For presenting the algorithm in this section, it will be use-
ful to first recall the canonical model property of ELHI⊥.

Canonical Models
We say that an ELHI⊥ TBox T is in normal form if all of
its concept inclusions are of one of the following forms:

A v ⊥ A v ∃r.B > v A B1 uB2 v A ∃r.B v A

with A,B,B1, B2 ∈ NC and r ∈ N±R .
By introducing fresh concept names to stand for com-

plex concepts, every TBox T can be transformed in poly-
nomial time into a TBox T ′ in normal form that is a model-
conservative extension of T . Hence, in what follows, we as-
sume that ELHI⊥ TBoxes are in normal form.

The domain of the canonical model IT ,A of a consistent
KB 〈T ,A〉 consists of all sequences ar1C1 . . . rnCn (n ≥
0) such that:
• a ∈ Ind(A) and ri ∈ N±R for each 1 ≤ i ≤ n;
• each Ci is a finite conjunction of concept names;
• if n ≥ 1, then T ,A |= (∃r1.C1)(a);
• for 1 ≤ i < n, T |= Ci v ∃ri+1.Ci+1.
For an o∈∆IT ,A \ Ind(A), we use tail(o) to denote its final
concept. The interpretation IT ,A is then defined as follows:

aIT ,A = a for all a ∈ Ind(A)

AIT ,A = {a ∈ Ind(A) | T ,A |= A(a)}
∪ {o ∈ ∆IT ,A \ Ind(A) | T |= tail(o) v A}

pIT ,A = {(a, b) | p(a, b) ∈ A}∪
{(o1, o2) | o2 = o1r C and T |= r v p}∪
{(o2, o1) | o2 = o1r C and T |= r v p−}

Observe that IT ,A is composed of a core part containing
the individuals from A and an anonymous part consisting

of (possibly infinite) trees rooted at the ABox individuals.
We use IT ,A|o to denote the restriction of IT ,A to domain
elements having o as a prefix.

It is well-known that the canonical model of a consistent
ELHI⊥ KB IT ,A can be homomorphically embedded into
any model of 〈T ,A〉. Since CN2RPQs are preserved under
homomorphisms, we have:
Lemma 6.1. For every consistent ELHI⊥ KB 〈T ,A〉,
CN2RPQ q, and tuple ~a of individuals: ~a ∈ ans(q, 〈T ,A〉)
if and only if ~a ∈ ans(q, IT ,A).

Computing Jump and Final Transitions
A crucial component of our algorithm is to compute relevant
partial paths in a subtree IT ,A|o rooted at an object o in
the anonymous part of IT ,A. Importantly, we also need to
remember which parts of the nested automata that have been
partially navigated below o still need to be continued. This
will allow us to ‘forget’ the tree below o.

In what follows, it will be convenient use runs to talk
about the semantics of n-NFAs.
Definition 6.1. Let I be an interpretation, and let
(A, s0, F0) be an n-NFA. Then a partial run for A on I
is a finite node-labelled tree (T, `) such that every node is
labelled with an element from ∆I × (

⋃
i Si) and for each

non-leaf node v having label `(v) = (o, s) with s ∈ Si, one
of the following holds:
• v has a unique child v′ with `(v′) = (o′, s′), and there

exists (s, σ, s′) ∈ δi such that σ ∈ Roles and (o, o′) ∈ σI;
• v has exactly two children v′ and v′′ with `(v′) = (o, s′)

and `(v′′) = (o, s′′), with s′′ the initial state of αj , and
there exists a transition (s, 〈j〉, s′) ∈ δi.

If T has root labelled (o1, s1) and a leaf node labelled
(o2, s2) with s1, s2 states of the same αi, then (T, `) is
called an (o1, s1, o2, s2)-run, and it is full if every leaf la-
bel (o′, s′) 6= (o2, s2) is such that s′ ∈ Fk for some k.

Full runs provide an alternative characterization of the se-
mantics of n-NFAs in Definition 3.3.
Fact 6.2. For every interpretation I, (o1, o2) ∈ (As1,{s2})

I

if and only if there is a full (o1, s1, o2, s2)-run for A in I.
We use partial runs to characterize when an n-NFA

A can be partially navigated inside a tree IT ,A|o whose
root satisfies some conjunction of concepts C. Intuitively,
JumpTrans(A, T ) stores pairs s1, s2 of states of some
α ∈ A such that a path from s1 to s2 exists, while
FinalTrans(A, T ) stores states s1 for which a path to some
final state exists, no matter where the final state is reached.
Both JumpTrans(A, T ) and FinalTrans(A, T ) store a set Γ
of states s of other automata nested in α, for which a path
from s to a final state remains to be found.
Definition 6.2. Let T be an ELHI⊥ TBox in normal form
and (A, s0, F0) an n-NFA. The set JumpTrans(A, T ) con-
sists of tuples (C, s1, s2,Γ) where C is either > or a con-
junction of concept names from T , s1 and s2 are states from
αi ∈ A, and Γ ⊆

⋃
j>i Sj . A tuple (C, s1, s2,Γ) belongs

to JumpTrans(A, T ) if there exists a partial run (T, `) of
A in the canonical model of 〈T , {C(a)}〉 that satisfies the
following conditions:
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• the root of T is labelled (a, s1);
• there is a leaf node v with `(v) = (a, s2);
• for every leaf node v with `(v) = (o, s) 6= (a, s2), either
s ∈ Fj for some j > i, or o = a and s ∈ Γ.

The set FinalTrans(A, T ) contains all tuples (C, s1, F,Γ)
there is a partial run (T, `) of A in the canonical model of
〈T , {C(a)}〉 that satisfies the following conditions:
• the root of T is labelled (a, s1);
• there is a leaf node v with `(v) = (o, sf ) and sf ∈ F ;
• for every leaf node v with `(v) = (o, s), either s is a final

state in some αk, or o = a and s ∈ Γ.
Proposition 6.3. It can be decided in exponential time if a
tuple belongs to JumpTrans(A, T ) or FinalTrans(A, T ).

Proof idea. We first show how to use TBox reasoning to de-
cide whether (C, s1, s2,Γ) ∈ JumpTrans(A, T ). For ev-
ery αj ∈ A, we introduce a fresh concept name As for
each state s ∈ Sj . Intuitively, As expresses that there is
an outgoing path that starts in s and reaches a final state.
If {s1, s2} ⊆ Si, then we add the following inclusions to T :

• > v As, for every s ∈ Fj with j > i;
• ∃r.As′ v As, whenever (s, r, s′) ∈ δi with r ∈ N±R ;
• As′ uB v As, whenever (s,B?, s′) ∈ δi;
• As′ u As′′ v As, whenever (s, 〈j〉, s′) ∈ δi and s′′ is the

initial state of αj .

Let T ′ be the resulting TBox. In the long version, we show
that (C, s1, s2,Γ) ∈ JumpTrans(A, T ) iff

T ′ |= (C uAs2 u
l

s∈Γ

As) v As1 .

To decide if (C, s1, F,Γ) ∈ FinalTrans(A, T ), we must also
include in T ′ the following inclusions:

• > v As, for every s ∈ F .

We then show that (C, s1, F,Γ) ∈ FinalTrans(A, T ) iff

T ′ |= (C u
l

s∈Γ

As) v As1 .

To conclude the proof, we simply note that both problems
can be decided in single-exponential time, as TBox reason-
ing in ELHI⊥ is known to be EXP-complete.

Query Rewriting
The core idea of our query answering algorithm is to rewrite
a given CN2RPQ q into a set of queries Q such that the
answers to q and the union of the answers for all q′ ∈ Q
coincide. However, for evaluating each q′ ∈ Q, we only
need to consider mappings from the variables to the indi-
viduals in the core of IT ,A. Roughly, a rewriting step makes
some assumptions about the query variables that are mapped
deepest into the anonymous part and, using the structure of
the canonical model, generates a query whose variables are
matched one level closer to the core. Note that, even when
we assume that no variables are mapped below some ele-
ment o in IT ,A, the satisfaction of the regular paths may

require to go below o and back up in different ways. This is
handled using jump and final transitions. The query rewrit-
ing algorithm is an adaptation of the algorithm for C2RPQs
in (Bienvenu, Ortiz, and Simkus 2013), to which the reader
may refer for more detailed explanations and examples.

The query rewriting algorithm is presented in Figure 2. In
the algorithm, we use atoms of the form 〈As,F 〉(x), which
are semantically equivalent toAs,F (x, z) for a variable z not
occurring anywhere in the query. This alternative notation
will spare us additional variables and make the complexity
arguments simpler. To slightly simplify the notation, we may
write As,s′ instead of As,{s′}.

The following proposition states the correctness of the
rewriting procedure. Its proof follows the ideas outlined
above and can be found in the appendix of the long version.
Slightly abusing notation, we will also use Rewrite(q, T ) to
denote the set all of queries that can be obtained by an exe-
cution of the rewriting algorithm on q and T .
Proposition 6.4. Let 〈T ,A〉 be an ELHI⊥ KB and q(~x)
a C2NRPQ. Then ~a ∈ ans(q, 〈T ,A〉) iff there exists q′ ∈
Rewrite(q, T ) and a match π for q′ in IT ,A such that
π(~x) = ~a and π(y) ∈ Ind(A) for every variable y in q′.

We note that the query rewriting does not introduce fresh
terms. Moreover, it employs an at most quadratic number
of linearly sized n-NFAs, obtained from the n-NFAs of the
input query. Thus, the size of each q′ ∈ Rewrite(q, T ) is
polynomial in the size of q and T . Given that all the em-
ployed checks in Figure 2 can be done in exponential time
(see Proposition 6.3), we obtain the following.
Proposition 6.5. The set Rewrite(q, T ) can be computed in
exponential time in the size of q and T .

Query Evaluation
In Figure 3, we present an algorithm EvalAtom for eval-
uating N2RPQs. The idea is similar to the standard non-
deterministic algorithm for deciding reachability: we guess
a sequence (c0, s0)(c1, s1) · · · (cm, sm) of individual-state
pairs, keeping only two successive elements in memory at
any time. Every element (ci+1, si+1) must be reached from
the preceding element (ci, si) by a single normal, jump, or
final transition. Moreover, in order to use a jump or final
transition, we must ensure that its associated conditions are
satisfied. To decide if the current individual belongs to C,
we can employ standard reasoning algorithms, but to deter-
mine whether an outgoing path exists for one of the states in
Γ, we must make a recursive call to EvalAtom. Importantly,
these recursive calls involve “lower” automata, and so the
depth of recursion is bounded by the number of automata in
the N2RPQ (and so is independent of A). It follows that the
whole procedure can be implemented in non-deterministic
logarithmic space in |A|, if we discount the concept and role
membership tests. By exploiting known complexity results
for instance checking in DL-LiteR and ELHI⊥, we obtain:
Proposition 6.6. EvalAtom is a sound and complete proce-
dure for N2RPQ evaluation over satisfiable ELHI⊥ KBs. It
can be implemented so as to run in non-deterministic loga-
rithmic space (resp., polynomial time) in the size of the ABox
for DL-LiteR (resp., ELHI⊥) KBs.
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PROCEDURE Rewrite

Input: CN2RPQ q, ELHI⊥ TBox T in normal form
1. Choose either to output q or to continue.
2. Choose a non-empty set Leaf ⊆ vars(q) and y ∈ Leaf.

Rename all variables in Leaf to y.
3. Choose a conjunction C of concept names from T such

that T |= C v B whenever B(y) is an atom of q. Drop
all such atoms from q.

4. For each atom at ∈ q of the form 〈As0,F 〉(t) or
As0,F (t, t′) with y ∈ {t, t′}:
(a) let αi ∈ A be the automaton containing s0, F

(b) choose a sequence s1, . . . , sn−1 of distinct states
from Si and some sn ∈ F

(c) replace at by the atoms As0,s1(t, y), As1,s2(y, y),
. . . , Asn−2,sn−1

(y, y), and
• Asn−1,sn(y, t′) if at = As0,F (t, t′), or
• 〈Asn−1,sn〉(y) if at = 〈As0,F 〉(y).

5. For each atom atj of the form Asj ,sj+1
(y, y) or

〈Asj ,sj+1〉(y) in q, either do nothing, or:
• Choose some (C, sj , sj+1,Γ) ∈ JumpTrans(A, T )

if atj = Asj ,sj+1(y, y).
• Choose some (C, sj ,{sj+1},Γ) ∈ FinalTrans(A, T )

if atj = 〈Asj ,sj+1
〉(y).

• Replace atj by {〈Au,Fk
〉(y) |u∈Γ∩Sk, }.

6. Choose a conjunction D of concept names from T and
r, r1, r2 ∈ N±R such that:
(a) T |= D v ∃r.C, T |= r v r1, and T |= r v r2.
(b) For each atom Au,U (y, t) of q with u ∈ Si, there

exists v ∈ Si such that (u, r−1 , v) ∈ δi
(c) For each atom Au,U (t, y) of q with u ∈ Si, there

exists v ∈ Si and v′ ∈ U with (v, r2, v
′) ∈ δi.

(d) For each atom 〈Au,U 〉(y) of q with u ∈ Si, there
exists v ∈ Si such that (u, r−1 , v) ∈ δi.

For atoms Au,U (y, y), both (b) and (c) apply.
7. Replace
• each atom Au,U (y, t) with t 6= y by Av,U (y, t),
• each atom Au,U (t, y) with t 6= y by Au,v(y, t),
• each atom Au,U (y, y) by atom Av,v′(y, y), and
• each atom 〈Au,U 〉(y) by atom 〈Av,U 〉(y)

with v, v′ as in Step 6.
8. Add A(y) to q for each A ∈ D and return to Step 1.

Figure 2: Query rewriting procedure Rewrite.

We present in Figure 4 the complete procedure EvalQuery
for deciding CN2RPQ entailment.

Theorem 6.7. EvalQuery is a sound and complete proce-
dure for deciding CN2RPQ entailment over ELHI⊥ KBs.
In the case of DL-LiteR KBs, it runs in non-deterministic
logarithmic space in the size of the ABox.

Proof idea. Soundness, completeness, and termination of

PROCEDURE EvalAtom

Input: n-NFA (A, s0, F0), ELHI⊥ KB K = 〈T ,A〉 in
normal form, (a, b) ∈ Ind(A)× (Ind(A) ∪ {anon})

1. Let i be such that s0 ∈ Si, and set max = |A|×|Si|+1.
2. Initialize current = (a, s0) and count = 0.
3. While count < max and current 6= (b, sf ) for sf ∈ F0

(a) Let current = (c, s).
(b) Guess a pair (d, s′) ∈ (Ind(A)∪{anon})×Si such

that one of the following holds:
i. d ∈ Ind(A) and there exists (s, σ, s′) ∈ δi with
σ ∈ Roles such that (c, d) ∈ σIT ,A

ii. d = c and JumpTrans(A, T ) contains a tuple
(C, s, s′,Γ) such that c ∈ CIT ,A and for every
j > i and every u ∈ Γ ∩ Sj ,

EvalAtom((A, u, Fj),K, (c, anon)) = yes

iii. d = anon, s′ ∈ F0, and FinalTrans(A, T ) con-
tains a tuple (C, s, F0,Γ) such that c ∈ CIT ,A

and for every j > i and every u ∈ Γ ∩ Sj ,

EvalAtom((A, u, Fj),K, (c, anon)) = yes

(c) Set current = (d, s′) and increment count.
4. If current = (d, sf ) for some sf ∈ F0, and either b = d

or b = anon, return yes. Else return no.

Figure 3: N2RPQ evaluation procedure EvalAtom.

PROCEDURE EvalQuery

Input: Boolean CN2RPQ q, ELHI⊥ KB K = 〈T ,A〉 in
normal form

1. Test whether K is satisfiable, output yes if not.
2. SetQ = Rewrite(q, T ). Replace all atoms inQ of types
C(a),R(a, b) by equivalent atoms of type As0,F0

(a, b).
3. Guess some q′ ∈ Q and an assignment ~a of individuals

to the quantified variables ~v in q′

• Let q′′ be obtained by substituting ~a for ~v.
• For every atom As0,F0(a, b) in q′′

check if EvalAtom((A, s0, F0),K, (a, b)) = yes

• If all checks succeed, return yes.
4. Return no.

Figure 4: CN2RPQ entailment procedure EvalQuery.

EvalQuery follow easily from the corresponding proper-
ties of the component procedures Rewrite and EvalAtom
(Propositions 6.4, 6.5, and 6.6). In DL-LiteR, KB satisfiabil-
ity is known to be NL-complete in data complexity. Since
the rewriting step is ABox-independent, the size of queries
in Q can be treated as a constant. It follows that the query
q′ and assignment ~a guessed in Step 3 can be stored in loga-
rithmic space in |A|. By Theorem 6.7, each call to EvalAtom
runs in non-deterministic logarithmic space.

Corollary 6.8. CN2RPQ entailment over DL-LiteR knowl-
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edge bases is NL-complete in data complexity.

7 Conclusions and Future Work
We have studied the extension of (C)2RPQs with a nest-
ing construct inspired by XPath, and have characterized the
data and combined complexity of answering nested 2RPQs
and C2RPQs for a wide range of DLs. The only complex-
ity bound we leave open is whether the coNP lower-bound
in data complexity for expressive DLs is tight; indeed, the
automata-theoretic approach used to obtain optimal bounds
in combined complexity for these logics does not seem to
provide the right tool for tight bounds in data complexity.

In light of the surprising jump from P to EXP in the com-
bined complexity of answering N2RPQs in lightweight DLs,
a relevant research problem is to identify classes of N2RPQs
that exhibit better computational properties. We are also in-
terested in exploring whether the techniques developed in
Section 6 can be extended to deal with additional query
constructs, such as existential “loop-tests” or forms of role-
value maps. Finally, containment of N2RPQs has been stud-
ied very recently (Reutter 2013), but only for plain graph
databases, so it would be interesting to investigate contain-
ment also in the presence of DL constraints.
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