
A Foundational Vision of e-Services

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo
Maurizio Lenzerini, and Massimo Mecella

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

lastname @dis.uniroma1.it

Abstract. In this paper we propose a foundational vision of e-Services,
in which we distinguish between the external behavior of an e-Service
as seen by clients, and the internal behavior as seen by a deployed ap-
plication running the e-Service. Such behaviors are formally expressed
as execution trees describing the interactions of the e-Service with its
client and with other e-Services. Using these notions we formally define
e-Service composition in a general way, without relying on any specific
representation formalism.

1 Introduction

The spreading of network and business-to-business technologies [11] has changed
the way business is performed, giving rise to the so called virtual enterprises and
communities [7]. Companies are able to export services as semantically defined
functionalities to a vast number of customers, and to cooperate by composing and
integrating services over the Web. Such services, usually referred to as e-Services
or Web Services, are available to users or other applications and allow them to
gather data or to perform specific tasks. Service Oriented Computing (SOC)
is a new emerging model for distributed computing that enables to build agile
networks of collaborating business applications distributed within and across
organizational boundaries 1.

Cooperation of e-Services poses many interesting challenges regarding, in
particular, composability, synchronization, coordination, correctness verifica-
tion [13]. However, in order to address such issues in an effective and well-founded
way, e-Services need to be formally represented.

Up to now, research on e-Services has mainly concentrated on three issues,
namely (i) service description and modeling, (ii) service discovery and (iii) ser-
vice composition.

Composition addresses the situation when a client request cannot be satisfied
by any available e-Service, whereas a composite e-Service, obtained by combining
a set of available component e-Services, might be used. Composition involves
two different issues: the one of composing by synthesis a new e-Service starting

1 cf., Service Oriented Computing Net: http://www.eusoc.net/

from available ones, thus producing a composite e-Service specification, and the
one of enacting, i.e., instantiating and executing, the composite e-Service by
correctly coordinating the component ones; the latter is often referred to as
orchestration [6, 10], and it is concerned with monitoring control and data flow
among the involved e-Services, in order to guarantee the correct execution of the
composite e-Service. In what follows, we concentrate on composition synthesis:
orchestration techniques go beyond the scope of this paper.

The DAML-S Coalition [2] is defining a specific ontology and a related lan-
guage for e-Services, with the aim of composing them in automatic way. In [12]
the issue of service composition is addressed, in order to create composite ser-
vices by re-using, specializing and extending existing ones; in [9] composition of
e-Services is addressed by using Golog. In [1] a way of composing e-Services
is presented, based on planning under uncertainty and constraint satisfaction
techniques, and a request language, to be used for specifying client goals, is
proposed.

All such works deal with different facets of service oriented computing, but
unfortunately an overall agreed upon comprehension of what an e-Service is, in
an abstract and general fashion, still lacking. Nevertheless, (i) a framework for
formally representing e-Services, clearly defining both specification (i.e., design-
time) and execution (i.e., run-time) issues, and (ii) a definition of e-Service com-
position and its properties, are crucial aspects for correctly addressing research
on service oriented computing.

In this paper, we concentrate on these issues, and propose an abstract frame-
work for e-Services, in order to provide the basis for e-Service representation and
for formally defining the meaning of composition. Specifically, Section 2 defines
the framework, which is then detailed in Sections 3 and 4 by considering e-Service
specification and run-time issues, respectively. Section 5 describes the basic, con-
ceptual interaction protocol between a running e-Service and its client. Section 6
deals with composition, in particular by formally defining such a notion in the
context of the proposed framework. Finally, Section 7 concludes the paper, by
pointing out future research directions.

2 General Framework

Generally speaking, an e-Service is a software artifact (delivered over the Inter-
net) that interacts with its clients, which can be either human users or other
e-Services, by directly executing certain actions and possibly interacting with
other e-Services to delegate to them the execution of other programs. In this
paper we take an abstract view of such an application and provide a conceptual
description of an e-Service by identifying several facets, each one reflecting a
particular aspect of an e-Service during its life time.

– The e-Service schema specifies the features of an e-Service, in terms of func-
tional and non-functional requirements. Functional requirements represent
what an e-Service does. All other characteristics of e-Services, such as those

related to quality, privacy, performance, etc. constitute the non-functional
requirements. In what follows, we do not deal with non-functional require-
ments, and hence use the term “e-Service schema” to denote the specification
of functional requirements only.

– The e-Service implementation and deployment indicate how an e-Service is
realized, in terms of software applications corresponding to the e-Service
schema, deployed on specific platforms. Since this aspect regards the tech-
nology underlying the e-Service implementation, it goes beyond the scope of
this paper and we do not consider it any more2. We have mentioned it for
completeness and because it forms the basis for the following one.

– An e-Service instance is an occurrence of an e-Service effectively running and
interacting with a client. In general, several running instances corresponding
to the same e-Service schema exist, each one executing independently from
the others.

As mentioned, the schema of an e-Service specifies what the e-Service does.
From the external point of view, i.e., that of a client, the e-Service is seen as
a black box that exhibits a certain “behavior”, i.e., executes certain programs,
which are represented as sequences of atomic actions with constraints on their
invocation order. From the internal point of view, i.e., that of an application
deploying an e-Service E and activating and running an instance of it, it is also
of interest how the actions that are part of the behavior of E are effectively
executed. Specifically, it is relevant to specify whether each action is executed
by E itself or whether its execution is delegated to another e-Service with which
E interacts, transparently to the client of E. To capture these two points of view
we consider the e-Service schema as constituted by two different parts, called
external schema and internal schema, respectively representing an e-Service from
the external point of view, i.e., its behavior, and from the internal point of view.

In order to execute an e-Service, the client needs to activate an instance from
a deployed e-Service: the client can then interact with the e-Service instance by
repeatedly choosing an action and waiting for the fulfillment of the specific task
by the e-Service and (possibly) the return of some information. On the basis of
the information returned the client chooses the next action to invoke. In turn,
the activated e-Service instance executes (the computation associated to) the
invoked action and then is ready to execute new actions. Note that, in general,
not all actions can be invoked at a given point: the possibility of invoking them
depends on the previously executed ones, according to the external schema of
the e-Service. Under certain circumstances, i.e., when the client has reached his
goal, he may explicitly end (i.e., terminate) the e-Service instance. However, in
principle, a given e-Service may need to interact with a client for an unbounded,
or even infinite, number of steps, thus providing the client with a continuous
service. In this case, no operation for ending the e-Service is ever executed.

For an instance e of an e-Service E, the sequence of actions that have been
executed at a given point and the point reached in the computation, as seen by

2 Similarly, recovery mechanisms are outside the scope of this paper.

a client, are specified in the so-called external view of e. Besides that, we need to
consider also the so-called internal view of e, which describes also which actions
are executed by e itself and which ones are delegated to which other e-Service
instances, in accordance with the internal schema of E.

To precisely capture the possibility that an e-Service may delegate the execu-
tion of certain actions to other e-Services, we introduce the notion of community
of e-Services, which is formally characterized by:

– a common set of actions, called the alphabet of the community;
– a set of e-Services specified in terms of the common set of actions.

Hence, to join a community, an e-Service needs to export its service(s) in terms of
the alphabet of the community. The added value of a community of e-Services
is the fact that an e-Service of the community may delegate the execution of
some or all of its actions to other instances of e-Services in the community. We
call such an e-Service composite. If this is not the case, an e-Service is called
simple. Simple e-Services realize offered actions directly in the software artifacts
implementing them, whereas composite e-Services, when receiving requests from
clients, can invoke other e-Services in order to completely fulfill the client’s needs.

The community may also be used to generate (virtual) e-Services whose
execution completely delegates actions to other members of the community.

In the following sections we formally describe how the e-Services of a com-
munity are specified, through the notion of e-Service schema, and how they are
executed, through the notion of e-Service instance.

3 e-Service Schemas

In what follows, we go into more details about the two schemas introduced in
the previous section.

3.1 External Schema

The aim of the external schema is to abstractly express the behavior of the e-
Service. To this end an adequate specification formalism must be used, which
allows for a finite representation of such a behavior3. In this paper we are not
concerned with any particular specification formalism, rather we only assume
that, whatever formalism is used, the external schema specifies the behavior in
terms of a tree of actions, called external execution tree. Each node x of the
tree represents the history of the sequence of interactions between the client
and the e-Service executed so far. For every action a that can be executed at
the point represented by x, there is a (single) successor node ya with the edge
(x, ya) labeled by a. The node ya represents the fact that, after performing the
sequence of actions leading to x, the client chooses to execute the action a, among
those possible, thus getting to ya. Therefore, each node represents a choice point
3 Typically, finite state machines are used [8, 5].

c

a = auth
s = search
l = listen
c = add to cart
b = buy

.

.

.

.

.

.

s

a

l

s

l

c

c

c

b s

l

b s

b

l

c

s

.

.

.

.

.

.

.

.

.
b

Fig. 1. Example of external execution tree of an e-Service

at which the client makes a decision on the next action the e-Service should
perform.

The root of the tree represents the fact that the client has not yet performed
any interaction with the e-Service. Some nodes of the execution tree are final :
when a node is final, and only then, the client can end the interaction. In other
words, the execution of an e-Service can correctly terminate at these points4.

Notably, an execution tree does not represent the information returned to
the client, since the purpose of such information is to let the client choose the
next action, and the rationale behind this choice depends entirely on the client.

Example 1. Figure 1 shows an execution tree representing an e-Service that
allows for searching and buying mp3 files5. After an authentication step (action
auth), in which the client provides userID and password, the e-Service asks
for search parameters (e.g., author or group name, album or song title) and
returns a list of matching files (action search); then, the client can: (i) select and
listen to a song (interaction listen), and choose whether to perform another
search or whether to add the selected file to the cart (action add to cart);
(ii) add to cart a file without listening to it. Then, the client chooses whether
to perform those actions again. Finally, by providing its payment method details
the client buys and downloads the content of the cart (action buy).

Note that, after the action auth, the client may quit the e-Service since
he may have submitted wrong authentication parameters. On the contrary, the
client is forced to buy, within the single interaction buy, a certain number of

4 Typically, in an e-Service, the root is final, to model that the computation of the
e-Service may not be started at all by the client.

5 Final nodes are represented by two concentric circles.

selected songs, contained in the cart, possibly after choosing and listening to
some songs zero or more times. �

3.2 Internal Schema

The internal schema maintains, besides the behavior of the e-Service, the infor-
mation on which e-Services in the community execute each given action of the
external schema. As before, here we abstract from the specific formalism chosen
for giving such a specification, instead we concentrate on the notion of internal
execution tree. Formally, each edge of an internal execution tree of an e-Service
E is labeled by (a, I), where a is the executed action and I is a nonempty set
denoting the e-Service instances executing a. Every element of I is a pair (E′, e′),
where E′ is an e-Service and e′ is the identifier of an instance of E′. The iden-
tifier e′ uniquely identifies the instance of E′ within the internal execution tree.
In general, in the internal execution tree of an e-Service E, some actions may be
executed also by the running instance of E itself. In this case we use the special
instance identifier this. Note that the execution of each action can be delegated
to more than one other e-Service instance.

An internal execution tree induces an external execution tree: given an in-
ternal execution tree ti we call offered external execution tree the external exe-
cution tree te obtained from ti by dropping the part of the labeling denoting the
e-Service instances, and therefore keeping only the information on the actions.
An internal execution tree ti conforms to an external execution tree te if te is
equal to the offered external execution tree of ti. An e-Service is well formed if
its internal execution tree conforms to its external execution tree.

We now formally define when an e-Service of a community correctly delegates
actions to other e-Services of the community. We need a preliminary definition:
given an internal execution tree ti of an e-Service E, and a path p in ti starting
from the root, we call the projection of p on an instance e′ of an e-Service E′

the path obtained from p by removing each edge whose label (a, I) is such that
I does not contain e′, and collapsing start and end node of each removed edge.

We say that the internal execution tree ti of an e-Service E is coherent with
a community C if:

– for each edge labeled with (a, I), the action a is in the alphabet of C, and
for each pair (E′, e′) in I, E′ is a member of the community C;

– for each path p in ti from the root of ti to a node x, and for each pair (E′, e′)
appearing in p, with e′ different from this, the projection of p on e′ is a
path in the external execution tree t′e of E′ from the root of t′e to a node y,
and moreover, if x is final in ti, then y is final in t′e.

Observe that, if an e-Service of a community C is simple, i.e., it does not
delegate actions to other e-Service instances, then it is trivially coherent with
C. Otherwise, i.e., it is composite and hence delegates actions to other e-Service
instances, the behavior of each one of such e-Service instances must be correct
according to its external schema.

(s, E, this)

a = auth

s = search

l = listen

c = add to cart

b = buy

.

.

.

.

.

.

(a, E, this)

(c, E, this)

(s, E, this)

(l, E′, e′1)

.

.

.

.

.

.

(l, E′, e′1)

(l, E′, e′2)

.

.

.

(c, E, this)

(b, E, this)

(c, E, this)

(b, E, this)

(s, E, this)

(c, E, this)(b, E, this)

(s, E, this)

(s, E, this)

(c, E, this)

(b, E, this)

(l, E′, e′2)

Fig. 2. Example of internal execution tree of a composite e-Service

A community of e-Services is well-formed if each e-Service in the community
is well-formed, and the internal execution tree of each e-Service in the community
is coherent with the community.

Example 2. Figure 2 shows an internal execution tree, conforming to the external
execution tree in Figure 1, where the listen action is delegated to a different e-
Service, using each time a new instance. The internal execution tree, conforming
again to the external execution tree in Figure 1, where no action is delegated to
other e-Service instances, is characterized by the edges labeled by (α,E, this),
being α any action.

In the examples each action is either executed by the running instance of E
itself, or is delegated to exactly one other instance. Hence, for simplicity, in the
figure we have denoted a label (a, {(E, e)}) simply by (a,E, e). �

4 e-Service Instances

In order to be executed, a deployed e-Service has to be activated, i.e., necessary
resources need to be allocated. An e-Service instance represents such an e-Service
running and interacting with its client.

From an abstract point of view, a running instance corresponds to an ex-
ecution tree with a highlighted node, representing the “current position”, i.e.,
the point reached by the execution. The path from the root of the tree to the
current position is the run of the e-Service so far, while the execution (sub-)tree

b

a = auth
s = search
l = listen
c = add to cart
b = buy

.

.

.

.

.

.

s

a

l c

s

l

c

c

c

b s

l

b s

b

l

c

s

.

.

.

.

.

.

.

.

.

Fig. 3. External view of an e-Service instance

having as root the current position describes the behavior of what remains of
the e-Service once the current position is reached.

Formally, an e-Service instance is characterized by:

– an instance identifier,
– an external view of the instance, which is an external execution tree with a

current position,
– an internal view of the instance, which is an internal execution tree with a

current position.

Example 3. Figure 3 shows an external view of an instance of the e-Service of
Figure 1. The sequence of actions executed so far and the current position on the
execution tree are shown in thick lines. It represents a snapshot of an execution
by a client that has provided its credentials and search parameters, has searched
for and listened to one mp3 file, and has reached a point where it is necessary to
choose whether (i) performing another search, (ii) adding the file to the cart, or
(iii) terminating the e-Service (since the current position corresponds to a final
node). �

The internal view of an e-Service instance additionally maintains information
on which e-Service instances execute which actions. At each point of the execu-
tion there may be several other active instances of e-Services that cooperate with
the current one, each identified by its instance identifier. Note that, in general,
an action can be executed by one or by more than one e-Service instance. The
opportunity of allowing more than one component e-Service to execute the same
action is important in specific situations, as the one reported in [4].

5 Running an e-Service Instance

In Section 2 we have briefly shown the steps that a client should perform in
order to execute an e-Service, namely:

1. activation of the e-Service instance,
2. choice of the invokable actions
3. termination of the e-Service instance,

where step (2) can be performed zero or more times, and steps (1) and (3) only
once. Each of these steps is constituted by sub-steps, consisting in executing
commands and in sending acknowledgements, each of them being executed by a
different actor (either the client or the e-Service).

do ai, Ej , ek

do end, Ej , ek

activate Ej

(a) Client

execute ai
ek: choose a1|| . . . ||ai|| . . . ||an

ek ended

ek started:
choose a1|| . . . ||ai|| . . . ||an

(b) e-Service

Fig. 4. Conceptual Interaction Protocol

In what follows we describe the correct sequence of interactions between a
client and an e-Service, assuming, for the sake of simplicity, that no action is ex-
ecuted simultaneously by different e-Services (see Section 4). It is easy to extend
what presented in order to cover also this case. Figure 4 shows the conceptual
interaction protocol.

Activation. This step is needed to create the e-Service instance. The client6

invokes the activation command, specifying the e-Service to interact with. If Ej

is such an e-Service, the syntax of this command is:

activate Ej

When this command is invoked, all the necessary resources for the execution
of a new instance ek of e-Service Ej are allocated. Additionally, each e-Service
instance creates a copy of both the internal and the external execution tree
characterizing the e-Service schema it belongs to.

As soon as ek is ready to execute, it responds to the client with the message

ek started: choose a1||a2|| . . . ||an

The purpose of this message is threefold. First, the client has an acknowledge-
ment that the invoked e-Service has been activated and that the interactions
may correctly start. Second, the client is informed about the instance identi-
fier he will interact with (ek). Third, the client is asked to choose the action to
execute among a1, . . . , an. The choice command is described next.

Choice. This step represents the interactions carried on between the client and
the e-Service instance. Each e-Service instance is characterized, wrt the client,
by its external execution tree, and all the actions are offered according to the
information encoded in such a tree. Therefore, according to its external execution
tree, the e-Service instance ek proposes to its client a set of possible actions,
e.g., a1, . . . , an, and asks the client to choose the action to execute next among
a1, . . . , an. The syntax of this command is:

ek: choose a1||a2|| . . . ||ai|| . . . ||an

where || is the choice symbol.
According to his goal, the client makes his choice by sending the message

do ai, Ej , ek

In this way, the client informs the instance ek of e-Service Ej that he wants to
execute next the action ai. Once ek has received this message, it executes action
ai. The execution of ai is transparent to the client: the latter does not know
anything about it, it only knows when it is ended, i.e., when the e-Service asks
him to make another choice. This is shown in Figure 4 by the composite state
that contains a state diagram modeling the execution of ai.

The role of Ej and ek becomes especially clear if we consider that the client
could be a composite e-Service. When a composite e-Service E delegates an
action to a component e-Service (e.g., Ej), it needs to activate a new e-Service
instance (ek), thus becoming in its turn a client. Therefore, on one side, E
interacts with the external instances of the component e-Service, since E is
a client of the latter; on the the other side, E chooses which action is to be
invoked on which e-Service (either itself or a component e-Service) according to
its internal execution tree, when E acts as “server” towards its client.
6 The client may be either a human user or another e-Service, however, for the sake

of simplicity, in what follows we consider a human client.

Termination. Among the set of invokable actions there is a particular action,
end, which, if chosen, allows for terminating the interactions. Therefore, if the
current node on the external execution tree is a final node, the e-Service proposes
a choice as:

ek: choose end||a1||a2|| . . . ||ai|| . . . ||an

and if the client has reached his goal, he sends the message:

do end,Ej , ek

The purpose of this action it to de-allocate all the resources associated with
instance ek of e-Service Ej . As soon as this is done, the e-Service informs its
client of it with the message:

ek: ended

Examples of interactions can be found in [3].

6 Composition Synthesis

When a user requests a certain service from an e-Service community, there may
be no e-Service in the community that can deliver it directly. However, it may
still be possible to synthesize a new composite e-Service, which suitably dele-
gates action execution to the e-Services of the community, and when suitably
orchestrated, provides the user with the service he requested. Hence, a basic
problem that needs to be addressed is that of e-Service composition synthesis,
which can be formally described as follows: given an e-Service community C
and the external execution tree te of a target e-Service E expressed in terms
of the alphabet of C, synthesize an internal execution tree ti such that (i) ti
conforms to te, (ii) ti delegates all actions to the e-Services of C (i.e., this does
not appear in ti), and (iii) ti is coherent with C.

Figure 5 shows the architecture of an e-Service Integration System which
delivers possibly composite e-Services on the basis of user requests, exploiting
the available e-Services of a community C. When a client requests a new e-Service
E0, he presents his request in form of an external e-Service schema tE0

e for E0,
and expects the e-Service Integration System to execute an instance of E0. To
do so, first the composer module makes the composite e-Service E0 available
for execution, by synthesizing an internal schema tE0

i of E0 that conforms to
the external schema tE0

e and is coherent with the community C. Then, using
the internal schema tE0

i as a specification, the orchestration engine activates an
(internal) instance of E0, and orchestrates the different available e-Services, by
activating and interacting with their external view, so as to fulfill the client’s
needs. The orchestration engine is also in charge of terminating the execution of
component e-Service instances, offering the correct set of actions to the client,
as defined by the external execution tree, and invoking the action chosen by the
client on the e-Service that offers it.

(design-time) Schema flow

(run-time) Interaction

...

tEn
e tEn

i

C

tE1
e tE1

itE0
e

Composer

engine
Orchestration

tE0
i

Fig. 5. e-Service Integration System

All this happens in a transparent manner for the client, who interacts only
with the e-Service Integration System and is not aware that a composite e-
Service is being executed instead of a simple one.

7 Conclusions

In this paper we have proposed a conceptual, and formal, vision of e-Services,
in which we distinguish between the external behavior of an e-Service as seen
by clients, and the internal behavior as seen by a deployed application running
the e-Service, which includes information on delegation of actions to other e-
Services. Such a vision clarifies the notion of composition from a formal point of
view. On the basis of such a framework, we will study techniques for automatic
composition synthesis.

Note that in the proposed framework, we have made the fundamental as-
sumption that one has complete knowledge on the e-Services belonging to a
community, in the form of their external and internal schema. We also assumed
that a client gives a very precise specification (i.e., the external schema) of
an e-Service he wants to have realized by a community. In particular, such a
specification does not contain forms of “don’t care” nondeterminism. Both such
assumptions can be relaxed, and this leads to a development of the proposed
framework that is left for further research.

Acknowledgments

This work has been partially supported by MIUR through the “Fondo Strategico
2000” Project VISPO and the “FIRB 2001” Project MAIS. The work of Massimo
Mecella has been also partially supported by the European Commission under
Contract No. IST-2001-35217, Project EU-PUBLI.com.

References

1. M. Aiello, M.P. Papazoglou, J. Yang, M. Carman, M. Pistore, L. Serafini, and
P. Traverso, A Request Language for Web-Services Based on Planning and Con-
straint Satisfaction, Proceedings of the 3rd VLDB International Workshop on Tech-
nologies for e-Services (VLDB-TES 2002), Hong Kong, China, 2002.

2. A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara, DAML-S: Web
Service Description for the Semantic Web, Proceedings of the 1st International
Semantic Web Conference (ISWC 2002), Chia, Sardegna, Italy, 2002.

3. D. Berardi, D. Calvanese, G De Giacomo, M. Lenzerini, and M. Mecella, A Founda-
mental Framework for e-Services, Technical Report 10-03, Dipartimento di Infor-
matica e Sistemistica, Università di Roma “La Sapienza”, Roma, Italy, 2003, (avail-
able on line at: http://www.dis.uniroma1.it/~berardi/publications/techRep/
TR-10-2003.ps.gz).

4. D. Berardi, D. Calvanese, G De Giacomo, and M. Mecella, Composing e-Services
by Reasoning about Actions, Proc. of the ICAPS 2003 Workshop on Planning for
Web Services, 2003.

5. D. Berardi, L. De Rosa, F.and De Santis, and M. Mecella, Finite State Automata
as Conceptual Model for e-Services, Proc. of the IDPT 2003 Conference, 2003, To
appear.

6. F. Casati and M.C. Shan, Dynamic and Adaptive Composition of e-Services, In-
formation Systems 6 (2001), no. 3.

7. D. Georgakopoulos (ed.), Proceedings of the 9th International Workshop on Re-
search Issues on Data Engineering: Information Technology for Virtual Enterprises
(RIDE-VE’99), Sydney, Australia, 1999.

8. R. Hull, M. Benedikt, V. Christophides, and J. Su, E-Services: A Look Behind the
Curtain, Proceedings of the 22nd ACM SIGACT-SIGMOND-SIGART Symposium
on Principles of Database Systems (PODS), June 2003.

9. S. McIlraith and T. Son, Adapting Golog for Composition of Semantic Web Ser-
vices, Proceedings of the 8th International Conference on Knowledge Representa-
tion and Reasoning (KR 2002), Toulouse, France, 2002.

10. M. Mecella and B. Pernici, Building Flexible and Cooperative Applications Based on
e-Services, Technical Report 21-2002, Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, Roma, Italy, 2002, (available on line at: http:
//www.dis.uniroma1.it/~mecella/publications/mp_techreport_212002.pdf).

11. B. Medjahed, B. Benatallah, A. Bouguettaya, A.H.H. Ngu, and A.K. Elmagarmid,
Business-to-Business Interactions: Issues and Enabling Technologies, VLDB Jour-
nal 12 (2003), no. 1.

12. J. Yang and M.P. Papazoglou, Web Components: A Substrate for Web Service
Reuse and Composition, Proceedings of the 14th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’02), Toronto, Canada, 2002.

13. J. Yang, W.J. van den Heuvel, and M.P. Papazoglou, Tackling the Challenges
of Service Composition in e-Marketplaces, Proceedings of the 12th International
Workshop on Research Issues on Data Engineering: Engineering E-Commerce/E-
Business Systems (RIDE-2EC 2002), San Jose, CA, USA, 2002.

