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2Libera Università di Bolzano/Bozen
calvanese@inf.unibz.it

3Bell Labs, Lucent Technologies
hull@lucent.com

Abstract: In this paper we present Colombo, a frame-
work in which web services are characterized in terms of
(i) the atomic processes (i.e., operations) they can perform;
(ii) their impact on the “real world” (modeled as a rela-
tional database); (iii) their transition-based behavior; and
(iv) the messages they can send and receive (from/to other
web services and “human” clients). As such, Colombo
combines key elements from the standards and research lit-
erature on (semantic) web services. Using Colombo, we
study the problem of automatic service composition (syn-
thesis) and devise a sound, complete and terminating al-
gorithm for building a composite service. Specifically, the
paper develops (i) a technique for handling the data, which
ranges over an infinite domain, in a finite, symbolic way,
and (ii) a technique to automatically synthesize composite
web services, based on Propositional Dynamic Logic.

1 Introduction
Service Oriented Computing (SOC [1]) is the computing
paradigm that utilizes web services (also called e-Services
or, simply, services) as fundamental elements for realizing
distributed applications/solutions. SOC poses many chal-
lenging research issues, the most hyped one being web
service composition. Composition addresses the situation
when a client request cannot be satisfied by any available
service, but by suitably combining “parts of” available ser-
vices. Composition involves two different issues [1]. The
first, typically called composition synthesis, is concerned
with synthesizing a specification of how to coordinate the
component services to fulfill the client request. Such a
specification can be produced either automatically, i.e., us-
ing a tool that implements a composition algorithm, or
manually by a human. The second issue, often referred to
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as orchestration, is concerned with how to actually achieve
the coordination among services, by executing the specifi-
cation produced by the composition synthesis and by suit-
ably supervising and monitoring both the control flow and
the data flow among the involved services. Orchestration
has been widely addressed by other research areas, and
most of the work on service orchestration is based on re-
search in workflows.

In this paper we address the problem of automatic com-
position synthesis of web services. Specifically, we intro-
duce an abstract model, called Colombo, that combines
four fundamental aspects of web services, namely: (i) A
world state, representing the “real world”, viewed as a data-
base instance over a relational database schema, referred to
as world schema. This is similar to the family of “fluents”
found in semantic web services models such as OWL-S
[15, 14], and more generally, found in situation calculii
[17]. (ii) Atomic processes (i.e., operations), which can
access and modify the world state, and may include con-
ditional effects and non-determinism. These are inspired
by the atomic processes of OWL-S. (iii) Message passing,
including a simple notion of ports and links, as found in
web services standards (e.g., WSDL [3], WS-BPEL [2])
and some formal investigations (e.g., [6, 9]). (iv) The be-
havior of web services (which may involve multiple atomic
processes and message-passing activities) is specified using
finite state transition system, in the spirit of [5, 6, 9]. The
first three elements parallel in several respects the core ele-
ments of the emerging Semantic Web Services Framework
(SWSF [10]). The fourth element provides an abstract ap-
proach to formally model the internal process of a web ser-
vice, also reflected as an option in SWSF.

We also assume that: (v) Each web service instance has
a “local store”, used to capture parameter values of incom-
ing messages and the output values of atomic processes,
and used to populate the parameters of outgoing messages
and the input parameters of atomic processes. Conditional
branching in a web service will be based on the values of
the local store variables at a given time. (The conditions in
atomic process conditional effects are based on both the
world state and the parameter values used to invoke the



process.) (vi) Finally, we introduce a simple form of in-
tegrity constraints on the world state.

A client of a web service interacts with it by repeatedly
sending and receiving messages, until a certain situation is
reached. In other words, also the client behavior can be
abstractly represented as a transition system.

In order to address the problem of automatic web service
composition, we introduce the notion of “goal service”, de-
noting the behavior of a desired composite service: it is
specified as a transition-based web service, that interacts
with a client and invokes atomic processes. Our challenge
is to build a mediator, which uses messages to interact with
pre-existing web services (e.g., in an extended UDDI di-
rectory) and the client, such that the overall behavior of the
mediated system faithfully simulates the behavior of the
goal service.

The contribution of this paper is multifold:
(i) Colombo unifies and extends the most important
frameworks for services and service composition; (ii) it
presents a technique to reduce infinite data value to finite
symbolic data; (iii) it exploits and extends techniques
(see [5]) based on Propositional Dynamic Logic to auto-
matically synthesize a composite service, under certain
assumptions (and we refer to this as Colombok,b); (iv)
it provides an upper bound on the complexity of this
problem. To the best of our knowledge, the work reported
in this paper is the first one proposing an algorithm for web
service composition where web services are described in
terms of (i) atomic processes, (ii) transition-based process
models, (iii) their impact on a database representing the
“real world”, and (iv) message-based communication. As
stated in [12], Service Oriented Computing can play a
major role in transaction-based data management systems,
since web services can be exploited to access and filter
data. The framework developed in this paper shows the
feasibility of such an idea.

WS-BPEL [2] allows for (manually) specifying the
coordination among multiple web services, expressed in
WSDL. The data manipulation internal to web services is
based on a “blackboard approach”, i.e., a set of variables
that are shared within each orchestration instance. Thus,
on the one hand BPEL4WS provides constructs for dealing
with data flow, but on the other hand, it has no notion of
world state.

OWL-S [14] is an ontology language for describing se-
mantic web services, in terms of their inputs, outputs, pre-
conditions and (possibly conditional) effects, and of their
process model. On the one hand OWL-S allows for captur-
ing the notion of world state as a set of fluents, but on the
other hand it is not clear how to deal with data flow (within
the process model).

Several works on automatic composition of OWL-S ser-
vices exists, e.g., [15, 16, 18]. Most results are based on the
idea of sequentially composing the available web services,
which are considered as black boxes, and hence atomically
executed. Such an approach to composition is tightly re-
lated to Classical Planning in AI. Consequently, most goals

express conditions on the real world, that characterize the
situation to be reached: therefore, the automatically de-
vised composition can be exploited only once, by the client
that has specified the goal. Conversely, in Colombo the
goal is a specification of the transition system characteriz-
ing the process of a desired composite web service. Thus,
it can be re-used by several clients that wants to execute
that web service.

Colombo extends the Roman model, presented in [5],
mainly by introducing data and communication capabili-
ties based on messages. The level of abstraction taken
in [5] focuses on (deterministic, atomic) actions, there-
fore, the transition system representing web service behav-
ior is deterministic. Also, all the interactions are carried
out through action invocation, instead of message passing.
Finally, in [5] there is no difference between the transition
system representing the client behavior and the one speci-
fying the goal, as it is in Colombo.

Colombo has its roots also in the Conversation model,
presented in [6, 9], extending it to deal with data and atomic
processes. Web services are modeled as Mealy machines
(equipped with a queue) and exchange sequence of mes-
sages of given types (called conversations) according to
a predefined set of channels. It is shown how to synthe-
size web services as Mealy machines whose conversations
(across a given set of channels) are compliant with a given
specification. In [9] an extension of the framework is pro-
posed where services are specified as guarded automata,
having local XML variables in order to deal with data se-
mantics.

In [19] web services (and the client) are represented
as possibly non-deterministic transition systems, commu-
nicating through messaging, and composition is achieved
exploiting advanced model cheking techniques. However,
a limited support for data is present and there is no notion
of local store. It would be interesting to apply our techiques
for finitely handling data ranging an infinite domain to their
framework, in order to provide an extension to it.

Finally, it is interesting to mention the work in [8],
where the authors focus on data-driven services, charac-
terized by a relational database and a tree of web pages. In
such a framework, the authors study the automatic verifi-
cation of properties of a single service, which are defined
both in a linear and in a branching time setting.

The rest of the paper is organized as follows. Section 2
illustrates Colombo with an example. Section 3 intro-
duces the formal concepts of Colombo. In Section 4 the
problem of web service composition is formally stated and
an upper bound on its complexity is provided. Section 5
shows our technique for handling the data, which ranges
over an infinite domain, in a finite, symbolic way. Section 6
presents our tecnhique to automatically synthesize compos-
ite web services in Colombo based on Propositional Dy-
namic Logic. Section 7 concludes the paper and highlights
future work. In [4], technical results are provided.



Acconts
CCNumber credit

1234 T

... ...

PREPaid
PREPaidNum credit

5678 T

... ...

Inventory

code available warehouse price

H.P.6 T NGW 5

H.P.1 T SW 10

... ... ... ...

Shipment

order# from to status date

22 NGW NYC ‘‘requested’’ 16/07/2005

... ... ... ... ...

Figure 1: World Schema Instance

2 An Example
In this section, we illustrate Colombo and give an intu-
ition of our automatic web service composition technique
by means of an example involving web services that man-
age inventories, payment by credit or prepaid card, request
shipments, and check shipment status.

The world schema is constituted by four relations, de-
fined over (i) the boolean domain Bool , (ii) an infinite set
of uninterpreted elements Dom= (on which only the equal-
ity relation is defined) denoted by alphanumeric strings,
and (iii) an infinite densely ordered set Dom≤, denoted
by numbers. An instance of the world schema is shown
in Figure 1. For each relation, the key attributes are sep-
arated from the others by the thick separation between
columns. The intuition behind these relations is as fol-
lows: Accounts stores credit card numbers and the infor-
mation on whether they can be charged; PREPaid stores
prepaid card numbers and the information on whether they
can be still be used; Inventory contains item codes,
the warehouse they are available in, if any, and the price;
Shipment stores order id’s, the source warehouse, the tar-
get location, status and date of shipping.

Figure 2 shows the alphabet A of the atomic processes,
that are invoked by the available web services, and are
used in the goal service specification. Intuitively, A rep-
resents the common understanding on an agreed upon ref-
erence alphabet/semantics cooperating web services should
share [7]. For succinctness we use a pidgin syntax for spec-
ifying the atomic processes in that figure. We denote the
null value using ω. The special symbol ’-’ denotes ele-
ments of tuples that remain unchanged after the execution
of the atomic process. Throughout the paper, when defining
(conditional) effects of atomic processes, we specify the
potential effects on the world state using syntax of the form
‘insert’, ’delete’, and ‘modify’. These are suggestive
of procedural database manipulations, but are intended as
shorthand for declarative statements about the states of the
world before and after an effect has occurred. Finally, the
access function fR

j (〈a1, . . . , an〉) (see Section 3) is used to

CCCheck
I: c:Dom=; % CC card number
O: app:Bool; % CC approval
effects:
if fAccounts

1 (c) then
either modify Accounts(c;T) or
modify Accounts(c;F) and approved:= T

if ¬fAccounts
1 (c) then

approved:= F

checkItem:
I: c:Dom=; % item code
O: avail:Bool; wh:Dom=; p:Dom≤ % resp. item
% availability, selling warehouse and price

effects:
if fInventory

1 (c) then
avail:= T and wh:=fInventory

2 (c) and p:=fInventory
3 (c)

and either no-op on Inventory or
modify Inventory(c;F, -, -)

if ¬fInventory
1 (c) or fInventory

1 (c) = ω
then avail:= F

charge:
I: c:Dom=; % Prepaid card number;
O: paymentOK:Bool; % Prepaid card approval
effects:
if fP reP aid

1 (c) then
either modify PrePaid(c;T) or modify PrePaid(c;F)
and paymentOK:= T
if ¬fP reP aid

1 (c) then paymentOK:= F

requestShip:
I: wh:Dom=; addr:Dom=; % resp. source warehouse

% and target address
O: oid:Dom=; d:Dom≤; s:Dom=; % resp. order id,
shipping date and status

effects:
∃d, o oid:=new(o) and
insert Shipment(oid; wh, addr, ‘‘requested’’, d)
and d:=fShipment

4 (oid) and s := ‘‘requested’’

checkShipStatus:
I: oid:Dom=; % order id
O: s:Dom=; d:Dom≤; % resp. shipping date & status
effects:
if fShipment

1 (oid) = ω then no-op and s,d uninit
else s:=fShipment

3 (oid) and d:=fShipment
4 (oid)

Figure 2: Alphabet of Atomic Processes

fetch the n + j-th element of the tuple in R identified by
the key 〈a1, . . . , an〉 (i.e., the j-th element of the tuple after
the key).

Figure 3 shows (the transition systems of) the avail-
able web services: Bank checks that a credit card can be
used to make a payment; Storefront, given the code
of an item, returns its price and the warehouse in which
the item is available; Next Generation Warehouse
(NGW) allows for (i) dealing with an order either by credit
card or by prepaid card, according to the client’s prefer-
ences and to the item’s price, and for (ii) shipping the
ordered item, if the payment card is valid; Standard
Warehouse (SW) deals only with orders by credit cards,
and allows for shipping the ordered item, if the card is
valid. Throughout the example we are assuming that other
web services are able to change the status and, possibly,
to postpone the date of item delivery using suitable atomic
process, which are not shown in Figure 2. In the figure,
transitions concerning messages are labeled with an opera-
tion to transmit or to read a message, by prefixing the mes-
sage with ! or ?, respectively.

All the available web services are also characterized by



! replyCCCheck(approved)

CCCheck(CCnum; approved)

? requestCCCheck(CCnum)

(a) Bank

! replyCheckItem(avail,
warehouse,price)

checkItem(code; 
avail,warehouse,price)

? requestCheckItem(code)

(b) Storefront

? requestOrder(payBy,cartNum,
addr,price)

(payBy == PREPAID) ∧ (price � 10) /
charge(cartNum; paymentOK)

(payBy == CC) ∨ (price > 10) /
! requestCCCheck(cartNum)

? replyCCCheck(approved)

approved == T /
requestShip(wh,addr; 

oid,date,status)

! shipStatus
(oid,date,status)

? requestShipStatus(oid)

! shipStatus(oid,date,status)

checkShipStatus(oid; 
date,status)

paymentOK == T / 
requestShip(wh,addr; 
oid,date,status)

approved == F /
! failMsg()

paymentOK == F /
! failMsg()

(c) Next Generation Warehouse

? requestOrder(CCNum,addr,price)

! requestCCCheck(CCnum)

? replyCCCheck(approved)
approved == F /
! refuseMsg() approved == T /

requestShip(wh,addr; 
oid,date,status)

? requestShipStatus (oid)

checkShipStatus(oid; 
date,status)

! shipStatus
(oid,date,status)

! shipStatus
(oid,date,status)

(d) Standard Warehouse

Figure 3: Transition systems of the available services

the following elements (for simplicity, not shown in the fig-
ure). (i) An internal local store, i.e., a relational database
defined over the same domains as the world state (namely,
the set Bool of booleans, the set Dom= of alphanumeric
strings, and the set Dom≤ of numbers), is used to store pa-
rameters values of received messages that have been read
and need to be processed during the execution of the web
service. (ii) One port for each message (type) a service can
transmit or receive. As an example, the web service Bank
has two ports, one for receiving messages (of type) CCnum
and another for sending messages (of type) approved.
Each port for an incoming message has associated a queue
(see below) and a web service can always transmit mes-
sages, but can receive them only if the queue is not full. A
received message is then read (and erased from the queue)
when the process of the web service allows it. (iii) One
queue (of length one) for each message type the web ser-
vice can receive. The queues are used to store messages
that have been received but not read yet. For example, the
web service Bank has one queue, for storing messages (of
type) CCnum.

Figure 4 shows (the transition system of) a goal ser-
vice: it allows (i) to buy an item characterized by a given
code; (ii) to pay for it either by credit card or prepaid, de-
pending on the client’s preferences, the item’s price and
the warehouse in which the item is stored; and (iii) to

check the shipment status. Note that the goal service
specifies both message-based interactions with the client
(e.g., ?requestPurchase(code,payBy) for receiv-
ing from the client the item code and the preferred pay-
ment method) and atomic processes that the available web
service contained in the composition should execute.

With our composition technique, we are able to au-
tomatically construct a mediator such as S0 shown in
Figure 5. As an aid to the reader, we explicitly indicate
in the figure the sender or the receiver of each message,
in order to provide an intuition of the notion of linkage
that will be introduced in the following sections. Note
that, differently from the goal service, the mediator
specifies message-based interaction only, involving ei-
ther the client or a web service. The mediator is also
characterized by a local store, a set of ports and a queue
for each incoming message (type), not shown in the
figure. An example of interactions between S0, the
client and the available web services are as follows.
S0 reads a requestPurchase(code,payBy)
message that has been transmitted by a client (into
the suitable queue) and stores it into its local store:
such message specifies the code of an item and the
client’s preferred payment method. Then, S0 trans-
mits the message requestCheckItem(code) to
Storefront, i.e., into its queue, and waits for the



? requestPurchase(code,payBy)

checkItem(code; 
avail,warehouse,price)

(payBy == CC) ∨ (price > 10) / 
CCCheck(cartNum; authorized) authorized == T /

requestShip(wh,addr;
oid,date,status)

(avail == F) ∨ ((payBy == 
PREPAID) ∧ (warehouse = SW)) /
! responsePurchase(“fail”)

(avail == T) ∧ ((payBy == CC) ∨ (
warehouse = NGW)) /
! responsePurchase(“provide cart number”)

(payBy == PREPAID) ∧ (price � 10) / 
charge(cartNum; authorized)

? requestShipStatus (oid)

checkShipStatus(oid; 
date,status)

! shipStatus
(oid,date,status)

! shipStatus
(oid,date,status)

? msgCartNum(cartNum)

Figure 4: Transition system of the goal service

answer (for simplicity we assume that the queue is not
full). Thus, Storefront reads from its queue the
message (carrying the item’s code), executes the atomic
process checkItem(code) by accessing the tuple of
relation Accounts having as key the given code: at
this point, the information on the warehouse the item
is available in (if any) and its price can be fetched and
transmitted to the mediator. Hence, S0 reads the message
replyCheckItem(avail,warehouse,price)
and stores the values of its parameters into its local store.
If no warehouse contains the item (i.e., avail == F),
S0 transmits a responsePurchase(‘‘fail’’)
message to the client, informing her that the request has
failed, otherwise (i.e., if avail == T) S0 transmits a
responsePurchase(‘‘provide cart num’’)
to the client, asking her for the card number, and the
interactions go on.

3 The Model
This section provides an overview of the formal model
used in our investigation, focusing on Colombok,b. More
details can be found in [4].

Model of the “real world”. A world (database)
schema is a finite set W of relations having the form
Rk(A1, . . . , Amk

;B1, . . . , Bnl
), where A1, . . . , Amk

is a
key for Rk, and where each attribute Ai, Bj is associated
with Bool , Dom= or Dom≤. A world instance is a data-
base instance over W .

We allow for constraints over relations (see below
for the notion of “accessible term”, which however has
an intuitive meaning). A key-accessible constraint is
an expression of the form ϕ = ∀x1, . . . , xn(ψ), where
the xi’s are distinct variables, and where ψ is a boolean
expression over atoms over accessible terms over a set of
constants and variables {x1, . . . , xn}. A world instance I
satisfies this constraint if for all assignments α for vari-

ables x1, . . . , xn, formula ψ is true in I when interpreted
according to α.

Atomic Processes. Atomic processes in Colombo, in-
spired by OWL-S atomic processes, may access/modify
one or more of relations in the world schema. In typical
applications a given relation of the world schema may be
accessible by just one web service or by several web ser-
vices, or by all web services. Furthermore, when execut-
ing, the atomic processes can make a finitely bounded non-
deterministic choice. This can be viewed as indicating that
the world instance holds only partial information about the
state actually observable by the atomic processes.

The syntax for describing conditions, integrity con-
straints, and for describing the local stores of web services,
is based on the use of symbols denoting constants (taken
from Dom = Bool ∪ Dom= ∪ Dom≤) and variables.
(These variables are typed as Bool ,Eq ,Leq .) At a given
point in time during execution of a web service, there may
be an assignment α of variables (e.g., in the local store of
some web service) to elements of Dom . For a variable v,
α may assign a value from Dom , or ω (null value).

Notation: Let R(A1, . . . , An; B1, . . . , Bm) be a relation
in the world schema W . We define a family of n-ary func-
tions fR

j for j ∈ [1..m], as follows. Let I be an instance
over W , and a1, . . . , an be (not necessarily distinct) ele-
ments of Dom . Then the value of fR

j (a1, . . . , an) in I is
defined to be either (i) the null value ω if 〈a1, . . . , an〉 6∈
π{A1,...,An}(I(R)), or (ii) it is equal to the unique bj’s
where 〈a1, . . . , an, b1, . . . , bn〉 ∈ I(R). We refer to the
functions fR

j as the access functions.

Given constants C and variables V , the set of accessible
terms over C, V is defined recursively to include all terms
contructed using C, V and the fR

j functions. An atom over
C, V is an expression of form (i) init(t), (ii) t = t′, (iii) t <
t′, or (iv) t > t′, where t, t′ are accessible terms. Atoms and
propositional formulas constructed using them are given a



? requestPurchase(code,payBy) 
[from client]

! requestCheckItem(code)
[to Storefront]

(avail == F) /
! responsePurchase(“fail”)
[to client]

? replyCheckItem(avail,warehouse,price) 
[from Storefront]

? requestCCCheck(cartNum) 
[from NGW]

? failMsg() [from NGW]

? replyCCCheck(approved) 
[from Bank]

! requestCCCheck(cartNum) 
[to Bank]

! responsePurchase(“fail”)
[to client]

? requestShipStatus(oid) 
[from client]

! requestShipStatus(oid)
[to NGW]

? shipStatus(oid,date,status) 
[from NGW]

! shipStatus(oid,date,status)
[to client]

? shipStatus(oid,date,status) 
[from NGW]

! shipStatus(oid,date,status) 
[to client]

(avail == T) /
! responsePurchase(“provide cart num”)
[to client]

? msgCartNum_msgIN(cartNum) [from client]

(warehouse = SW) ∧ (payBy == CC) / ! 
requestOrder(cartNum,addr,price) [to SW]

? requestCCCheck(cartNum) 
[from SW]

! replyCCCheck(approved) 
[to SW]

? refuseMsg() [from SW]

? replyCCCheck(approved) 
from Bank

! requestCCCheck(cartNum) 
[to Bank]

? requestShipStatus(oid) [from client]

! requestShipStatus(oid)
[to SW]

? shipStatus(oid,date,status)
[from SW]

! shipStatus(oid,date,status) 
[to client]

! shipStatus(oid,date,status)
[to client]

? shipStatus(oid,date,status) 
[from SW]

(warehouse = NGW) ∧ ((payBy == CC) ∨ (price > 10))
/ ! requestOrder(“CC”,cartNum,addr,price)

[to NGW]

(warehouse = SW) ∧ (payBy == PREPAID) / 
! responsePurchase(“fail”) [to client]

(warehouse = NGW) ∧ ((payBy == PREPAID) ∨ (price � 10)) / ! 
requestOrder(“PREPAID”,cartNum,addr,price) [to NGW]

! replyCCCheck(approved) 
[to NGW]

! responsePurchase(“fail”)
[to client]

Figure 5: Transition system of the mediator

truth value under an assignment α in the usual manner.

Definition: An atomic process is an object p which has
a signature of form (I, O, CE) with the following prop-
erties. The input signature I and output signature O are
sets of typed variables. The conditional effect, CE, is a set
of pairs of form (c, E), where c is a (atomic process) con-
dition and E is a finite non-empty set of (atomic process)
effect (specifications). Condition c is a boolean expression
over atoms over accessible terms over some family of con-
stants and the input variables u1, . . . , un.

An effect e ∈ E is a pair (es, ev), where: es (the effect
on the world) is a set of expressions having the forms (i)
insert R(t1, . . . , tk; s1, . . . , sl); (ii) delete R(t1, . . . , tk);
or (iii) modify R(t1, . . . , tk; r1, . . . , rl); where the ti’s
and sj’s are accessible terms over some set of constants
and u1, . . . , un, and where each rj is either an accessible
term or the special symbol ‘−’ (denoting that that position
of the identified tuple in R should be unchanged); and ev
(effect on outputs) is a set of expressions of the form (iv)
vj := t, where j ∈ [1..m] and t is an accessible term over
some set of constants and u1, . . . , un; or (v) vj := ω, where
j ∈ [1..m] (There must be exactly one expression for each
vj .)

The definition of the semantics of an atomic process ex-
ecution is relatively straightforward – based on the values
for the input variables and the current world instance1, if

1Intuitively, it depends on α, I, and Σ, and results in an assignment

a conditional effect (c, E) has true condition then one el-
ement e ∈ E is nondeterministically chosen. If the appli-
cation of e on the world instance satisfies the global con-
straints Σ then e is used to modify the world instance and
to determine the values of the output variables.

We write (α, I) `p(r1,...,rn;v1,...,vm) (α′, I ′) overW,Σ,
if the pair (α′, I ′) is one of the possible pairs resulting
from the execution of an atomic process p, with inputs
ri’s and outputs vj’s, as described above. The trace of
this move is the syntactic object p(c1, . . . , cn; d1, . . . , dm)
where ci is the domain value identified by α(ri) (α is the
identity on elements of Dom , see [4], and where dj is the
domain value α′(vj).

Messages, Ports, and Links. A message type has a name
m and a signature of form 〈d1, . . . , dn〉, where n ≥ 0 and
each di ∈ {Bool ,Eq ,Leq}.

In Colombo, a (service) port signature of a service
S, denoted Port or PortS, is a set P of pairs having
the form (m, in) or (m, out), where the m’s are message
types, in and out denote the “direction” of the message
flow and each pair in P has a distinct message type. Let
F = {S1, . . . , Sn} be a family of services (with or without
one client) having associated port signatures {P1, . . . , Pn}.
A link for F is a tuple of the form (Si,m, Sj , n) where
(m, out) ∈ Pi, (n, in) ∈ Pj , and m,n have identical sig-

α′ and world state I′.



natures. (It can occur that i = j, although perhaps not
typical in practice.) A linkage for F is a set L of links such
that the first two fields of L are a key for L, and likewise
for the second two fields. It is not required that every port
of a service S occur in L.

In this paper we will assume that a linkage L is estab-
lished at the time of designing a system of interoperating
services, and that L does not change at runtime.

Local & Queue Store, Transmit, Read, Has-seen. Let
S be a non-client web service. The local store LStoreS

of S is a finite set of typed variables. For each incoming
port (m, in) of S we assume that there is a distinguished
boolean variable πm in LStoreS , which is set true if there
is at least one message in the queue. Also, each non-client
service S has a queue store QStore, used to hold the para-
meter values of incoming messages, which can be thought
of as being held by a queue. Wlog, we focus on queues of
length 1.

As illustrated in Section 2, for passing messages be-
tween services we have two basic operations: transmit and
read, denoted using !m and ?m, respectively. A transmit is
based on an explicit step of the sending service, and is re-
flected as an asynchronous receive at the receiving service.
In Colombok,b, a transmit will block if the correspond-
ing queue of the receiver is full. (An alternative is to view
the send as failed and let the sending service continue with
other activities.) Similarly, in Colombok,b the read oper-
ation will block until there is something in the appropriate
queue (although other semantics are possible).

With regards to a client service C in Colombok,b,
we bundle the receive and the read as just receive. We
do not model the local or queue stores of clients, but
maintain simply a unary relation, denoted HasSeen or
HasSeenC , which holds elements of Dom . Intuitively,
at a given time in an execution of C, HasSeenC will
include all of constants appearing in service specification
(ConstantsC), and also all domain elements that occur in
messages that have been transmitted to C.

Abstract Model of Internal Service Process. In
Colombok,b, a guarded automaton is a tuple
(Q, δ, F, LStore, QStore) where Q is a finite set of
states, F ⊂ Q is a set of final states, and LStore
(QStore) is the local (queue) store. The transition
function δ contains tuples (s, c, µ, s′) where s, s′ ∈ Q,
c is a condition over LStore ∪ QStore (no access to
the world instance), and µ is either a send, a read, or an
atomic process invocation. The non-client services have
deterministic signature, i.e., it is assumed that for each
state in Q, store contents and a world instance, at most one
out-going transition can be labeled with a condition that
evaluates to true. The Guarded Automaton signature of
(non-client) service S is denoted GA(S).

In Colombok,b, we assume for a client C that in GA(C)
there are exactly two states, called ReadyToTransmit and
ReadyToRead, where the first is the start state and also the

final state. In Colombok,b the client will toggle between
the two states. We use the “has-seen” set HasSeen as an
abstract representation of constants that the client has seen
so far. The clients are non-deterministic, in terms of the
message they choose to read, and in terms of the values
they transmit.

The moves-to relation ` will hold between pairs of the
form (idS , I), (idS ′, I ′), where idS , idS ′ are instanta-
neous descriptions (id’s) for S and I, I ′ are world in-
stances. This is defined in the usual way. The trace of a pair
(idS , I), (idS ′, I ′) (where (idS , I) `S (idS ′, I ′)) will
provide, intuitively, a grounded record or log of salient as-
pects of the transition from (idS , I) to (idS ′, I ′), includ-
ing, e.g., what parameter values were input/output from an
atomic process invocation, or were received, read or sent.

For clients, an id is a pair of form (s, HasSeen). The
moves-to relation and trace are defined for clients in the
natural manner (see [4] for details).

System Execution and Equivalence. In general we focus
on a system, which is a triple S = (C,F , L), where C is a
client, F = {S1, . . . , Sn} is a finite family of web services,
and L is a linkage for (C,F) (i.e., for {C} ∪ F ).

For this paper we make the assumption of No Exter-
nal Modifications: when discussing the execution of one
or more services S1, . . . ,Sk, we assume that no other sys-
tems can modify the relations in the world schema that are
accessed by the executions of S1, . . . , Sk.

The notion of (initial) instantaneous description (id) for
system S is defined in a natural fashion to be a tuple idS =
(idC , {idS | S ∈ F}), based on a generalization of id
for individual services. The moves-to relation for system
S , denoted `S or `, is defined as a natural generalization
of ` for clients and services. More specifically, we have
(idS , I) ` (idS′, I ′) when (written informally, see [4] for
more details)

(i) If a service performs an atomic process or a read, that
is the only service that moves. For an atomic process
the world instance can change, and for the read it can-
not change.

(ii) If a service performs a transmit, then the target of that
transmit (according to L) performs a receive in the
same move. In this case the world instance cannot
change.

In case (i), the trace of pair (idS , I) ` (idS′, I ′) is the
trace of the individual service that changed; in case (ii), the
trace is the pair (!m(c1, . . . , cn), ?n(c1, . . . , cn)) where the
!m part is the trace of the sending service and the ?n part is
the trace of the receiving service.

An enactment of S is a finite sequence E =
〈(id1, I1), . . . , (idq, Iq)〉, q ≥ 1, where (a) id1 is an ini-
tial id for S , and (b) (idp, Ip) ` (idp+1, Ip+1) for each
p ∈ [1..(q − 1)]. The enactment is successful if idq is in a
final state of GA(C) and each GA(S).



The notion of execution tree for S is, intuitively an
infinitely branching tree T that records all possible en-
actments. The root is not labeled, and all other nodes
are labeled by pairs of form (id, I) where id is an id
of S and I a valid world instance. For children of
the root, the id is the initial id of S and I is arbi-
trary. An edge ((id, I), (id′, I ′)) is included in the tree
if (id, I) ` (id′, I ′); in this case the edge is labeled by
trace((id, I), (id′, I ′)). A node (id, I) in the execution
tree is terminating if id is in a final state of GA(C) and each
GA(S).

The essence of T , denoted essence(T ), is a collaps-
ing of T , created as follows. The root and its children
remain the same. Suppose that v1 is a node of T that
is also in essence(T ), and let v1, . . . , vn, vn+1, n ≥ 1,
be a path, where trace(vi, vi+1) for each i ∈ [1..n] in-
volves message transmits or reads not involving the client,
and trace(vn, vn+1) involves an atomic process invoca-
tion or a transmit to or from the client. Then include edge
(v1, vn+1) in essence(T ), where vn+1 has the same label
as in T , and the this edge is labeled with trace(vn, vn+1).

Note that for a system S = (C,F , L) each pair of
execution trees T and T ′ of S are isomorphic, and also
essence(T ) and essence(T ) are isomorphic.

Suppose now that world schema W and global con-
straints Σ are fixed, and let A be an alphabet of atomic
processes. Let S = (C, {S | S ∈ F}, L) and S ′ =
(C, {S | S ∈ F ′}, L′) be two systems over W,Σ,A, and
over the same client C.

We say that S is equivalent to S ′, denoted S ≡ S ′ if
for some (any) execution trees T , T ′ of S,S ′, respectively,
we have that essence(T ) is isomorphic to essence(T ′).
Intuitively, this means that relative to what is observable in
terms of client messaging and atomic process invocations
(and their effects), the behaviors of S and S ′ are indistin-
guishable.

4 The Composition Synthesis Problem State-
ment

In this section we formally define the composition synthe-
sis problem, and also a specialized version of this called
the choreography synthesis problem. We then state our
main results, giving decidability and complexity bounds for
composition and choreography synthesis in the restricted
context of Colombok,b. The proofs for these results are
sketched in Sections 5 and 6.

For this section we assume that a world schema
W , global constraints Σ, and an alphabet A of atomic
processes are all fixed.

For both synthesis problems, assume that a family of
available (or pre-defined) services operating over A is
available (e.g., in an extended UDDI directory). We also
assume that there is a “desired behavior”, described using
a specialized system. In particular, a goal system is a triple
G = (C, {G}, L) where C is a client; G is a web service
over alphabet A, called the goal service; and L is a linkage
involving only C and G.

In the general case, given the goal system G =
(C, {G}, L), the composition synthesis problem is to (a) se-
lect a family S1, . . . , Sn of services from the pre-existing
set, (b) construct a web service S0 (the “mediator”) which
can only send, receive and read messages, and (c) con-
struct a linkage L′ over C, S0, S1, . . . , Sn such that G
and S = (C, {S0, S1, . . . , Sn}, L′) are equivalent. The
choreography synthesis problem is to (a) select a family
S1, . . . , Sn of services from the pre-existing set, and (b’)
construct a linkage L′ over C, S1, . . . , Sn such that G and
S = (C, {S1, . . . , Sn}, L′) are equivalent.

Decidability of the composition and choreography syn-
thesis problems remains open for most cases of the general
Colombo framework. We describe now a family of restric-
tions, in the context of Colombok,b, under which we can
acheive decidability and complexity results for these prob-
lems. We feel that the results obtained here are themselves
quite informative and non-trivial to demonstrate, and can
also help show the way towards the development of less
restrictive analogs.

Let G = (C, {G}, L) be a goal system. Two key
assumptions of the goal system are as follows:

Blocking behavior: (a) For each available service,
if a state can be entered by a transition involving a
message send, then the service either terminates at that
state, or blocks and waits at that state for a message
receive. (b) The client initiates by sending a message,
and upon message receipt it either halts or sends a message.

Bounded Access: (a) There is a k > 0, such that in
any enactment of the client C, the number of values that
can be sent out is ≤ k + the number of values that are
recieved by C. (b) For each p > 0 there is a q > 0 such
that in each enactment of G, if at most p new values come
from the client, then only q distinct key-based searches can
be executed by the atomic process invocations in G.

The first restriction prevents concurrency in our sys-
tems, and the second one ensures that in any enactment
of G, only a finite number of domain values are read
(thus providing a uniform bound on the size of the “active
domain” of any enactment). Note that in Colombok,b, k
and b denote the bounded access and the blocking behavior
assumptions, respectively.

For the case of composition synthesis, we restrict the
form of mediators and linkages that we will look for, as
follows:

Strict Mediation: A system S =
(C, {S0, S1, . . . , Sn}, L′) is strict mediation if in L′

all messages are either sent by the mediator S0 or received
by the mediator.

We also make a simplifying assumption that essen-
tially blocks services outside of the relevant system(s)
from modifying the world state.



Finally, we say that a mediator service is (p, q)-bounded
if it has at most p guarded automata states and at most q
variables in its global store.

Theorem 4.1: Assume that all services are in
Colombok,b, and assume No External Modifications. Let
G = (C, {G}, L) be a goal system and U a finite family
of available web services, all of which satisfy Blocking
Behavior and Bounded Access. For each p, q it is decid-
able whether there is a set {S1, . . . , Sn} ⊆ U and a (p, q)-
bounded mediator S0, and linkage L′ satisfying Strict Me-
diation, such that S = (C, {S0, S1, . . . , Sn}, L′) is equiv-
alent to G. An upper bound on the complexity of deciding
this, and constructing a mediator if there is one, is doubly
exponential time over the size of p, q,G and U .

We expect that the complexity bound can be refined,
but this remains open at the time of writing. More gen-
erally, we conjecture that a decidability result and com-
plexity upper bound can be obtained for a generalization
of the above theorem, in which the bounds p, q do not need
to be mentioned. In particular, we believe that based on
G and U there are p0, q0 having the property that if there
is a (p, q)-bounded mediator for any p, q, then there is a
(p0, q0)-bounded mediator.

We now describe how the choreography synthesis prob-
lem can be reduced to a special case of the composition
synthesis problem. Let G = (C, {G}, L) be a goal system.
Suppose that there is a solution S = (C, {S1, . . . , Sn}, L′)
for the choreography synthesis problem. Then we can
build a mediator S0 and Strict Mediation linkage L′′ so
that (a) S0 has exactly one state, (b) the local store of S0

has only variables of the form πm (which record whether
a message of type m has been received), and S ′ =
(C, {S0, S1, . . . , Sn}, L′′) is equivalent to G. The converse
also holds. Finally, note that the size of the global store
of mediator S0 is bounded by the total number of types of
message that can be sent by the family U of available ser-
vices.

From these observations and a minor variation on the
proof technique of Theorem 4.1 we can obtain the follow-
ing.

Theorem 4.2: Assume that all services are in
Colombok,b, and assume No External Modifications. Let
G = (C, {G}, L) be a goal system and U a family of avail-
able web services, all of which satisfy Blocking Behavior
and Bounded World State Access. It is decidable whether
there is a set {S1, . . . , Sn} ⊆ U and a linkage L′ such that
S = (C, {S1, . . . , Sn}, L′) is equivalent to G. An upper
bound on the complexity of deciding this, and constructing
a mediator if there is one, is doubly exponential time over
the size of G and U .

5 From Infinite to Finite: the Case Tree
This section develops a key aspect needed for the proofs of
Theorems 4.1 and 4.2, namely, it allows us to reason over

a finite universe of domain values, rather than over the in-
finite universe Dom . The essence of the technique is that
instead of reasoning over (the infinitely many) concrete val-
ues in Dom , we reason over a finite, bounded set of sym-
bolic values. The technique for achieving this reduction is
inspired by an approach taken in [13]. A key enabler for the
reduction is the assumption that in Colombok,b services,
all conditions and data accesses rely on key-based look-
ups; another enabler is the assumption of Bounded Access.

As part of the construction, we will create “symbolic im-
ages” of most of the constructs that we currently have for
concrete values. For example, corresponding to a concrete
world state I we will have symbolic world state Î, corre-
sponding to a moves-to relation ` in the concrete realm we
shall have a moves-to relation ̂̀ in the symbolic realm, etc.
In particular, given a (concrete) execution tree T for some
system S of services, which has infinite branching, it will
turn out that the corresponding symbolic execution tree T̂
will have a strong (homomorphic) relationship to T , but
have finitely bounded branching. In general, results that
hold in the concrete realm will have analogs in the sym-
bolic realm.

We assume an infinite set Symb of symbolic values (dis-
joint from Dom); these will sometimes behave as values,
and other times behave as variables.

Let C be a finite set of constants in Dom and Y a finite
set of symbolic values. Let Atoms(Y,C) be the set of all
atoms over Y, C. This includes expressions of the follow-
ing forms:

1. incorp(y), with intuitive meaning that symbolic
value y has been “incorporated” into an enactment;

2. bool(y), eq(y) and leq(y), indicating intuitively the
domain type associated with y.

3. y = T and y = F (can be true only if incorp(y) and
bool(y)).

4. y = y′ (can be true only if y and y′ “have” been in-
corporated and “have” the same type).

5. y < y′, y > y′ (can be true only if leq(y) and
leq(y′)).

An sv-characterization (svc for short) for Y,C is a max-
imal consistent conjunction over Atoms(Y,C) and their
negations. (Informally, the notion of “consistency” here
prevents, e.g., eq(y) and leq(y), y < y′ and y′ < y, etc.)
Note that we do not allow any y to “have” the value ω. This
is because symbolic values range exclusively over concrete
elements of Dom .

Let Y,C be fixed, and σ : Y → Dom . Then there is a
unique svc γ̂ such that γ̂[σ] is true. We denote this svc as
svc(σ). There is a natural equivalence relation ∼Y,C be-
tween assignments from Y to Dom , defined by σ ∼Y,C σ′

iff for all atoms a ∈ Atoms(Y, C), a[σ] iff a[σ′]. Note that
this is equivalent to stating that svc(σ) = svc(σ′).

Conversely, for an svc γ̂, it is possible to construct a
mapping σ : Y → Dom such that svc(σ) = γ̂.



Let Y, C be fixed, where C includes at least all constants
occurring in service S. Let γ̂ be an svc over Y, C. Then an
assignment α̂ : LStoreS → (Y ∪ {T, F, ω}) is valid for γ̂
if (i) α̂(v) ∈ Y ∪{ω} for v’s not of form πm, and α̂(πm) ∈
Bool for each variable of form πm; (ii) γ̂ |= incorp(α̂(v))
for each v not of form πm; and (iii) γ̂ |= bool(α̂(v)) iff v
is of type Bool , and likewise for eq and leq. The notion of
assignment β̂ : QStoreS → Y ∪{ω} being valid is defined
analogously.

A symbolic id of service S is a 4-tuple îd = (s, α̂, β̂, γ̂)
where γ̂ is an svc, and α̂, β̂ are valid assignments over
LStore and QStore for γ̂.

We now turn to symbolic tuples, relational instances,
and world states. A symbolic tuple has form 〈τ1, . . . , τn〉,
where τi ∈ Symb ∪Dom for each i ∈ [1..n].

Let R(A1, . . . , An; B1, . . . , Bm) be a relation schema
in the world schema, with key A1, . . . , Am. The notion of
“symbolic instance” of R abstractly represent the set of tu-
ples that have been “visited” in R. We must also keep track
of tuples that are currently “not in” R, which corresponds
to tuples that have been deleted from R by some atomic
execution. Formally, a symbolic instance of R is a pair
(InR,OutR), where InR is a finite set of symbolic tuples
over A1, . . . , An, B1, . . . , Bm, and OutR is a set of sym-
bolic tuples over A1, . . . , An. The instance (InR,OutR) is
well-formed for svc γ̂ if (informally)

1. if γ̂ |= ¬incorp(yi), then yi should not appear in InR

nor OutR;

2. πA1,...,An(InR) ∩OutR is empty;

3. InR is closed under the tuple-generating dependencies
having the form (R(τ1, . . . , τn, η1, . . . , ηm) ∧ τj =
τ ′j → R(τ1, . . . , τ

′
j , . . . , τn, η1, . . . , ηm)) (Intuitively,

we are “closing” the symbolic instance to include all
tuples that are equivalent under equalities implied by
γ̂);

4. InR “satisfies” the key dependency A1, . . . , An →
B1, . . . , Bm “modulo the equalities in γ̂.

In the following we consider only well-formed symbolic
instances.

Let γ̂ be an svc over Y,C. A (valid) symbolic instance
of world schema W is a mapping Î that maps each rela-
tion R ∈ W into a well-formed symbolic instance of R
over Y, C. (We also write, e.g., I(InR) to refer to the In
component of I(R).)

Given an execution tree T of a system S in Colombok,b

satisfying the restrictions mentioned in Section 4, we can
inductively build up a symbolic execution tree T̂ that cor-
respond to T but using symbolic values, symbolic ids, and
symbolic world states. We let Y be a set of symbolic values
which is “large enough” to accomodate the (bounded) num-
ber of look-ups that might occur in an execution of S , and
let C be the set of all constant values occurring in the speci-
fication of S . At the root and children of the root the associ-
ated svc γ̂ will satisfy ¬incorp(y) for all symbolic values

y. Intuitively, as we proceed down a path of T̂ , we will ex-
tend γ̂ to incorporate symbolically the concrete values that
have been read from the world state by atomic process in-
vocations. Along each path the value of γ̂ is refined by “in-
corporating” new symbolic values and assigning for them
relationships to the other incorporated symbolic values and
to C. This process is additive or monotonic, in the sense
that once a symbolic value y is incorporated into γ̂ its re-
lationships to the other previously incorporated symbolic
values does not change. After an atomic process invoca-
tion we may also have to modify the symbolic instances
(InR,OutR) for each R in the world schema.

A subtlety in extending the svc γ̂ is that we
must avoid running out of symbolic values. Suppose
that Î is a symbolic instance and γ̂ an svc. Let
R(A1, . . . , An;B1, . . . , Bm) have key A1, . . . , An. We
say that (γ̂, Î) knows fR

j (τ1, . . . , τn) (where the τi’s range
over Y ∪ C) if 〈τ1, . . . , τn〉 ∈ πA1,...,An

(Î(InR)).
Based on the above definitions, it is now possible to de-

fine the moves-to relation between symbolic ids of a service
S. We focus on atomic process invocations here. Speaking
informally, suppose that there is a transition from state s
via atomic process a(u1, . . . , un; v1, . . . , vm). We describe
when ((s, α̂, β̂, γ̂), Î)̂̀((s′, α̂′, β̂′, γ̂′), Î ′) will hold. First
note that there is non-determinism here, corresponding to
the “new” values that are read by the conditions or up-
dates performed by a. For each family of non-deterministic
choices, new γ̂′′ and Î ′′ is constructed, corresponding to
“new” values seen and taking advantage of what (γ̂, Î)
“knows”. Then, for each conditional effect (c, E) whose
condition is “true” for (γ̂′′, Î ′′), a pair (γ̂′, Î ′) is con-
structed, where γ̂′ = γ̂′′, and Î ′ is constructed from Î ′′
according to the effect E. The relation ̂̀ for systems S is
defined analogously.

We summarize our overview of this reduction from infi-
nite to finite with the following.

Lemma 5.1: (Informally stated) Let S be a system of ser-
vices in Colombok,b, and T an execution tree for S , and
let symbolic execution tree T̂ be constructed as described
above. Then there is a homomorphism h from T to T̂ with
the following properties: (i) h “preserves levels” (i.e., the
depth of node h(n) in T̂ is the same as the depth of n in
T . (ii) If n is labeled by (id, I), then h(n) is labeled by
(îd, Î) with svc γ̂, where (γ̂, Î) is “consistent” with I (and
also with the world state accesses that have occurred in the
history above n). (iii) If n′ is a child of n in T , then the ̂̀
relation holds between the labels of h(n) and h(n′) in T̂ .

Importantly, the symbolic execution tree T̂ described in
the preceding lemma has bounded branching.

6 Characterization of Composition Synthe-
sis in PDL

To complete the proofs of Theorems 4.1 and 4.2 we show
now how the composition synthesis problem can be char-



acterized by means of a Proportional Dynamic Logic for-
mula (PDL). For the necessary details about PDL, we refer
to [4, 11].

The intuition behind the encoding of composition syn-
thesis in PDL, is the following: The execution of the var-
ious services that participate to the composition is com-
pletely characterized, in the sense that a model of the for-
mula corresponds to a single execution tree of the system,
in which the mediator activates the component services by
sending them suitable messages, and the component ser-
vices execute the actions of the goal while exchanging mes-
sages with the mediator. In fact, a model of the formula si-
multaneously represents both the execution of the compo-
nent services, and the execution of the goal specification.

The set of non-deterministic outcomes that can be ob-
tained every time an atomic process is executed by a com-
ponent service (and by the goal) corresponds to the set of
children nodes in the model of the PDL formula.

The only part of the execution that is left unspecified
by the PDL formula is the execution of the mediator to be
synthesized. Since the execution of the mediator is charac-
terized by which messages are sent to which component
services (and consequently, also by which messages are
received in response), the PDL formula contains suitable
parts that “guess” such messages, including their receiver.
In each model of the formula, such a guess will be fixed,
and thus a model will correspond to the specification of a
mediator realizing the composition.

More precisely, the PDL formula we construct consists
of (i) a general part imposing structural constraints on the
model, (ii) a description of the initial state of each of the
service, the goal, and the mediator, and (iii) a characteri-
zation of what happens every time an action is performed.
In particular we have to consider the following types of ac-
tions:

1. client sends message,
2. client reads message,
3. mediator/goal sends message to client,
4. mediator/goal reads message from client,
5. mediator sends message to component service,
6. mediator reads message from component service,
7. service sends message to mediator,
8. service reads message from mediator,
9. service/goal executes atomic process.

For lack of space, here we will only give some hints
on how the PDL encoding is defined. More details can
be found in [4]. In specifying the encoding, we make use
of the following meta-variables representing suitable PDL
sub-formulas: (i) ̂̂α denotes the PDL representation of an
assignment over the set of variables of both the local stores
LStore and the queue stores QStore of all services, in-
cluding the goal. We also use ̂̂αp to denote the part of ̂̂α
relative to Service p, for p ∈ {0, 1, . . . , n, g} (here g de-
notes the goal); (ii) ̂̂γ denotes the PDL representation of

the sv-characterization γ̂; (iii) ̂̂I denotes the PDL represen-
tation of a world state instance.

We make use of one proposition stij for each state j of
the guarded automaton for service Si (all these are pairwise
disjoint), and of one proposition execi, for each service
Si (either the mediator, a component service, or the goal),
intended to be true when service Si is executing.

To determine the execution of the mediator, we will
use the following “guessed” propositions: DO(!m) (resp.,
DO(?m)), stating that next a send (resp., a read) by the
mediator will be performed2; NEXT (st0i ), stating that the
mediator will make a transition to state i; MAP ( ~q0

m, ~u),
stating that the mediator reads a message m using variables
~u as output parameters for the message; MAP (~u, ~qi

m), sta-
ting that the mediator sends a message m to service Si us-
ing variables ~u as input parameters.

As an example of the kind of (sub) formulas we
use, consider the characterization of executing an atomic
process. Lets assume that the service Si is executing mim-
icking the call of an atomic process in the goal Sg. In par-
ticular, let Si be in the state stih with a transition labeled by
a guarded action φ/a(~xi; ~yi) getting to a state stih′ and let
the goal Sg be in stgk with a transition labeled by a guarded
action φ′/a( ~xg; ~yg) getting to a state stgk′ ; and let us as-
sume that both φ and φ′ evaluate to true wrt assignment ̂̂α
and svc ̂̂γ. Then we have

[∗]((execi ∧ execg ∧ stih ∧ stgk ∧ ̂̂γ ∧ ̂̂α ∧ ̂̂I) →
〈a〉> ∧ [−a]⊥ ∧
[a](stih′ ∧ stgk′) ∧∧

(
bbγ′, bbα′, bbI′)∈E〈a〉(

̂̂
γ′ ∧ ̂̂

α′ ∧ ̂̂I ′) ∧
[a](

∨
(
bbγ′, bbα′, bbI′)∈E

̂̂
γ′ ∧ ̂̂

α′ ∧ ̂̂I ′)
[a](execi ∧ execg))

where each ( ̂̂
γ′, ̂̂

α′, ̂̂I ′) ∈ E is the PDL represen-
tation of a triple (γ̂′, α̂′, Î ′) such that for the action
a(~xi; ~yi)/a( ~xg; ~yg) we have that (γ̂, α̂, Î) ` (γ̂′, α̂′, Î ′),
where ̂̂

α′i and ̂̂
α′g are the only parts of ̂̂

α′ that may be dif-
ferent from ̂̂α.

This formula states that every time Si and Sg are execut-
ing and they are in states stih and stgh′ respectively, and ̂̂α
and ̂̂γ hold, then: (i) the atomic process a is activated next
(and no other action are possible);(ii) executing a leads Si

and Sg to the states stik and stgk′ , respectively; (iii) there is

an execution branch for each ( ̂̂
γ′, ̂̂

α′, ̂̂I ′) ∈ E ; (iv) the only

possible next ( ̂̂
γ′, ̂̂

α′, ̂̂I ′) must be in E ; (v) the service Si

and the goal Sg will continue executing next.
Other examples can be found in [4].
Finally, among the structural part of the formula, promi-

nent parts are those of the form

〈∗〉(exec0 ∧ st0i ∧ ̂̂α0 ∧ ̂̂γ ∧DO(!m)) →
[∗](exec0 ∧ st0i ∧ ̂̂α ∧ ̂̂γ → DO(!m))

2In fact, due to Strict Mediation, DO(?m) is completely determined
by the execution of a send by a component service.



which state that a guessed proposition, DO(!m) in this
case, must assume the same value everywhere the medi-
ator is executing in a certain state st0i with a certain as-
signment ̂̂α0 for its LStore and QStore and with a certain
sv-characterization ̂̂γ.

Lemma 6.1: Assume that all services are in Colombok,b,
and assume No External Modifications. Let G =
(C, {G}, L) be a goal system and U a finite family of avail-
able web services, all of which satisfy Blocking Behavior
and Bounded Access. For each p, q, let ΦG,U

p,q be the PDL
formula constructed as above. Then, if ΦG,U

p,q is satisfiable,
there exists a system S = (C, {S0, S1, . . . , Sn}, L′), where
S0 is a (p, q)-bounded mediator, S1, . . . , Sn ∈ U , and the
linkage L′ satisfies Strict Mediation, that is (symbolically)
equivalent to G.

Indeed, by the tree-model property of PDL, if ΦG,U
p,q is satis-

fiable, then it admits a tree-like model. From such a model
we can extract directly a symbolic execution tree for the
goal and for S . To determine which services actually take
part in the composition, it is sufficient to consider those
services Si for which execi is true at least once.

Observe that, from a model of ΦG,U
p,q , one can directly

obtain also a specification of S0. This can be done by con-
sidering for each of the p states of S0 and for each value
of ̂̂α0 and ̂̂γ, which of the guessed propositions are true.
(Notice that the part of the PDL formula related to such
guesses ensures that the state together with ̂̂α0 and ̂̂γ deter-
mines once and for all the value of the guessed propositions
in the whole model.) From the guessed propositions one
can define the transitions of the guarded automaton for S0,
extracting from ̂̂α0 and ̂̂γ the guards, and from the DO and
MAP propositions (see [4]) the actions and their parame-
ters respectively. Considering that the local store and the
queue store for a (p, q)-bounded mediator whose linkage
satisfies Strict Mediation are pre-determined, this provides
a complete characterization of the mediator.

7 Conclusion and Future Work
In this paper we have presented Colombo, a framework for
automatic web service composition, that addresses (i) mes-
sage exchanges, (ii) data flow management, and (iii) effects
on the real world, thus unifying the main approaches that
are currently undertaken by the research community for the
service composition problem. Through a complex example
we have shown all the peculiarities of the approach. We
have presented a novel technique, based on case tree build-
ing and on an encoding in PDL, for computing the compo-
sition of web services.

In future work we will remove some of the assump-
tions that we considered in this work (characterizing
Colombok,b). We will consider complex types (i.e., ar-
bitrary XML data types that can be transmitted between
services), more general accesses to data stores and queues
of arbitrary, but yet finite, length.
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