
Automatic Composition of Web Services with
Nondeterministic Behavior

Daniela Berardi, Giuseppe De Giacomo,
Massimo Mecella

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

{berardi,degiacomo,mecella }@dis.uniroma1.it

Diego Calvanese
Libera Università di Bolzano/Bozen

Facoltà di Scienze e Tecnologie Informatiche
Piazza Domenicani 3, 39100 Bolzano, Italy

calvanese@inf.unibz.it

ABSTRACT
The promise of Web Service Computing is to utilize Web ser-
vices as fundamental elements for realizing distributed applica-
tions/solutions. In particular, when no available service can sat-
isfy client request, (parts of) available services can be composed
and orchestrated in order to satisfy such a request. In this paper,
we address the automatic composition when the behavior of the
available services is nondeterministic, and hence it is not fully con-
trollable by an orchestrator. The service behavior is modeled by
the possible conversations the service can have with its clients. The
presence of nondeterministic conversations stems naturally when
modeling services in which the result of each interaction with its
client can not be foreseen. The behavior of the component services
is thus only partially controllable, and an orchestrator needs to cope
with such partial controllability. We propose an automatic compo-
sition synthesis technique, based on reduction to satisfiability in
Propositional Dynamic Logic, that is sound, complete and decid-
able. Moreover, we will characterize the computational complexity
of the problem and show that the proposed technique is optimal wrt
computational complexity.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
State diagrams; D.2.4 [Software Engineering]: Software/Program
Verification—Formal methods; F.3.1 [Logics and Meaning of
Programs]: Specifying and Verifying and Reasoning about Pro-
grams—Logics of programs

Keywords
Web Services, Automatic Composition, Nondeterminism, Proposi-
tional Dynamic Logic

1. INTRODUCTION
Web services (also called simply services) are self-describing,

platform-agnostic computational elements that support rapid, low-
cost and easy composition of loosely coupled distributed appli-
cations. From a technical standpoint, Web services are modu-
lar applications that can be described, published, located, invoked
and composed over a variety of networks (including the Internet):
any piece of code and any application component deployed on a
system can be wrapped and transformed into a network-available

Univ. Roma “La Sapienza”, Dipartimento di Informatica e Sistemistica.
Technical Report 05-2006.
.

service, by using standard (XML-based) languages and protocols
(e.g., WSDL, SOAP, etc.) - see e.g., [1].

The promise of Web service is to enable the composition of new
distributed applications/solutions: when no available service can
satisfy a client request, (parts of) available services can be com-
posed and orchestrated in order to satisfy such a request. Note that
service composition involves two different issues [1]: thesynthesis,
in order to synthesize, either manually or automatically, a specifica-
tion of how coordinating the component services to fulfill the client
request, and theorchestration, i.e., how executing the previous ob-
tained specification by suitably supervising and monitoring both
the control flow and the data flow among the involved services.

In this paper, we address the automatic composition synthesis
when the behavior of the available services is nondeterministic,
and hence is not fully controllable by the orchestrator. The ser-
vice behavior is modeled by the possible conversations the service
can have with its clients. The presence of nondeterministic conver-
sations stems naturally when modeling services in which the result
of each interaction with its client on the state of the service can not
be foreseen. Let us consider as an example, a service that allows
buying items by credit card; after invoking the operation, the ser-
vice can be in a statepayment OK, accepting the payment, or in a
different statepayment refused , if the credit card is not valid,
with not enough credit, etc. Note that the client of a nondetermin-
istic service can invoke the operation but cannot control what is the
result of it. In other words, the behavior of the service is partially
controllable, and the orchestrator needs to cope with such partial
controllability. Note also that if one observes the status in which
the service is after an operation, then s/he understand which tran-
sition, among those nondeterministically possible in the previous
state, has been undertaken by the service. We assume that the or-
chestrator can indeed observe states of the available services and
take advantage of this in choosing how to continue a certain task1.

From a formal point of view, in this paper, we adhere to the set-
ting proposed in [3, 4, 5] whose distinguished features can be sum-
marized as follows.

• The available services are grouped together into a so call
community.

• Services in the community share a common set of actionsΣ,
theactions of the community. In other words, each available

1The reader should observe that also the standard proposal WSDL
2.0 has a similar point of view: the same operation can have multi-
ple output messages (theout message and variousoutfault
messages ), and the client observe how the service behaved only
after receiving a specific output message.



service in the community exports its behavior to the commu-
nity itself in terms of the actions inΣ (the actions recognized
be the community).

• Each action inΣ denotes a (possibly complex) interaction
between the a service and a client, and as a result of such
interaction the client may acquire new information (not nec-
essarily modeled explicitly) that may be of help in choosing
the next action to perform.

• The behavior of each available service is described in terms
of a finite transition system(aka finite state machine) that
makes use of the actions inΣ. Since in this paper we assume
that the behavior of the available services is nondeterminis-
tic, differently form [3, 4, 5], such a transition system are
nondeterministic in general.

• The client request itself is expressed as a finite transition sys-
tem that makes use of the actions inΣ. Such a transition sys-
tem, calledtarget service, is deterministic as in [3, 5], since
we assume that there is no uncertainty on the behavior that
the client want to realize through composition of the avail-
able services.

• The orchestrator has the ability of scheduling services on
a step-by-stepbasis. Hence the orchestrator has the ability
of controlling the interleavingof multiple services executed
concurrently.

• The composition synthesisconsists on synthesizing a pro-
gram for the orchestrator such that by suitably scheduling
the available services it can provide the target service to the
client.

The contribution of this paper is to devise a formal technique to
perform automatic composition synthesis, when available services
are nondeterministic and hence partially controllable by the orches-
trator. We will show that the technique proposed is sound, complete
and terminating. Moreover we will characterize the computational
complexity of the problem and show that the proposed technique is
optimal wrt (worst-case) computational complexity.

Typically reactive process synthesis [23, 15] make use of tech-
niques based on automata on infinite trees. And even if these are
perfectly suitable from a theoretical point of view, there are critical
steps, such a Safra’s construction for complementation, that have
resisted efficient implementation for a long time. Only very re-
cently, we are starting to understand how to avoid such steps – see
[14] for a discussion.

Interestingly the technique proposed here is based on reduction
to satisfiability in Propositional Dynamic Logic (PDL) [12] with a
limited use of the reflexive-transitive-closure operator2. Now, PDL
satisfiability shares the same basic algorithms behind the success
of the description logics-based reasoning systems used for OWL3,
such as FaCT4, Racer5, Pellet6, and hence its applicability in the
context of composition synthesis appears to be quite promising.

The rest of the paper is organized as follows. In Section 2 we
first introduce the setting and the composition problem in formal

2As in [3, 5], but more sophisticated this time in order to correctly
deal with nondeterministic behavior of the available services.
3http://www.omg.org/uml/
4http://www.cs.man.ac.uk/˜horrocks/FaCT/
5http://www.sts.tu-harburg.de/˜r.f.moeller/
racer/
6http://www.mindswap.org/2003/pellet/

details. In Section 3 we develop the techniques to perform auto-
matic composition, we show soundness and completeness and we
characterize the complexity of both the techniques and the problem.
In Section 4 we study an extension of the setting where transitions
in the available services and in the target service can be guarded
by conditions on some shared variables. The main objective of this
extension is to show that the techniques proposed in Section 3 are
actually quite resistant to significant variation of the setting (for an-
other example see [2]). In Section 5 we discuss some related work.
Finally, in Section 6 we draw some conclusions.

2. SERVICES WITH PARTIALLY CON-
TROLLABLE BEHAVIOR

In this section, we formalize composition when the services that
are available in the community have a behavior that is not fully
controllable by the orchestrator.

Formally, we consider eachavailable serviceas anondetermin-
istic7 finite transition systemS = (Σ, S, s0, δ, F ) whereΣ is the
common alphabet of actions of the community,S is a finite set of
states,s0 ∈ S is the single initial state,δ ⊆ S ×Σ× S is the tran-
sition relation8, andF ⊆ S is the set of final states, that is, states in
which the computation may stop, but does not necessarily have to.

The client service request is expressed as atarget service, which
represents the service the client would like to interact with. Such
a service is again modeled as a finite transition system over the
alphabet of the community, but this time adeterministicone, i.e.,
the transition relation is actually functional (there cannot be two
distinct transitions with the same starting state and action). The
target service is deterministic because we assume that the client
has full control on how to execute the service that he/she requires9.

EXAMPLE 2.1. Figure 1(a) shows a community of services for
getting information on books. The community includes two ser-
vices: S1 that allows one to repeatedly(i) search the ISBN of a
book given its title (search ) then,(ii) in certain cases (e.g., if the
record with cataloging data is currently accessible), it allows for
displaying the cataloging data (such as editor information, year of
publication, authors, copyrights, etc.) of the book with the selected
ISBN (display ), or (iii) simply returns without displaying infor-
mation (return ); S2 allows for repeatedly displaying cataloging
data of books given the ISBN (display ), without allowing re-
searches. Figure 1(b) shows the target serviceS0: the client wants
to have a service that allows him to search for a book ISBN given its
title (search ), and then display its cataloging data (display ).
Note that the client wants to display the cataloging data in any case
and hence he/she can neither directly exploitS1 nor S2.

Next, we need to clarify which are the basic capabilities of the
orchestrator. The orchestrator has the ability of selecting one10 of
the available services and instructing it to execute an action among
those available in its current state. Furthermore, the orchestrator
has the ability of keeping track (at runtime) of the current state of

7Note that this kind of nondeterminism is of adevilishnature, so
as to capture the idea that the orchestrator cannot fully control the
available services.
8As usual, we call theΣ component of such triples, thelabel of the
transition.
9In fact we could have a client request that is expressed as a non-
deterministic transition system as in [4]. In this case, however, the
nondeterminism has adon’t-care, akaangelicnature.

10For simplicity, we assume that the orchestrator selects only one
service at each step, however our approach and results easily extend
to the case where more services can be selected at each step.



s20
S2

display

s20
S2

display

s10 s11

search

display

S1

search

return

s10 s11

search

display

S1

search

s10s10 s11

search

display

S1

search

return

(a) Available Services

s00 s01
search

display

s00 s01
search

display

S0

(b) Target Service

sP0P

sP2

search, 1

display, 1
sP1

s10 
s20

search, 1

s10 
s20

s11 
s20

display, 2

sP0sP0P

sP2

search, 1

display, 1
sP1

s10 
s20

search, 1

s10 
s20

s11 
s20

display, 2

(c) Composition

Figure 1: Composition of nondeterministic services

each available service. Technically such a capability is calledfull
observabilityon the states of the available services. Although other
choices are possible [26, 2], full observability is the natural choice
in this context, since the transition system that each available ser-
vice exposes to the community is specific to the community itself
(indeed it is expressed using the common alphabet of actions of the
community), and hence there is no reason to make its states par-
tially unobservable: if details have to be hidden, this can be done
directly within the transition system, possibly making use of non-
determinism.

We are now ready to define composition synthesis: an “or-
chestrator program”11 that the orchestrator has to execute in or-
der to orchestrate the available services in order to offer the tar-
get service to the client. Let the available service beS1, . . . ,Sn

each withSi = (Σ, Si, si0, δi, Fi), and the target serviceS0 =
(Σ, S0, s00, δ0, F0). A history is an alternating sequence of the
form h = (s0

1, . . . , s
0
n) ·a1 · (s1

1, . . . , s
1
n) · · · a` · (s`

1, . . . , s
`
n) such

that the following constraints hold:

• s0
i = si0 for i ∈ {1, . . . , n}, i.e., all services start in their

initial state;

• at each stepk, for one i we have that(sk, ak+1, sk+1
i ) ∈

δi, while for all j 6= i we have thatsk+1
j = sk

j , i.e., at
each step of the history, only one of the service has made
a transition (according to its transition relation), while the
other ones have remained still.

An orchestrator programis a functionP : H×Σ → {1, . . . , n, u}
that, given a historyh ∈ H (whereH is the set of all histories de-
fined as above) and an actiona ∈ Σ to perform, returns the service
(actually the service index) that will perform it. Observe that such

11In fact, this is a skeleton specification of the actual program for
the orchestrator.

a function may also return a special valueu (for “undefined”). This
is a technical convenience to makeP a total function returning val-
ues even for histories that are not of interest or for actions that no
service can perform after a given history.

Next, we define when an orchestrator program is a composition
that realizes the target services. First, we observe that, since the
target service is a deterministic transition system, its behavior is
completely characterized by the set of its traces, i.e., by the set of
infinite sequences of actions that are faithful to its transitions, and
of finite sequences that in addition lead to a final state12. Now, given
a tracet = a1 ·a2 · · · of the target service, we say that anorchestra-
tor programP realizes the tracet iff for each non-negative integer
` and for each historyh ∈ H`

t , we have thatP (h, a`+1) 6= u and
H`+1

t is nonempty, where the setsH`
t are inductively defined as

follows:

• H0
t = {(s10, . . . , sn0)}

• H`+1
t is the set of all histories such that, ifh ∈ H`

t and
P (h, a`+1) = i (with i 6= u), then for all transitions
(s`

i , a, s′i) ∈ δi the historyh · a`+1 · (s`+1
1 , . . . , s`+1

n ), with
s`+1

i = s′i, ands`+1
j = s`

j for j 6= i, is inH`+1
t .

Moreover, if a trace is finite and ends afterf actions, we have that
all histories inHf

t end with all services in a final state. Finally, we
say that anorchestrator programP realizes the target serviceS0,
if it realizes all its traces.

In order to understand the above definitions, let us observe that
intuitively the orchestrator program realizes a trace if it can choose

12Actually, the behavior captured by a transition system is typically
identified with its execution tree, see [3]. However, since the target
service has a deterministic transition system, the set of traces is
sufficient, since one can immediately reconstruct the execution tree
from it.



at every step an available service to perform the requested action.
However, since when an available service executes an action it non-
deterministically chooses what transition to actually perform, the
orchestrator program has to play on the safe side and require that
for each of the possible resulting states of the activated service, the
orchestrator is able to continue with the execution of the next ac-
tion. In addition, before ending a computation, available services
need to be left in a final state, hence we have the additional require-
ment above for finite traces.

EXAMPLE 2.2. Referring to Example 2.1, Figure 1(c) shows an
orchestrator programP (in this case with finite states) for available
servicesS1 andS2 in Figure 1(a), that realizes the target service
S0 in Figure 1(b). Essentially,P behaves as follows: it repeatedly
delegates toS1 the actionsearch (notice that both transitions
labeled with this actions are delegated toS1); then it checks the
resulting state ofS1 and, depending on this state, it delegates the
actiondisplay to eitherS1 or S2.

Observe that, in general, an orchestrator program could require
infinite states. However, we will show next that if an orchestrator
program that realizes the target service exists, then there exists one
with finite states. Note that, even if it has finite states, the orches-
trator program has to observe the states of the available services
in order to decide which service to select next (for a given action
requested by the target service). This makes such orchestrator pro-
grams akin to an advanced form of conditional plans studied in
AI [24].

3. COMPOSITION SYNTHESIS WITH
PARTIAL CONTROLLABILITY

In this section, we study how to check for the existence of an
orchestrator program that realizes the target service, and actually
computing it. We start by some preliminary considerations on the
computational complexity that we should expect. Muscholl and
Walukiewicz in [20] proved the following lowerbound.

THEOREM 3.1 (MUSCHOLL&WALUKIEWICZ 2005).
Checking the existence of an orchestrator program for avail-
able servicesS1, . . . ,Sn that realizes a target serviceS0 is
EXPTIME-hard13.

So we should expect that checking the existence of a composi-
tion is at least exponential time. Here we show that actually the
problem is EXPTIME-complete, by resorting to a reduction to sat-
isfiability in Propositional Dynamic Logic (PDL). Moreover, such
a reduction can be exploited to generate the actual orchestrator pro-
gram realizing the composition, which is finite. In doing this, we
extend the approach in [3, 4, 5] to deal with nondeterministic avail-
able services. Dealing with such nondeterminism requires solving
same subtle points that reflect the sophisticated notion of orchestra-
tor program needed for that.

3.1 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL) is a modal logic specifically
developed for reasoning about computer programs [12]. Syntacti-
cally, PDL formulas are built by starting from a setP of atomic

13In fact Muscholl and Walukiewicz show EXPTIME-hardness for
the simpler setting, studied in [3, 5], where all available services
are deterministic [20].

propositions and a setΣ of atomic actions as follows:

φ −→ P | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ → φ′ |
〈r〉φ | [r]φ | true | false

r −→ a | r1 ∪ r2 | r1; r2 | r∗ | φ?

whereP is an atomic proposition inP , r is a regular expression
over the set of actions inΣ, anda is an atomic action inΣ. That is,
PDL formulas are composed from atomic propositions by applying
arbitrary propositional connectives, and modal operators〈r〉φ and
[r]φ. The meaning of the modal operators is, respectively, that there
exists an execution ofr reaching a state whereφ holds, and that all
terminating executions ofr reach a state whereφ holds. As far as
programs,r1∪r2 means “choose non deterministically betweenr1

andr2”; r1; r2 means “first executer1 then executer2”; r∗ means
“executer a non deterministically chosen number of times (zero or
more)”;φ? means “testφ: if it is true proceed else fail”.

Among the programs,(∪a∈Σa)∗, abbreviated asu, has a special
importance:[u] represents themaster modality, which can be used
to state universal assertions. Indeed,u is defined as the reflexive
and transitive union of all actions inΣ and represents the iteration
of a nondeterministic choice among all the possible atomic pro-
grams [12].

The semantics of PDL formulas is based on the notion of
Kripke structure. A Kripke structure is a triple of the formI =
(∆I , {aI}a∈Σ, {P I}P∈P), where∆I denotes a non-empty set of
states (also called worlds);{aI}a∈Σ is a family of binary relations
aI ⊆ ∆I×∆I between elements of∆I , each of which denotes the
state transitions caused by the atomic programa; and{P I}P∈P is
a family of unary relationsP I ⊆ ∆I each of which denotes the el-
ements of∆I were the propositionP is true. The semantic relation
“a formulaφ holds at a states of a structureI”, written I, s |= φ,
is defined by induction on the form ofφ:

I, s |= true always
I, s |= false never
I, s |= P iff s ∈ P I

I, s |= ¬φ iff I, s 6|= φ
I, s |= φ1 ∧ φ2 iff I, s |= φ1 andI, s |= φ2

I, s |= φ1 ∨ φ2 iff I, s |= φ1 or I, s |= φ2

I, s |= φ → φ′ iff I, s |= φ impliesI, s |= φ′

I, s |= 〈r〉φ iff existss′ s.t. (s, s′) ∈ rI andI, s′ |= φ
I, s |= [r]φ iff for all s′, (s, s′) ∈ rI impliesI, s′ |= φ

where the family{aI}a∈Σ is systematically extended so as to in-
clude, for every programr, the corresponding functionrI defined
by induction on the form ofr:

aI : ∆I ×∆I

(r1 ∪ r2)
I = rI1 ∪ rI2

(r1; r2)
I = rI1 ; rI2

(r∗)I = (rI)∗

(φ?)I = {(s, s) ∈ ∆I ×∆I | I, s |= φ}
A structureI = (∆I , {aI}a∈Σ, {P I}P∈P) is called amodelof
a formulaφ if there exists a states ∈ ∆I such thatI, s |= φ. A
formulaφ is satisfiableif there exists a model ofφ, otherwise the
formula isunsatisfiable.

Next two theorems give us the complexity characterization of
satisfiability in PDL.

THEOREM 3.2 (FISHER&L ADNER 1977). Satisfiability in
PDL is EXPTIME-hard.

THEOREM 3.3 (PRATT 1978). Satisfiability in PDL is
EXPTIME-complete.



PDL enjoys two properties that are of particular interest [12],
which we exploit in our composition technique. The first is the
tree model property, which says that every model of a formula can
be unwound to a (possibly infinite) tree-shaped model (considering
domain elements as nodes and partial functions interpreting actions
as edges). The second is thesmall model property, which says
that every satisfiable formula admits a finite model whose size (in
particular the number of domain elements) is at most exponential
in the size of the formula itself.

3.2 Reduction to PDL
Given the specification of a target serviceS0 =

(Σ, S0, s00, δ0, F0) and available servicesSi = (Σ, Si, s0i, δiFi),
for i ∈ {1, . . . , n}, we build a PDL formulaΦ to check for
satisfiability as follows.

As actions inΦ we have the actions of the communityΣ, and
as atomic propositions we have:(i) one atomic propositions for
eachi ∈ {0, 1, . . . , n} and each states of Si, which intuitively
denotes thatSi is in states14; (ii) atomic propositionsFi, for
i ∈ {0, 1, . . . n}, denoting thatSi is in a final state;(iii) atomic
propositionsexecia, for i ∈ {1, . . . n} anda ∈ Σ, denoting thata
will be executed next by the available serviceSi; (iv) one atomic
propositionundef denoting that we reached a situation where the
orchestrator program can be left undefined.

The formulaΦ is formed as follows. For representing the tran-
sitions of the target serviceS0 we construct a formulaφ0 as the
conjunction of:

• s → 〈a〉true ∧ [a]s′, for each transition(s, a, s′) ∈ δ0,
encoding that the target service can do ana-transition going
from states to states′.

• s → [a]undef , for eachs ∈ S0 and actiona such that for no
s′ we have(s, a, s′) ∈ δ0, which takes into account that the
target service cannot perform ana-transition.

For representing the transitions of each available serviceSi, we
construct a formulaφi as the conjunction of:

• s ∧ execia → 〈a〉s′1 ∧ · · · ∧ 〈a〉s′m ∧ [a](s′1 ∨ · · · ∨ s′m),
where{s′1, . . . , s′m} = {s′ | (s, a, s′) ∈ δi}, for eachs ∈
Si and each actiona such that(s, a, s′) ∈ δi for somes′;
these assertions encode that if a serviceSi is in states and
is selected for the execution of an actiona (i.e., execia is
true), then for each possiblea-transition, we have a possible
a-successor in the models ofΦ.

• s ∧ execia → [a]false, for eachs ∈ Si such that for nos′

we have that(s, a, s′) ∈ δi; these denote that if serviceSi is
in states, is selected for the execution ofa, and it cannot do
a, then there is noa-successor in the models ofΦ.

• s ∧ ¬execia → [a]s for each states ∈ Si and each action
a; encoding that if serviceSi is in states and is not selected
for the execution ofa, then ifa is performed (by some other
available service),Si does not change state.

In addition we have the formulaφadd formed as the conjunction
of:

14In this paper we are not concerned with compact representations
of the states ofSi. However, we observe that if states are succinctly
represented (e.g., in binary format) then, in general, we can exploit
in Φ such a representation to get a corresponding compact formula
as well.

• s → ¬s′, for all pairs of statess, s′ ∈ Si, and for i ∈
{0, 1, , . . . , n}; these say that propositions representing dif-
ferent states ofSi are disjoint.

• Fi ↔
W

s∈Fi
s, for i ∈ {0, 1, , . . . , n}; this highlights final

states ofSi.

• undef → [a]undef , for each actiona ∈ Σ; these say that
once a situation is reached whereundef holds, thenundef
holds also in all successor situations.

• ¬undef ∧ 〈a〉true → W
i∈{1,...,n} execia, for eacha ∈ Σ,

denoting that, unlessundef is true, if a is performed, then
at least one of the available services must be selected for the
execution ofa.

• execia → ¬execja for eachi, j ∈ {1, . . . , n}, i 6= j, and
eacha ∈ Σ, stating that only one available service is selected
for the execution ofa.

• F0 →
V

i∈{1,...,n} Fi; this says that when the target service
is in a final state also all available services must be in a final
state.

Finally, we defineΦ asInit ∧ [u](φ0 ∧
V

i∈{1,...,n} φi ∧ φadd),
whereInit stands fors00∧s01∧· · ·∧s0n, and represents the initial
states of all services, andu = (

S
a∈Σ a)∗ is the master modality,

which is used to forceφ0∧
V

i∈{1,...,n} φi∧φadd to be true in every
point of the model. Note thatu is the only complex program that
appears in the PDL formulaΦ. We can now state our main result.

THEOREM 3.4. The PDL formulaΦ, constructed as above, is
satisfiable if and only if there exists an orchestrator program for the
available servicesS1, . . . ,Sn that realizes the target serviceS0.

Proof (sketch). “ If ”: PDL has the tree-model property. Hence,
if Φ is satisfiable then it has a model that is tree shaped. Each
node in this tree can be put in correspondence with a history, and
from the truth value assignment of the propositionsexecia in the
node one can reconstruct the orchestrator program. “Only if”: if an
orchestrator program that realizesS0 exists, one can use it to build
a tree model ofΦ.

Observe that the size ofΦ is polynomially related to
S0,S1, . . . ,Sn. Hence, from the EXPTIME-completeness of sat-
isfiability in PDL and Theorem 3.1 we get:

THEOREM 3.5. Checking the existence of an orchestrator pro-
gram for the available servicesS1, . . . ,Sn that realizes the target
serviceS0 is EXPTIME-complete.

Finally by the finite-model property of PDL, i.e., if a formula is
satisfiable it is satisfiable in a model that is at most exponential in
the size of the formula, we get a systematic procedure for synthe-
sizing the composition:

THEOREM 3.6. If there exists an orchestrator program for the
available servicesS1, . . . ,Sn that realizes the target serviceS0,
then there exists one that requires a finite number of states. More-
over such a finite state program can be extracted from a finite model
of Φ.



4. A POSSIBLE EXTENSION: GUARDED
SERVICES

Our approach to deal with nondeterministic available services
can be extended in several directions. Here we study an extension
based on the introduction of a set ofvariables shared among the
available services and the clientthat encode some basic informa-
tion that is exchanged between the services, and that the client ac-
quires while executing the target service. Observe that by no means
we should think of such variables as a full representation of the
client knowledge; indeed, we assume that much more information
is passed to the client when performing actions and such informa-
tion is used by the client to actually select what action to take next.
Once we introduce shared variables, we can use them to guard tran-
sitions in both the target and the available services. Moreover we
have to model how available services change the values of variables
when executing actions.

Formally, now the community shares, in addition to the common
alphabet of actionsΣ, also a common alphabetV of atomic vari-
ables. Each such a variable can assume values from a finite set∆.
To be more concrete, in our examples we will consider as possi-
ble values “known to be true” denoted bytt , “known to be false”
denoted byff , and “not known”, denoted byuu. We denote byΨ
the set of propositional formulas whose atoms are equalities (in-
terpreted in the obvious way) involving variables and values. We
also denote byΓ the set of (possibly partial) assignments of values
in ∆ to the variables inV. Available services are defined in terms
of finite transition systems as before, except that this time the ac-
tion alphabet used to label the transitions is notΣ, butΨ×Σ× Γ.
That is, now transitions are labeled by an actiona that causes the
transition, a guardg that must hold given the current variable as-
signment in order to perform the transition, and a possibly partial
reassignmentc of the variables inV resulting after the transitions.
We denote such labels as{g}a{c}. We will drop the guardg to
mean thatg = true, and drop the reassignment ifc does not assign
any variable.

EXAMPLE 4.1. Figure 2(a) shows a community of services for
buying selected items with prepaid cards.S1 allows to select and
add the items (at least one) to the cart, and then, if the remain-
ing amount of money in the card is known to be enough (i.e.,
Enough=tt ), the client can buy the item(s), otherwise, if the
money availability is known not to be enough (i.e.,Enough=ff )
or it is unknown (Enough=uu ), the client can choose to either
abort the service or retry the purchase.S2 allows to fill in the
prepaid card: note that the amount of money after the execu-
tion of operationfill is always known to be enough, indepen-
dently of whether, before its execution, it was known to be enough,
known to be not enough or unknown. Finally,S3 allows for check-
ing the amount of money on the prepaid card: if its value is
known to be enough (not enough, resp.), thencheckPP simply re-
turnsEnough=tt (Enough=ff , resp.); if its value is unknown,
then checkPP nondeterministicallyreturns eitherEnough=tt
or Enough=ff .

The client specification now is formed by two components:

• a target service, defined as a deterministic finite transition
system, as before, but where transitions are labeled byΨ×Σ
instead of justΣ, i.e., now actions causing the transitions
are guarded; observe that the notion of determinism can be
slightly changed: there cannot be two transitions with the
same actiona and with guardsg andg′ that are not mutually
exclusive (i.e.,g ∧ g′ = false for every possible assignment
of values in∆ to the variables inV);

• aninitial assignmentVAinit to the variables inV, describing
the circumstances in which the client wants the target service
to work.

EXAMPLE 4.2. Referring to Example 4.1, Figure 2(b) shows
a target serviceS0 specifying that, after selecting and adding the
items to the cart, if the money on the prepaid card is known to be
enough, the client wants to buy them, otherwise, he/she wants to
first fill in the card and then buy the items. The same figure also
shows initial assignment to the single shared variableEnough ,
whose value is initially unknown.

We are ready to define composition. Ahistory is an al-
ternating sequence of the formh = (s0

1, . . . , s
0
n,VA0) · a1 ·

(s1
1, . . . , s

1
n,VA1) · · · a` · (s`

1, . . . s
`
n,VA`) such that the following

constraints hold:

• s0
i = si0 for i ∈ {1, . . . , n}, i.e., all services start in their

initial state, andVA0 is a total assignment of all variables in
V;

• at each step k, (i) for one i we have that
(sk, {g}ak+1{c}, sk+1

i ) ∈ δi with g = true in VAk;
(ii) VAk+1 = VAk; c where VAk; c stands for the as-
signment obtained fromVAk by reassigning the variables
mentioned inc according toc itself; (iii) for all j 6= i we
have thatsk+1

j = sk
j .

An orchestrator programis a functionP : H×Σ → {1, . . . , n, u}
that, given a historyh ∈ H (whereH is the set of all histories de-
fined as above) and an actiona ∈ Σ to perform, returns the service
(actually the service index) that will perform it, or the special value
u (for “undefined”).

Next we define when an orchestrator program is a composition
that realizes the client request. Again, being the target service
deterministic, its behavior is completely characterized by the set
of its traces, this time defined by the set of infinite sequences of
guardedactions that are faithful to its transitions, and of finite se-
quences that in addition lead to a final state. Now, given a trace
t = (g1, a1) · (g2, a2) · · · of the target service, we say that an
orchestrator programP realizes the tracet starting from an ini-
tial variable assignmentVAinit iff for all ` and for all histories in
h ∈ H`

t such thatg`+1 = true in the last variable assignmentVA`
h

of h, we have thatP (h, a`+1) 6= u andH`+1
t is nonempty, where

the setsH`
t are inductively defined as follows:

• H0
t = {(s10, . . . , sn0,VAinit)}

• H`+1
t is the set of all histories such that if

(s`+1
1 , . . . , s`+1

n ,VA`+1), with s`+1
i = s′i, h ∈ H`

t ,
and P (h, a`+1) = i (with i 6= u), then for all
transitions (s`

i , {g}a{c}, s′i) ∈ δi with g = true
in the last variable assignmentVA`

h, the history
h · a`+1 · (s`+1

1 , . . . , s`+1
n ,VA`+1), with s`+1

i = s′i,
s`+1

j = s`
j for j 6= i, andVA`+1 = VA`

h; c is inH`+1
t .

Moreover, as before, if a trace is finite and ends afterf actions,
and all along all its guards are satisfied, we have that all histories
in Hf

t end with all services in a final state. Finally, we say that an
orchestrator programP realizes the target serviceS0 if it realizes
all its traces.

In order to understand the above definitions, let us observe that
intuitively the orchestrator program realizes a trace if, as long as
the guards in the trace are satisfied, it can choose at every step an
available service to perform the requested action. If at a certain
point a guard in the trace is not satisfied by the current variable



s20
S2

fill {Enough=tt}

s20
S2

fill {Enough=tt}

{Enough=ff∨
Enough=uu} abort

add_to_cart
S1 s10s10 s11

add_to_cart

s12

checkout
s13s13

{Enough=tt}
buy

{Enough=ff ∨
Enough=uu} retry

s14s14

s30
S3

{Enough=tt} checkPP
{Enough=tt}

{Enough=ff} checkPP
{Enough=ff}

{Enough=uu} checkPP
{Enough=ff}

{Enough=uu} checkPP
{Enough=ff}

s30
S3

{Enough=tt} checkPP
{Enough=tt}

{Enough=ff} checkPP
{Enough=ff}

{Enough=uu} checkPP
{Enough=ff}

{Enough=uu} checkPP
{Enough=ff}

(a) Available Services

add_to _cart

S0 s00s00 s01

add_to_cart

s03

checkout

s04

s05s05

{Enough=tt}
buy

{Enough= ff} fill

{Enough=tt} buy a

checkPP
s02

VAinit : {Enough=uu} 

(b) Target Service

add_ to_cart,1

P sP0sP0 sP1

add_to_cart,1

sP2

checkout,1

sP4

sP3

checkPP, 3

checkPP, 3

sP5sP5

buy, 1 s13 s20 s30 

{Enough=tt}

s10 s20 s30 

{Enough=uu}
s11 s20 s30 

{Enough=uu}
s11 s20 s30 

{Enough=uu}
s12 s20 s30 

{Enough=tt}

s12 s20 s30

{Enough=ff}

fill,2

(c) Composition

Figure 2: Composition of nondeterministic guarded services

assignment, then we may consider the trace finished (even if not in
a final state). As before, however, since when an available service
executes an action it nondeterministically chooses what transition
to actually perform, the orchestrator program has to require that
for each of the possible resulting states of the activated available
services and resulting variable assignment, the orchestrator is able
to continue with the execution of the next action. Finally, the last
requirement makes sure that available services are left in a final
state, when a finite trace reaches its end with all guards satisfied all
along.

EXAMPLE 4.3. Referring to Examples 4.1 and 4.2, Figure 2(c)
shows an orchestrator programP for the available services in Fig-
ure 2(a) that realizes the target service in Figure 2(b) from the ini-
tial assignment ofVAinit = Enough=ff . In the figure, for each
state ofP , we have represented the current state of the available
services and the assignments toEnough . The orchestrator pro-
gramP can be understood as follows. After delegating toS1 the
operationsadd to cart and checkout , which do not change
the value ofEnough , P delegates the operationcheckPP to S3.
SinceS3 has a nondeterministic behavior, only after its execution
it is known how it changes the value ofEnough . However, the or-
chestrator program has to be coherent withall possible behaviors
of S3. Thus ifEnough=tt P delegatesbuy to S1, otherwise, if
Enough=ff (note thatEnough 6=uu), P first delegatesfill to

S2, and since the operationfill changes the value ofEnough
from ff to tt , it can then finish by delegatingbuy to S1. Note
that different initial assignment toEnough , may lead to different
compositions.

In order to compute an orchestrator program that realizes the tar-
get service we resort again to a reduction to satisfiability in PDL.
We can use the same encoding of the previous section, now suitably
modified to take into account the variable assignment. In particu-
lar, let us denote byVA a propositional encoding of the variable
assignmentVA. Then for representing the transitions of the target
serviceS0 we change the formulaφ0 in Φ as follows:

• s∧VA → 〈a〉true∧ [a]s′, for each transition(s, g, a, s′) ∈
δ0 such thatg is true inVA, encoding that the target service
can do ana-transition, whose guardg is satisfied, going from
states to states′.

• s ∧VA → [a]undef , for eacha such that for nos′ we have
(s, (g, a), s′) ∈ δ0 with g true inVA; this takes into account
that the target service cannot perform ana-transition.

For representing the transitions of each available servicesSi, we
change the formulaφi in Φ as follows:

• s ∧ VA ∧ execia → 〈a〉(s′1 ∧ VA; c1) ∧ · · · ∧ 〈a〉(s′m ∧
VA; cm)∧ [a](s′1 ∧VA; c1 ∨ · · · ∨ s′m ∧VA; cm), where



{(s′1, c1), . . . , (s
′
m, cm)} = {(s′, c) | (s, {g}a{c}, s′) ∈

δi andg = true in VA}, for each variable assignmentVA,
eachs ∈ Si, and each guarded action{g}a{c} such that
(s, {g}a{c}, s′) ∈ δi andg = true in VA; these assertions
encode that if the current variable assignment isVA and a
serviceSi is in states and is selected for the execution of
an actiona (i.e., execia is true), then for each possiblea-
transition with its guard true inVA, we have a possiblea-
successor in the models ofΦ.

• s ∧VA ∧ execia → [a]false for each variable assignment
VA, and eachs ∈ Si such that for nos′, g, andc, we have
that (s, {g}a{c}, s′) ∈ δi with g = true in VA; these de-
note that if the current variable assignment isVA and a ser-
viceSi is in states and is selected for the execution ofa but
it cannot doa, then there is noa-successor in the models of
Φ.

• s ∧ ¬execia → [a]s for each states ∈ Si and each action
a; encoding that if serviceSi is in states and is not selected
for the execution ofa, then ifa is performed (by some other
available service)Si does not change state.

Finally, the formula Φ is as before Init ∧ [u](φ0 ∧V
i∈{1,...,n} φi ∧ φadd), where nowInit stands fors00 ∧ s01 ∧

· · · ∧ s0n ∧VAinit , to take into account the initial situation for the
target service in the client request.

Using the PDL formulaΦ defined as above, we can prove the
analogs of Theorem 3.4 and Theorem 3.6.

THEOREM 4.4. The PDL formulaΦ, constructed as above, is
satisfiable if and only if there exists an orchestrator program for
the available servicesS1, . . . ,Sn that realizes the target service
S0 starting from the initial variable assignmentVAinit .

THEOREM 4.5. If there exists an orchestrator program for the
available servicesS1, . . . ,Sn that realizes the target serviceS0

starting from the initial variable assignmentVAinit , then there ex-
ists one that requires a finite number of states. Moreover such a
finite state program can be extracted from a finite model ofΦ.

Thus we have a systematic method for synthesizing an orchestrator
program forS1, . . . ,Sn that realizes the required targetS0 given
the initial variable assignmentVAinit .

As for computational complexity, we observe thatΦ is polyno-
mial in the size of the target serviceS0, in the size of the available
servicesSi, . . . ,Sn, and in the number of possible variable assign-
ments (and hence exponential in the number of variables inV). So
we can state the following theorem.

THEOREM 4.6. Checking the existence of an orchestrator pro-
gram for the available servicesS1, . . . ,Sn that realizes the target
serviceS0 starting from the initial variable assignmentVAinit can
be done in time exponential in the size ofS1, . . . ,Sn andS0 and
doubly exponential in the number of variables inV.

5. RELATED WORK
In order to discussautomaticservice composition, and compare

different approaches, we introduce here a sort of conceptual frame-
work for “semantic service integration”, that is constituted by the
following elements15:

15Such a framework is inspired by the research on “semantic data
integration” [16, 11, 27]. Obviously that research has dealt with
data (i.e., static aspects) and not with computations (i.e., dynamic

• the community ontology, which represents the common un-
derstanding on an agreed upon reference semantics between
the services16, concerning the meaning of the offered oper-
ations, the semantics of the data flowing through the service
operations, etc;

• the set ofavailable services, which are the actual Web ser-
vices available to the community;

• themappingfor the available services to the community on-
tology, which expresses how services expose their behavior
in terms of the community ontology;

• and theclient service request, to be expressed by using the
community ontology.

To fix the idea, the setting for service composition presented in
this paper can be understood in terms of this framework as follows:

• the community ontology is simple a set of actions, namely
the actions of the community (and the set of shared variables
in the case of guarded services);

• the available services are the actual Web services that have
joined the community;

• the mapping from the available services to the community
ontology is constituted by the transition systems that rep-
resent the available services; note that indeed these are ex-
pressed in terms of the actions of the community (and shared
variables);

• the client service request is the target service, which again
is expressed in terms of the actions of the community (and
shared variables).

In general, the community ontology comprises several aspects:
on one side, it describes the semantics of the information managed
by the services, through appropriate semantic standards and lan-
guages (e.g., OWL and OWL-S17, WSMO 18); on the other side,
it should consider also some specification of the service behaviors,
on possible constraints and dependencies between different service
operations, not limited solely to pre- and post-conditions, but con-
sidering also the process of the service.

In building such a “semantic service integration” system, two
general approaches can be followed.

• In the Service-tailored approach, the community ontology
is built mainly taking into account the available services,
by suitably reconciling them; indeed the available services
are directly mapped as elements of the community ontology,
and the service request is composed by directly applying the
mappings for accessing concrete computations.

aspects) that are of interest in composition of services. Still many
notions and insights developed in that field may have a deep im-
pact in service composition. An example is the distinction that we
make later between “service-tailored” and “client-tailored” service
integration systems, which roughly mimic the distinction between
Global As View (GAV) and Local As View (LAV) in data integra-
tion.

16Note that many scenarios of cooperative information systems,
e.g.,e-Government ore-Business, consider preliminary agreements
on underlying ontologies, yet yielding a high degree of dynamism
and flexibility.

17cfr. http://www.daml.org/services/owl-s/ .
18cfr. http://www.wsmo.org/ .



• Conversely in theClient-tailored one, the community ontol-
ogy is built mainly taking into account the client, indepen-
dently from the services available; they are described (i.e.,
mapped) by using the community ontology, and the service
request is composed by reversing these mappings for access-
ing concrete computations.

Again to fix the idea, it should be quite clear that the setting pre-
sented in this paper adheres to the client-tailored approach.

In fact, much of the research on automatic service composi-
tion has adopted, up to now, a service-tailored approach. For ex-
ample, the works based on Classical Planning in AI (e.g., [29],
[6]) consider services as atomic actions – only I/O behavior is
modeled, and the community ontology is constituted by proposi-
tions/formulas (facts that are known to be true) and actions (which
change the truth-value of the propositions); available services are
mapped into the community ontology as atomic actions with pre-
and post-conditions. In order to render a service as an atomic ac-
tion, the atomic actions, as well as the propositions for pre- and
post-conditions, must be carefully chosen by analyzing the avail-
able services, thus resulting in a service-tailored approach.

Other works (e.g., Papazoglou’s et al. [30], Bouguettaya at
al. [18], Sheth et al. [9, 8]) have essentially considered available
services as atomic actions characterized by the I/O behavior and
possibly effects. But differently from those based on planning,
instead of concentrating on the automatic composition, they have
focused more on on modeling issues and automatic discovery of
services described making use of rich ontologies.

Also the work of McIlraith at al. [17] can be classified as service-
tailored: services are seen as (possibly infinite) transition systems,
the common ontology is a Situation Calculus Theory (therefore is
semantically very rich) and service names, and each service name
in the common ontology is mapped to a service seen as a procedure
in Golog/Congolog Situation Calculus; the client service request is
a Golog/Congolog program having service names as atomic actions
with the understatement that it specifies acceptable sequences of
actions for the client (as in planning) and not a transition system
that the client wants to realize.

Finally, the work by Hull et al. [7, 13] describes a setting where
services are expressed in terms of atomic actions (communications)
that they can perform, and channels that link them with other ser-
vices. The aim of the composition is to refine the behavior of each
service so that the conversations realized by the overall system sat-
isfy a given goal (dynamic property) expressed as a formula in lin-
ear time logic. Although possibly more on choreography synthesis
than on composition synthesis of the form discussed here, we can
still consider it a service-tailored approach, since there is no effort
in hiding the service details from the client that specifies the goal
formula.

Much less research has been done following a client-tailored ap-
proach, but some remarkable exceptions should be mentioned: the
work of Knoblock at al. [19] is basically a data integration ap-
proach, i.e., the community ontology is the global schema of an
integrated data system, the available services which are essentially
data sources whose contents is mapped as views over the global
schema, and the client request is basically a parameterized query
over such a schema; therefore the approach is client-tailored, but
neither the ontology nor mappings consider service behavior at all.

The work of Traverso et al. [26, 22, 21] can be classified also as
client-tailored: services are seen as (finite) transition systems, the
common ontology is a set of atomic actions and propositions, as
in Planning; a service is mapped to the community ontology as a
transition system using the alphabet of the community and defin-
ing how transitions affect the propositions, and the client service

request asks for a sequence of actions to achieveGOAL1 (main
computation), with guarantees that upon failureGOAL2 is reached
(exception handling).

Finally, the line of research taken in [3, 4, 5], but also in [10],
and in the present paper, has the dynamic behavior of services at
the center of its investigation. In order to study the impact of such
dynamics on automatic composition, all these works make simpli-
fying assumptions on the community ontology, which essentially
becomes an alphabet of actions. Still, as discussed above, the no-
tion of community ontology is present, and in fact all these works
adopt a client-tailored approach.

A fundamental issue that arises is: if such rich descriptions of
the dynamic behavior of the services can be combined with rich
(non propositional) descriptions of the information exchanged by
the services, while keeping automatic composition feasible. The
first results on this issue are reported in [2], where available ser-
vices that operate on shared world description (in a form of a
database) are considered. Such services can either operate on the
world through some atomic processes as in OWL-S, or exchange
information through messages. While the available services them-
selves are with finite states, the world description is not. Under
suitable assumptions on how the world can be queried and mod-
ified, decidability of service composition is shown. Interestingly
[2] shows that even if the available services can be modeled as de-
terministic transition systems, the presence of a world description
whose state is not known at composition time, requires dealing with
nondeterminism of the same form we have studied here.

Figure 3 summarizes, on the basis of the previous discussion, the
considered works. The three axis represent the levels of detail ac-
cording to which the community ontology and the mappings and
the client request can be modeled. Namely,(i) statics in the system
represents how fine grained is the modeling of the static semantics
(i.e., ontologies of data and/or services, inputs and outputs, alpha-
bet of actions, etc.);(ii) dynamics in component servicesrepresents
how fine grained is the modeling of the processes and behavioral
features of the services (only atomic actions, transition systems,
etc.); and(iii) dynamics in client service requestrepresents how
fine grained is the modeling of the process required by the client,
varying from a single step (as in the case of services consisting es-
sentially in a single data query over a data integration system) to a
(set of) sequential steps, to a (set of) conditional steps, to including
loops, up to running under the full control of the client (as in our
approach). Black/white lollipopsrepresent service-based (white)
vs. client-based (black) approaches.

6. CONCLUSION
In this paper we studied how to synthesize a composition to real-

ize a client service request expressed as a target service, in the case
where available services are only partially controllable (modeled
as devilish nondeterminism) but fully observable by the orchestra-
tor. We have shown that the problem is EXPTIME-complete and
we have given effective techniques to address the problem based
on PDL satisfiability. Our results extend those in [3, 4] where only
deterministic available services where considered. Although not
shown here, all the results in this paper can be easily extended to
the case where the client request is expressed as a nondeterministic
transition system as in [4]. Note that in this case the nondetermin-
ism has adon’t-care, akaangelic, nature: the client does not require
to fully specify the target service he/she requires, instead he allows
some degree of freedom to the composer in providing him/her with
one, by choosing which one among the nondeterministic transitions
to actually implement. Such a form of nondeterminism can be still
tackled through a reduction to satisfiability in PDL.



Papazoglouet 
al. *
Papazoglouet 
al. *

McIlraithet a
l.

Staticsin t
he system

Dynamics in component services
Knoblocket al
.
Knoblocket al
.

* do not tackleautomatic composition

+

+- --
Composition as
 (classical) 
Planning +

Bouguettaya et al. *
Shethet al. *Shethet al. *

Traversoet a
l. Berardiet al.

 
Hull et al. Berardiet al.

 + Hull

Dynamics in client service reque
st

Figure 3: Comparison of the various approaches to automatic
service composition

It should be noted that our approach, in which the orchestrator at
each step sends an execution request to available services and these
then send back to the orchestrator their states, is a form of control
that is communication intensive19. In fact, if communication is of
concern, our model is too coarse. Indeed we should distinguish
between actions that affect the state of affairs and messages for
sending (either contents or control) information. Suggestions on
tackling such a distinction are presented in [2].

Finally, we want to stress that composition, especially in rich dy-
namic settings as those studied in this paper, is essentially a form of
(reactive) program synthesis, and tight relationships exist with the
literature on that field [23, 25, 28]. Although that literature often
does not offer off-the-shelf results for composition, it certainly of-
fers techniques and general approaches that can be profitably used
to tackle subtle issues, as, for example, partial observability [15],
which becomes an issue when the distinction between actions and
messages is taken into account: effects of actions are not observed
directly, but only communicated through messages.

7. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web

Services. Concepts, Architectures and Applications.
Springer, 2004.

[2] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and
M. Mecella. Automatic composition of transition-based
semantic web services with messaging. InProc. VLDB 2005.

[3] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-Services that export
their behavior. InProc. of ICSOC 2003.

[4] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Synthesis of underspecified composite
e-Services based on automated reasoning. InProc. of
ICSOC 2004.

[5] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic service composition based on
behavioural descriptions.International Journal of
Cooperative Information Systems, 14(4):333–376, 2005.

19Actually we had essentially the same amount of control commu-
nication in [3, 4]: indeed even if states were not sent back to the
orchestrator, at least some feedback for signaling the readiness to
accept further commands should have been sent back.

[6] J. Blythe and J. Ambite, editors.Proc. ICAPS 2004
Workshop on Planning and Scheduling for Web and Grid
Services, 2004.

[7] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: a new approach to design and analysis of
e-service composition. InProc. of WWW 2003.

[8] J. Cardose and A. Sheth. Introduction to semantic web
services and web process composition. InProc. 1st
International Workshop on Semantic Web Services and Web
Process Composition (SWSWPC 2004).

[9] F. Curbera, A. Sheth, and K. Verma. Services oriented
architecture and semantic web processes. InProc. ICWS
2004.

[10] C. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated
composition of e-services: Lookaheads. InProc. ICSOC
2004.

[11] A. Y. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4):270–294, 2001.

[12] D. Harel, D. Kozen, and J. Tiuryn.Dynamic Logic. The MIT
Press, 2000.

[13] R. Hull, M. Benedikt, V. Christophides, and J. Su.
E-services: a look behind the curtain. InProc. of
PODS 2003, pages 1–14, 2003.

[14] O. Kupferman and M. Y. Vardi. Safraless decision
procedures. InProc. of FOCS 2005.

[15] O. Kupferman and M. Y. Vardi. Synthesis with incomplete
information. InProc. ICTL 1997.

[16] M. Lenzerini. Data integration: A theoretical perspective. In
Proc. of PODS 2002, pages 233–246, 2002.

[17] S. McIlraith and T. Son. Adapting golog for composition of
semantic web services. InProc. KR 2002.

[18] B. Medjahed, A. Bouguettaya, and A. Elmagarmid.
Composing web services on the semantic web.Very Large
Data Base Journal, 12(4):333351, 2003.

[19] M. Michalowski, J. Ambite, S. Thakkar, R. Tuchinda,
C. Knoblock, and S. Minton. Retrieving and semantically
integrating heterogeneous data from the web.IEEE
Intelligent Systems, 19(3):72–79, 2004.

[20] A. Muscholl and I. Walukiewicz. A lower bound on web
services composition. Submitted, 2005.

[21] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso.
Automated composition of web services by planning at the
knowledge level. InProc. of IJCAI 2005, 2005.

[22] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi.
Automated synthesis of composite bpel4ws web services. In
Proc. of ICWS 2005, 2005.

[23] A. Pnueli and R. Rosner. On the synthesis of a reactive
module. InProc. of POPL’89, pages 179–190, 1989.

[24] J. Rintanen. Complexity of planning with partial
observability. InProc. of the 14th Int. Conf. on Automated
Planning and Scheduling (ICAPS 2004), pages 345–354,
2004.

[25] W. Thomas. Infinite games and verification. InProc. of CAV
02.

[26] P. Traverso and M. Pistore. Automated composition of
semantic web services into executable processes. InProc.
ISWC 2004.

[27] J. D. Ullman. Information integration using logical views.
Theoretical Computer Science, 239(2):189–210, 2000.

[28] M. Y. Vardi. An automata-theoretic approach to fair
realizability and synthesis. InProc. of CAV 1995.



[29] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating daml-s web services composition using shop2.
In Proc. ISWC 2003.

[30] J. Yang and M. Papazoglou. Service components for
managing the life-cycle of service compositions.Information
Systems, 29(2):97–125, 2004.


