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ABSTRACT

The promise of Web Service Computing is to utilize Web ser-
vices as fundamental elements for realizing distributed applica-
tions/solutions. In particular, when no available service can sat-
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service, by using standard (XML-based) languages and protocols
(e.g., WSDL, SOAP, etc.) - see e.g., [1].

The promise of Web service is to enable the composition of new
distributed applications/solutions: when no available service can

isfy client request, (parts of) available services can be composedsatisry a client request, (parts of) available services can be com-

and orchestrated in order to satisfy such a request. In this paper
we address the automatic composition when the behavior of the
available services is nhondeterministic, and hence it is not fully con-
trollable by an orchestrator. The service behavior is modeled by

the possible conversations the service can have with its clients. The
presence of nondeterministic conversations stems naturally when

modeling services in which the result of each interaction with its

client can not be foreseen. The behavior of the component services

is thus only partially controllable, and an orchestrator needs to cope
with such partial controllability. We propose an automatic compo-

sition synthesis technique, based on reduction to satisfiability in
Propositional Dynamic Logic, that is sound, complete and decid-

able. Moreover, we will characterize the computational complexity

of the problem and show that the proposed technique is optimal wrt
computational complexity.

Categories and Subject Descriptors

D.2.2 [Software Engineerind: Design Tools and Techniques—
State diagramsD.2.4 [Software Engineering: Software/Program
Verification—Formal methods F.3.1 [Logics and Meaning of
Programs]: Specifying and Verifying and Reasoning about Pro-
grams—togics of programs
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1. INTRODUCTION

Web services (also called simply services) are self-describing,
platform-agnostic computational elements that support rapid, low-
cost and easy composition of loosely coupled distributed appli-
cations. From a technical standpoint, Web services are modu-
lar applications that can be described, published, located, invoked
and composed over a variety of networks (including the Internet):
any piece of code and any application component deployed on a

system can be wrapped and transformed into a network-available,

Univ. Roma “La Sapienza”, Dipartimento di Informatica e Sistemistica.
Technical Report 05-2006.

posed and orchestrated in order to satisfy such a request. Note that

'service composition involves two different issues [1]: $yathesis

in order to synthesize, either manually or automatically, a specifica-
tion of how coordinating the component services to fulfill the client
request, and therchestrationi.e., how executing the previous ob-
tained specification by suitably supervising and monitoring both
the control flow and the data flow among the involved services.
In this paper, we address the automatic composition synthesis
when the behavior of the available services is nondeterministic,
and hence is not fully controllable by the orchestrator. The ser-
vice behavior is modeled by the possible conversations the service
can have with its clients. The presence of nondeterministic conver-
sations stems naturally when modeling services in which the result
of each interaction with its client on the state of the service can not
be foreseen. Let us consider as an example, a service that allows
buying items by credit card; after invoking the operation, the ser-
vice can be in a stafgayment _OK accepting the payment, or in a
different statepayment _refused , if the credit card is not valid,
with not enough credit, etc. Note that the client of a nondetermin-
istic service can invoke the operation but cannot control what is the
result of it. In other words, the behavior of the service is partially
controllable, and the orchestrator needs to cope with such partial
controllability. Note also that if one observes the status in which
the service is after an operation, then s/he understand which tran-
sition, among those nondeterministically possible in the previous
state, has been undertaken by the service. We assume that the or-
chestrator can indeed observe states of the available services and
take advantage of this in choosing how to continue a certain‘task
From a formal point of view, in this paper, we adhere to the set-
ting proposed in [3, 4, 5] whose distinguished features can be sum-
marized as follows.

e The available services are grouped together into a so call
community

e Services in the community share a common set of acigns
theactions of the communityn other words, each available

1The reader should observe that also the standard proposal WSDL

.0 has a similar point of view: the same operation can have multi-
ple output messages (tbet message and variouutfault
messages ), and the client observe how the service behaved only
after receiving a specific output message.



service in the community exports its behavior to the commu- details. In Section 3 we develop the techniques to perform auto-
nity itself in terms of the actions iR (the actions recognized = matic composition, we show soundness and completeness and we
be the community). characterize the complexity of both the techniques and the problem.
In Section 4 we study an extension of the setting where transitions
e Each action inX denotes a (possibly complex) interaction in the available services and in the target service can be guarded
between the a service and a client, and as a result of suchpy conditions on some shared variables. The main objective of this
interaction the client may acquire new information (not nec- extension is to show that the techniques proposed in Section 3 are
essarily modeled explicitly) that may be of help in choosing  actually quite resistant to significant variation of the setting (for an-
the next action to perform. other example see [2]). In Section 5 we discuss some related work.

) ) o ) ) Finally, in Section 6 we draw some conclusions.
e The behavior of each available service is described in terms

of a finite transition systenfaka finite state machine) that
makes use of the actions i Since in this paper we assume 2. SERVICES WITH PARTIALLY CON-
that the behavior of the available services is nondeterminis- TROLLABLE BEHAVIOR

tic, differently form [3, 4, 5], such a transition system are |n this section, we formalize composition when the services that
nondeterministic in general. are available in the community have a behavior that is not fully
controllable by the orchestrator.

Formally, we consider eadivailable serviceas anondetermin-
istic” finite transition systens = (3, S, so, 6, F') whereX is the
common alphabet of actions of the communityis a finite set of
statesso € S is the single initial statej C S x ¥ x S'is the tran-
sition relatiof, andF' C S is the set of final states, that is, states in
which the computation may stop, but does not necessarily have to.

The client service request is expressed &sget servicewhich
represents the service the client would like to interact with. Such
a service is again modeled as a finite transition system over the
alphabet of the community, but this timedaterministicone, i.e.,
the transition relation is actually functional (there cannot be two
e The composition synthesisonsists on synthesizing a pro- distinct transitipns with tlh.e same starting state and action). T'he

gram for the orchestrator such that by suitably scheduling target service is deterministic because we assume that the _cllent

the available services it can provide the target service to the has full control on how to execute the service that he/she requires
client.

e The clientrequest itself is expressed as a finite transition sys-
tem that makes use of the action2inSuch a transition sys-
tem, calledtarget serviceis deterministic as in [3, 5], since
we assume that there is no uncertainty on the behavior that
the client want to realize through composition of the avail-
able services.

e The orchestrator has the ability of scheduling services on
a step-by-stefpasis. Hence the orchestrator has the ability
of controlling the interleavingf multiple services executed
concurrently.

ExamPLE 2.1. Figure 1(a) shows a community of services for

The contribution of this paper is to devise a formal technique to getting information on books. The community includes two ser-
perform automatic composition synthesis, when available servicesvices: Si that allows one to repeatedif) search the ISBN of a
are nondeterministic and hence partially controllable by the orches- book given its titlegearch ) then,(ii) in certain cases (e.g., if the
trator. We will show that the technique proposed is sound, complete record with cataloging data is currently accessible), it allows for
and terminating. Moreover we will characterize the computational displaying the cataloging data (such as editor information, year of
complexity of the problem and show that the proposed technique is publication, authors, copyrights, etc.) of the book with the selected
optimal wrt (worst-case) computational complexity. ISBN (isplay ), or (iii) simply returns without displaying infor-

Typically reactive process synthesis [23, 15] make use of tech- mation ¢eturn ); S- allows for repeatedly displaying cataloging
niques based on automata on infinite trees. And even if these aredata of books given the ISBMigplay ), without allowing re-
perfectly suitable from a theoretical point of view, there are critical Searches. Figure 1(b) shows the target sendgethe client wants
steps, such a Safra’s construction for complementation, that haveto have a service that allows him to search for a book ISBN given its
resisted efficient implementation for a long time. Only very re- title (search ), and then display its cataloging datdi¢play ).
cently, we are starting to understand how to avoid such steps — sed\ote that the client wants to display the cataloging data in any case

[14] for a discussion. and hence he/she can neither directly expfitnor Ss.

Interestingly the technique proposed here is based on reduction
to satisfiability in Propositional Dynamic Logic (PDL) [12] with a Next, we need to clarify which are the basic capabilities of the
limited use of the reflexive-transitive-closure operatdiow, PDL orchestrator. The orchestrator has the ability of selecting’asfe

satisfiability shares the same basic algorithms behind the succesghe available services and instructing it to execute an action among
of the description |0gics_based reasoning Systems used forSOWL those available in its current state. FUrthermore, the orchestrator
such as FaCT Racer, Pellef, and hence its applicability in the ~ has the ability of keeping track (at runtime) of the current state of

context of composition synthesis.appears to be quite pro”.“ismg- "Note that this kind of nondeterminism is ofdevilish nature, so
~ The rest of the paper is organized as follows. In Section 2 we 5 19 capture the idea that the orchestrator cannot fully control the
first introduce the setting and the composition problem in formal ayvailable services.

s .
. - o As usual, we call th& component of such triples, thabel of the
2As in [3, 5], but more sophisticated this time in order to correctly transition P ples,

deal with nondeterministic behavior of the available services.
Shttp:/iww.omg.org/uml/

%In fact we could have a client request that is expressed as a non-
deterministic transition system as in [4]. In this case, however, the

‘s‘http://www.cs.man.ac.uthorrocks/FaCT/ nondeterminism hasdon’t-carg akaangelicnature.
http://www.sts.tu-harburg.de/"r.f. moeller/ OFor simplicity, we assume that the orchestrator selects only one
racer/ service at each step, however our approach and results easily extend

®http:/www.mindswap.org/2003/pellet/ to the case where more services can be selected at each step.
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Figure 1: Composition of nondeterministic services

each available service. Technically such a capability is cdliéd a function may also return a special valuéor “undefined”). This
observabilityon the states of the available services. Although other is a technical convenience to maRea total function returning val-
choices are possible [26, 2], full observability is the natural choice ues even for histories that are not of interest or for actions that no
in this context, since the transition system that each available ser-service can perform after a given history.
vice exposes to the community is specific to the community itself ~ Next, we define when an orchestrator program is a composition
(indeed it is expressed using the common alphabet of actions of thethat realizes the target services. First, we observe that, since the
community), and hence there is no reason to make its states partarget service is a deterministic transition system, its behavior is
tially unobservable: if details have to be hidden, this can be done completely characterized by the set of its traces, i.e., by the set of
directly within the transition system, possibly making use of non- infinite sequences of actions that are faithful to its transitions, and
determinism. of finite sequences that in addition lead to a final $tafdow, given

We are now ready to define composition synthesis: an “or- atrace = a;-as - -- of the target service, we say thatechestra-
chestrator program?® that the orchestrator has to execute in or- tor programP realizes the trace iff for each non-negative integer
der to orchestrate the available services in order to offer the tar- £ and for each history € HY, we have thaiP(h, asy 1) # w and

get service to the client. Let the available serviceSe. .., S, H:+! is nonempty, where the set¢! are inductively defined as
each withS; = (X, S;, sio, di, F3), and the target servic§, = follows:

(2, So, so0, 90, Fo). A history is an alternating sequence of the

formh = (s9,...,5%)-a" - (s1,...,85)---a’-(s%,...,s%) such o H{ ={(s10,--,5n0)}

that the following constraints hold: 041 o ) .
e H,"" is the set of all histories such that, if € H; and
o 50 = s;0fori € {1,...,n}, i.e, all services start in their P(h,aer1) = ¢ (with ¢ # ), then for all transitions
initial state; (s¢,a, ;) € 6; the historyh - agyq - (s571,...,s5F), with
st =), ands{ Tt = s for j # 4, isinH{ T
e at each stepk, for onei we have thal(s’“,a’““,:f“) € !

d;, while for all j # 4 we have thatstr1 = sj, ie, at Moreover, if a trace is finite and ends afieactions, we have that

each step of the history, only one of the service has made all histories inH[ end with all services in a final state. Finally, we
a transition (according to its transition relation), while the say that arorchestrator programP realizes the target servic§y,

other ones have remained still. if it realizes all its traces.
) ) In order to understand the above definitions, let us observe that
An orchestrator progranis a functionP : Hx % — {1,...,n,u} intuitively the orchestrator program realizes a trace if it can choose

that, given a history, € H (whereH is the set of all histories de-
fined as above) and an actiare ¥ to perform, returns the service  '?Actually, the behavior captured by a transition system is typically
(actually the service index) that will perform it. Observe that such identified with its execution tree, see [3]. However, since the target
service has a deterministic transition system, the set of traces is
HIn fact, this is a skeleton specification of the actual program for sufficient, since one can immediately reconstruct the execution tree
the orchestrator. from it.




at every step an available service to perform the requested action.propositions and a sét of atomic actions as follows:
However, since when an available service executes an action it non- ,
deterministically chooses what transition to actually perform, the ¢ — Pl2¢|ding:| V| d—g |
orchestrator program has to play on the safe side and require that (r}¢ | [r]¢ | true | false
for each of the possible resulting states of the activated service, the — a | rUn [rigr [ 7] @7
orchestrator is able to continue with the execution of the next ac- where P is an atomic proposition ifP, r is a regular expression
tion. In addition, before ending a computation, available services over the set of actions i, anda is an atomic action iit.. That is,
need to be left in a final state, hence we have the additional require-PDL formulas are composed from atomic propositions by applying
ment above for finite traces. arbitrary propositional connectives, and modal operagey$é and
[r]¢. The meaning of the modal operators is, respectively, that there

EXAMPLE 2.2. Referring to Example 2.1, Figure 1(c) shows an exists an execution of reaching a state whegeholds, and that all
orchestrator progranP (in this case with finite states) for available  terminating executions of reach a state wherg holds. As far as
servicesS; and S in Figure 1(a), that realizes the target service programsr; Ur2 means “choose non deterministically between
So in Figure 1(b). EssentiallyP behaves as follows: it repeatedly — andr2”; ri; 72 means “first execute, then execute,”; »* means
delegates taS; the actionsearch (notice that both transitions “executer a non deterministically chosen number of times (zero or
labeled with this actions are delegated &); then it checks the ~ more)”; 7 means “tesp: if it is true proceed else fail”.
resulting state ofS; and, depending on this state, it delegates the ~ Among the programg/U.csa)*, abbreviated aa, has a special
actiondisplay to eitherS; or Ss. importance:[u] represents theaster modalitywhich can be used

to state universal assertions. Indeedis defined as the reflexive

Observe that, in general, an orchestrator program could requireand transitive union of all actions i and represents the iteration
infinite states. However, we will show next that if an orchestrator Of @ nondeterministic choice among all the possible atomic pro-
program that realizes the target service exists, then there exists ondrams [12].
with finite states. Note that, even if it has finite states, the orches- The semantics of PDL formulas is based on the notion of
trator program has to observe the states of the available services<ripke structure. A Kripke structure is a triple of the fortn =
in order to decide which service to select next (for a given action (A%, {a” }aes, {P*}rer), whereA” denotes a non-empty set of

requested by the target service). This makes such orchestrator prostates (%'SO cIaIIed worlds)a” }aes isIa family of binary relations
grams akin to an advanced form of conditional plans studied in ¢~ € A™ <A~ between elements &, each of which denotes the

Al [24]. state transitions caused by the atomic prognalamd{PI}pep is
a family of unary relation®? C AZ each of which denotes the el-
ements ofAZ were the propositiot? is true. The semantic relation
3. COMPOSITION SYNTHESIS WITH “a formula¢ holds at a state of a structureZ”, written Z, s = ¢,
PARTIAL CONTROLLABILITY is defined by induction on the form g

In this section, we study how to check for the existence of an 7 ¢ = true always
orchestrator program that realizes the target service, and actually 7, s = false  never

computing it. We start by some preliminary considerations on the 7 =P iff se Pt
computational complexity that we should expect. Muscholl and I,sk=-¢ iff Z,s o
Walukiewicz in [20] proved the following lowerbound. T,s=¢1 Ao iff T,s5=¢1andZ, s = ¢
I,sEp1 Vo iff Z,sE¢i10rZ, sk ¢
THEOREM3.1 (MUSCHOLL&WALUKIEWICZ 2005). I,sE¢— ¢ iff I,skE¢impliesZ, s ¢
Checking the existence of an orchestrator program for avail- 7 s = (r)¢ iff existss’'s.t.(s,s') € rf andZ,s' = ¢
able servicesS:,...,S, that realizes a target service, is T,s = [r]é iff forall s, (s,s") € rZ impliesZ, s’ E ¢

EXPTIME-hard®.
where the family{a”},cx is systematically extended so as to in-
So we should expect that checking the existence of a composi- clude, for every program, the corresponding functior” defined
tion is at least exponential time. Here we show that actually the by induction on the form of:
problem is EXPTIME-complete, by resorting to a reduction to sat- T AT « AT

L . X X a”

isfiability in Propositional Dynamic Logic (PDL). Moreover, such (r U )T _ PZurl
a reduction can be exploited to generate the actual orchestrator pro- (Tl. , )21 _ le. 7;2
gram realizing the composition, which is finite. In doing this, we (Ti’)f B (;I’)f

extend the approach in [3, 4, 5] to deal with nondeterministic avail- T T T
able services. Dealing with such nondeterminism requires solving (¢7) = {(s,5) € A" x AT [ T, s = ¢}
same subtle points that reflect the sophisticated notion of orchestra-a structurez = (AZ, {a%}acs, {P%}perp) is called amodelof
tor program needed for that. a formulag if there exists a state € AZ such thatZ, s = ¢. A
. . . formula ¢ is satisfiableif there exists a model af, otherwise the

3.1 Propositional Dynamic Logic formula isunsatisfiable

Next two theorems give us the complexity characterization of

Propositional Dynamic Logic (PDL) is a modal logic specifically  satisfiability in PDL.
developed for reasoning about computer programs [12]. Syntacti-

cally, PDL formulas are built by starting from a sBtof atomic THEOREM3.2 (ASHER&L ADNER 1977). Satisfiability in
PDL is EXPTIME-hard.

1311 fact Muscholl and Walukiewicz show EXPTIME-hardness for o ) )
the simpler setting, studied in [3, 5], where all available services =~ THEOREM3.3 (PRATT 1978). Satisfiability in PDL is
are deterministic [20]. EXPTIME-complete.



PDL enjoys two properties that are of particular interest [12],
which we exploit in our composition technique. The first is the
tree model propertywhich says that every model of a formula can
be unwound to a (possibly infinite) tree-shaped model (considering
domain elements as nodes and partial functions interpreting actions
as edges). The second is thmall model propertywhich says
that every satisfiable formula admits a finite model whose size (in
particular the number of domain elements) is at most exponential
in the size of the formula itself.

3.2 Reduction to PDL

Given the specification of a target servic&, =
(E, So7 S00, (507 Fo) and available serviceSi = (27 Si, S0i, 61Fz)|
for i € {1,...,n}, we build a PDL formula® to check for
satisfiability as follows.

As actions in® we have the actions of the communify; and
as atomic propositions we hav@) one atomic propositios for
eachi € {0,1,...,n} and each state of S;, which intuitively
denotes thatS; is in states'; (i) atomic propositionsF;, for
1 € {0,1,...n}, denoting thatS; is in a final state{iii) atomic
propositionsezec;q, fori € {1,...n} anda € 3, denoting that
will be executed next by the available serviSg (iv) one atomic
propositionundef denoting that we reached a situation where the
orchestrator program can be left undefined.

The formula® is formed as follows. For representing the tran-
sitions of the target servic§, we construct a formula, as the
conjunction of:

e s — (a)true A [a]s’, for each transition(s,a,s’) € do,
encoding that the target service can dazatnansition going

Finally, we define® asInit A [u](¢o A
wherelnit stands fosoo A so1 A
states of all services, ang/= (
which is used to forcey A
point of the model. Note that is the only complex program that

s — —s', for all pairs of statess, s’ € S;, and fori ¢

{0,1,,...,n},; these say that propositions representing dif-
ferent states of; are disjoint.

w . T .
Fi < p s forie{0,1,,...,n}; this highlights final
states ofS;.

undef — [a]undef, for each actioru € 3; these say that
once a situation is reached wheredef holds, thenundef
holds also in all successor situations.

—undef A (a)true — ie{1,...,n} ET€Cia, for eacha € %,
denoting that, unlessndef is true, if a is performed, then

at least one of the available services must be selected for the
execution ofa.

exec;a — —execj, for eachi,j € {1,...,n},7 # j, and
eachs € X, stating that only one available service is selected
for the execution of.

Vv
Fo— FZ, this says that when the target service
isina flnal state also all available services must be in a final
state.

Vv
ie{l,.. ¢z N ¢’add)
-ASon, and represents the initial
a)™ is the master modality,
gz&z Adadd to be true in every

a€Xx
ic{1,..

from states to states’.

e s — [a]undef, for eachs € Sy and actioru such that for no
s’ we have(s, a, s") € do, which takes into account that the
target service cannot perform artransition.

For representing the transitions of each available sewicave
construct a formula; as the conjunction of:

o s A execia — (a)sy A - A{a)sy, Ala](sh V-V sh),
where{s},...,s0,} = {s' | (s,a,s") € &;}, for eachs ¢
S; and each action such that(s, a, s’) € §; for somes’;
these assertions encode that if a senéi¢gés in states and
is selected for the execution of an actiar(i.e., exec;q IS
true), then for each possibdetransition, we have a possible
a-successor in the models &f

e s A exwec;, — [a]false, for eachs € S; such that for nos’
we have thats, a, s") € d;; these denote that if servic® is
in states, is selected for the execution af and it cannot do
a, then there is na-successor in the models &f

e s A\ —exec;, — [a]s for each state € S; and each action
a; encoding that if servicé; is in states and is not selected
for the execution of, then ifa is performed (by some other
available service)S; does not change state.

In addition we have the formula, .4 formed as the conjunction

1%In this paper we are not concerned with compact representationsayailable servicesS;
of the states of;. However, we observe that if states are succinctly ;
represented (e.g., in blnary format) then, in general, we can exploit
in ® such a representation to get a correspondlng compact formula
as well.

appears in the PDL formuld. We can now state our main result.

THEOREM 3.4. The PDL formula®, constructed as above, is
satisfiable if and only if there exists an orchestrator program for the
available servicess,, . .., S, that realizes the target servicg.

Proof (sketch).“If": PDL has the tree-model property. Hence,
if ® is satisfiable then it has a model that is tree shaped. Each
node in this tree can be put in correspondence with a history, and
from the truth value assignment of the propositiensc;, in the
node one can reconstruct the orchestrator progra@nly'if”: if an
orchestrator program that realiz8s exists, one can use it to build
a tree model ofb. (|

Observe that the size ofb is polynomially related to
So,81, ..., Sn. Hence, from the EXPTIME-completeness of sat-
isfiability in PDL and Theorem 3.1 we get:

THEOREM 3.5. Checking the existence of an orchestrator pro-
gram for the available serviceS;, . .., S, that realizes the target
serviceS, is EXPTIME-complete.

Finally by the finite-model property of PDL, i.e., if a formula is
satisfiable it is satisfiable in a model that is at most exponential in
the size of the formula, we get a systematic procedure for synthe-
sizing the composition:

THEOREM 3.6. If there exists an orchestrator program for the

., S, that realizes the target servicgy,

then there exists one that requires a finite number of states. More-
over such a finite state program can be extracted from a finite model



4. A POSSIBLE EXTENSION: GUARDED
SERVICES

Our approach to deal with nondeterministic available services

e aninitial assignmentVA,,;; to the variables inV’, describing
the circumstances in which the client wants the target service
to work.

can be extended in several directions. Here we study an extension gxampLE 4.2. Referring to Example 4.1, Figure 2(b) shows

based on the introduction of a set\wriables shared among the
available services and the cliettiat encode some basic informa-

a target serviceS, specifying that, after selecting and adding the
items to the cart, if the money on the prepaid card is known to be

tion that is eXChanged betWeen the SerViceS, and that the Client aC'enough’ the C“ent wants to buy them, Otherwise’ he/she wants to
quires while executing the target service. Observe that by no meansfirst fill in the card and then buy the items. The same figure also

we should think of such variables as a full representation of the
client knowledge; indeed, we assume that much more information
is passed to the client when performing actions and such informa-
tion is used by the client to actually select what action to take next.

Once we introduce shared variables, we can use them to guard tranternating sequence of the fordn = (s?,.

sitions in both the target and the available services. Moreover we

shows initial assignment to the single shared variaBlough,
whose value is initially unknown.

We are ready to define composition. Wistory is an al-

.80 VAY) . all-
(s1,...,s5, VA ---a®-(s%, ... s%, VA®) such that the following

have to model how available services change the values of variablesconstraints hold:

when executing actions.

Formally, now the community shares, in addition to the common
alphabet of action&, also a common alphabgt of atomic vari-
ables. Each such a variable can assume values from a finite. set
To be more concrete, in our examples we will consider as possi-
ble values “known to be true” denoted b; “known to be false”
denoted byff, and “not known”, denoted byu. We denote byl
the set of propositional formulas whose atoms are equalities (in-
terpreted in the obvious way) involving variables and values. We
also denote by the set of (possibly partial) assignments of values
in A to the variables iV, Available services are defined in terms
of finite transition systems as before, except that this time the ac-
tion alphabet used to label the transitions isBpbut ¥ x X x T'.
That is, now transitions are labeled by an actiothat causes the
transition, a guarg that must hold given the current variable as-
signment in order to perform the transition, and a possibly partial
reassignment of the variables irV’ resulting after the transitions.
We denote such labels dg}a{c}. We will drop the guard; to
mean thay = true, and drop the reassignmentifioes not assign
any variable.

ExampPLE 4.1. Figure 2(a) shows a community of services for
buying selected items with prepaid cards, allows to select and
add the items (at least one) to the cart, and then, if the remain-
ing amount of money in the card is known to be enough (i.e.,
Enough=tt ), the client can buy the item(s), otherwise, if the
money availability is known not to be enough (iEEnough=ff )
or it is unknown Enough=uu ), the client can choose to either
abort the service or retry the purchaseS. allows to fill in the
prepaid card: note that the amount of money after the execu-
tion of operationfill  is always known to be enough, indepen-
dently of whether, before its execution, it was known to be enough,
known to be not enough or unknown. Finalfi, allows for check-
ing the amount of money on the prepaid card: if its value is
known to be enough (not enough, resp.), thieeckPP simply re-
turns Enough=tt (Enough=ff , resp.); if its value is unknown,
then checkPP nondeterministicallyreturns eitherEnough=tt
or Enough=ff

The client specification now is formed by two components:

e a target service, defined as a deterministic finite transition
system, as before, but where transitions are labeled khy:
instead of just:, i.e., now actions causing the transitions
are guarded; observe that the notion of determinism can be
slightly changed: there cannot be two transitions with the
same actiom, and with guardg andg’ that are not mutually
exclusive (i.e.g A ¢’ = false for every possible assignment
of values inA to the variables iV);

o s) = s;0fori € {1,...,n}, i.e., all services start in their
initial state, andVA° is a total assignment of all variables in
V;

at each stepk, (i) for one i we have that
(s" {gya" T {c},s*T) € 6 with g = true in VAF;
(i) vAk+! VAF: ¢ where VA*; ¢ stands for the as-
signment obtained froni’A* by reassigning the variables
mentioned inc according toc itself; (iii) for all j # i we
have thats} ™" = s¥.

An orchestrator progranis a functionP : Hx % — {1,...,n,u}
that, given a history. € H (whereH is the set of all histories de-
fined as above) and an actiare X to perform, returns the service
(actually the service index) that will perform it, or the special value
u (for “undefined”).

Next we define when an orchestrator program is a composition
that realizes the client request. Again, being the target service
deterministic, its behavior is completely characterized by the set
of its traces, this time defined by the set of infinite sequences of
guardedactions that are faithful to its transitions, and of finite se-
guences that in addition lead to a final state. Now, given a trace
t = (¢*,a1) - (¢%,a2)--- of the target service, we say that an
orchestrator programP realizes the trace starting from an ini-
tial variable assignmen¥A,,;: iff for all £ and for all histories in
h € H{ such thay“™! = true in the last variable assignmehid},
of h, we have tha’(h, as11) # u andH T is nonempty, where
the setg+¢ are inductively defined as follows:

[ ] H? = {(8107 .3 SN0, VAim’t)}

e H{™' is the set of all histories such that if
(s77h . S5 VASTY), with T = sl b€ HE,
and P(h,aey1) = ¢ (with ¢ # w), then for all
transitions (sf, {g}a{c},s}) € & with g = true
in the last variable assignmentVA?, the history

o+1 041 0+1 O] /
B oappr - (sTTh L0 85, VAR with s = s

siT = sfforj #id,and VAT = VAL cisin ;.

Moreover, as before, if a trace is finite and ends afteactions,

and all along all its guards are satisfied, we have that all histories
in Hf end with all services in a final state. Finally, we say that an
orchestrator programP realizes the target servic§, if it realizes

all its traces.

In order to understand the above definitions, let us observe that
intuitively the orchestrator program realizes a trace if, as long as
the guards in the trace are satisfied, it can choose at every step an
available service to perform the requested action. If at a certain
point a guard in the trace is not satisfied by the current variable
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Figure 2: Composition of nondeterministic guarded services

assignment, then we may consider the trace finished (even if not inS2, and since the operatiofill changes the value @&nough
a final state). As before, however, since when an available servicefrom ff to tt , it can then finish by delegatinguy to S;. Note
executes an action it nondeterministically chooses what transition that different initial assignment tBnough, may lead to different
to actually perform, the orchestrator program has to require that compositions.

for each of the possible resulting states of the activated available

services and resulting variable assignment, the orchestrator is able N Order to compute an orchestrator program that realizes the tar-
to continue with the execution of the next action. Finally, the last 9&t Service we resort again to a reduction to satisfiability in PDL.

requirement makes sure that available services are left in a final Y& Can use the same encoding of the previous section, now suitably

state, when a finite trace reaches its end with all guards satisfied allMmedified to take into account the variable assignment. In particu-
along. lar, let us denote bWA a propositional encoding of the variable

assignment/A. Then for representing the transitions of the target
ExaMPLE 4.3. Referring to Examples 4.1 and 4.2, Figure 2(c) ~ ServiceSo we change the formuld, in ® as follows:
shows an orchestrator prograt for the available services in Fig-
ure 2(a) that realizes the target service in Figure 2(b) from the ini-
tial assignment ofVA;,:;; = Enough=ff . In the figure, for each
state of P, we have represented the current state of the available
services and the assignmentsBoough. The orchestrator pro-

e sAVA — (a)trueAla]s, for each transitiotts, g, a, s') €
do such that is true in VA, encoding that the target service
can do aru-transition, whose guarglis satisfied, going from
states to states’.

gram P can be understood as follows. After delegatingSiothe e s A'VA — [a]undef, for eacha such that for na’ we have
operationsadd -to _cart andcheckout , which do not change (s,(g,a),s’) € do with g true in VA; this takes into account
the value oEnough, P delegates the operatiatheckPP to Ss. that the target service cannot performaatransition.

SinceSs has a nondeterministic behavior, only after its execution
it is known how it changes the value®fough. However, the or-
chestrator program has to be coherent witt possible behaviors
of Ss. Thus ifEnough=tt P delegatesuy to Si, otherwise, if e s A VA A evecia — {a)(sy A VA;c1) A -+ A{a)(sh, A
Enough=ff (note thatEnough #uu), P first delegatedill  to VA;cm) Ala](si AVA;c1 V-V s, AVA; cm), Where

For representing the transitions of each available senfcase
change the formula; in ® as follows:



{(s1,¢1), -, (shrem)} = {(s',¢) | (s,{g}a{c},s) €

0; andg = true in VA}, for each variable assignmeii4,
eachs € S;, and each guarded actid}a{c} such that
(s,{g}ta{c},s’) € 6; andg = true in VA; these assertions
encode that if the current variable assignmen¥# and a
serviceS; is in states and is selected for the execution of
an actiona (i.e., exec;, is true), then for each possibte
transition with its guard true if/A, we have a possible-
successor in the models &f

s AN’ VA A ezecio — [a]false for each variable assignment
VA, and eachs € S, such that for na’, g, andc, we have
that (s, {g}a{c},s’) € &; with g = true in VA; these de-
note that if the current variable assignment/ig and a ser-
vice S; is in states and is selected for the executioncobut

it cannot doa, then there is na-successor in the models of
D.

s A\ —ezecia — [a]s for each statg € S; and each action
a; encoding that if servicé; is in states and is not selected
for the execution ofi, then ifa is performed (by some other
available servicep; does not change state.

v Finally, the formula @ is as before Init A [u](¢o A
ie(1,...m} Di A baaa), Where nowlnit stands forspo A so1 A
-+ A son A VA, to take into account the initial situation for the
target service in the client request.
Using the PDL formula® defined as above, we can prove the
analogs of Theorem 3.4 and Theorem 3.6.

THEOREM 4.4. The PDL formula®, constructed as above, is
satisfiable if and only if there exists an orchestrator program for
the available services,...,S, that realizes the target service
So starting from the initial variable assignmemfA ;.

THEOREM 4.5. If there exists an orchestrator program for the
available servicesSy, ..., S, that realizes the target servic§,
starting from the initial variable assignmentA,;., then there ex-
ists one that requires a finite number of states. Moreover such a
finite state program can be extracted from a finite modeb of

Thus we have a systematic method for synthesizing an orchestrato
program forSi, ..., S, that realizes the required targ8$ given
the initial variable assignmenitA ;.

As for computational complexity, we observe tlais polyno-
mial in the size of the target servi&®, in the size of the available
servicesS;, . .., Sp, and in the number of possible variable assign-
ments (and hence exponential in the number of variabl&.ir5o
we can state the following theorem.

THEOREM 4.6. Checking the existence of an orchestrator pro-
gram for the available serviceS;, . .., S, that realizes the target
serviceS, starting from the initial variable assignmetA;,;; can
be done in time exponential in the sizeif ..., S, and S, and
doubly exponential in the number of variablesin

5. RELATED WORK

In order to discusautomaticservice composition, and compare
different approaches, we introduce here a sort of conceptual frame-
work for “semantic service integration”, that is constituted by the
following element®:

155uch a framework is inspired by the research on “semantic dat
integration” [16, 11, 27]. Obviously that research has dealt with

data (i.e., static aspects) and not with computations (i.e., dynamic*

1

the community ontologywhich represents the common un-
derstanding on an agreed upon reference semantics between
the services®, concerning the meaning of the offered oper-
ations, the semantics of the data flowing through the service
operations, etc;

the set ofavailable serviceswhich are the actual Web ser-
vices available to the community;

themappingfor the available services to the community on-
tology, which expresses how services expose their behavior
in terms of the community ontology;

and theclient service requesto be expressed by using the
community ontology.

To fix the idea, the setting for service composition presented in
this paper can be understood in terms of this framework as follows:

e the community ontology is simple a set of actions, namely
the actions of the community (and the set of shared variables
in the case of guarded services);

the available services are the actual Web services that have
joined the community;

the mapping from the available services to the community
ontology is constituted by the transition systems that rep-
resent the available services; note that indeed these are ex-
pressed in terms of the actions of the community (and shared
variables);

the client service request is the target service, which again
is expressed in terms of the actions of the community (and
shared variables).

In general, the community ontology comprises several aspects:
on one side, it describes the semantics of the information managed
by the services, through appropriate semantic standards and lan-
guages (e.g., OWL and OWL-$, WSMO 8): on the other side,
it should consider also some specification of the service behaviors,

on possible constraints and dependencies between different service

operations, not limited solely to pre- and post-conditions, but con-
sidering also the process of the service.

In building such a “semantic service integration” system, two
general approaches can be followed.

e In the Service-tailored approach, the community ontology
is built mainly taking into account the available services,
by suitably reconciling them; indeed the available services
are directly mapped as elements of the community ontology,
and the service request is composed by directly applying the
mappings for accessing concrete computations.

aspects) that are of interest in composition of services. Still many
notions and insights developed in that field may have a deep im-
pact in service composition. An example is the distinction that we
make later between “service-tailored” and “client-tailored” service
integration systems, which roughly mimic the distinction between
Global As View (GAV) and Local As View (LAV) in data integra-
tion.

®Note that many scenarios of cooperative information systems,
e.g.,e-Government oe-Business, consider preliminary agreements
on underlying ontologies, yet yielding a high degree of dynamism
and flexibility.

Tcfr. hitp:/iwww.daml.org/services/owl-s/

8cfr. http://ww.wsmo.org/



e Conversely in th&€lient-tailored one, the community ontol- request asks for a sequence of actions to ach@aveL1 (main

ogy is built mainly taking into account the client, indepen- computation), with guarantees that upon faile@AL?2 is reached

dently from the services available; they are described (i.e., (exception handling).

mapped) by using the community ontology, and the service  Finally, the line of research taken in [3, 4, 5], but also in [10],

request is composed by reversing these mappings for accessand in the present paper, has the dynamic behavior of services at

ing concrete computations. the center of its investigation. In order to study the impact of such
dynamics on automatic composition, all these works make simpli-
fying assumptions on the community ontology, which essentially
becomes an alphabet of actions. Still, as discussed above, the no-
tion of community ontology is present, and in fact all these works
adopt a client-tailored approach.

A fundamental issue that arises is: if such rich descriptions of
the dynamic behavior of the services can be combined with rich
(non propositional) descriptions of the information exchanged by
the services, while keeping automatic composition feasible. The
first results on this issue are reported in [2], where available ser-
vices that operate on shared world description (in a form of a
database) are considered. Such services can either operate on the
world through some atomic processes as in OWL-S, or exchange
information through messages. While the available services them-
selves are with finite states, the world description is not. Under
suitable assumptions on how the world can be queried and mod-
ified, decidability of service composition is shown. Interestingly
[2] shows that even if the available services can be modeled as de-
terministic transition systems, the presence of a world description
whose state is not known at composition time, requires dealing with
nondeterminism of the same form we have studied here.

Figure 3 summarizes, on the basis of the previous discussion, the
considered works. The three axis represent the levels of detail ac-

tailored: services are seen as (possibly infinite) transition SyStemS’cordin to which the community ontoloav and the maopinas and
the common ontology is a Situation Calculus Theory (therefore is 9 y 9y L ppIng
the client request can be modeled. Nam@)ystatics in the system

semantically very rich) and service names, and each service NaME e hresents how fine grained is the modeling of the static semantics
in the common ontology is mapped to a service seen as a procedur% 2 ontologies of drgta and/or services inguts and outputs, alpha-
in Golog/Congolog Situation Calculus; the client service requestis ;" 9 +Inp puts, alp

a Golog/Congolog program having service names as atomic actionsbet of actions, etc. ji) dynamics in component servicazpresents

with the understatement that it specifies acceptable sequences Oreo;;,ufrlgs gfra;'hn:i;\/tilggsn}gg?"r;%o?:]izhgceifﬁssf‘rzsngzgnbgh;‘gz:sl
actions for the client (as in planning) and not a transition system etc.): and(ii) dynamics in clignt service re uése resents r)1/ow '
that the client wants to realize. 7 y q P

Finally, the work by Hull et al. [7, 13] describes a setting where fine grained is the modeling of the process required by the client,

- . X . o varying from a single step (as in the case of services consisting es-
services are expressed in terms of atomic actions (communications)

that they can perform, and channels that link them with other ser- sentially in a single data query over a data integration system) fo a

vices. The aim of the composition is to refine the behavior of each (set of) sequential steps, to a (set of) conditional steps, to including

service so that the conversations realized by the overall system satJOOpS’ up to running under the full control of the client (as in our

isfy a given goal (dynamic property) expressed as a formula in lin- apprqach). Black/white lollipopsrepresent service-based (white)
- > . . vs. client-based (black) approaches.

ear time logic. Although possibly more on choreography synthesis
than on composition synthesis of the form discussed here, we can
still consider it a service-tailored approach, since there is no effort 6. CONCLUSION
in hiding the service details from the client that specifies the goal In this paper we studied how to synthesize a composition to real-
formula. ize a client service request expressed as a target service, in the case

Much less research has been done following a client-tailored ap- where available services are only partially controllable (modeled
proach, but some remarkable exceptions should be mentioned: theas devilish nondeterminism) but fully observable by the orchestra-
work of Knoblock at al. [19] is basically a data integration ap- tor. We have shown that the problem is EXPTIME-complete and
proach, i.e., the community ontology is the global schema of an we have given effective techniques to address the problem based
integrated data system, the available services which are essentiallyon PDL satisfiability. Our results extend those in [3, 4] where only
data sources whose contents is mapped as views over the globatieterministic available services where considered. Although not
schema, and the client request is basically a parameterized queryshown here, all the results in this paper can be easily extended to
over such a schema; therefore the approach is client-tailored, butthe case where the client request is expressed as a nondeterministic
neither the ontology nor mappings consider service behavior at all. transition system as in [4]. Note that in this case the nondetermin-

The work of Traverso et al. [26, 22, 21] can be classified also as ism has alon’t-care akaangelic nature: the client does not require
client-tailored: services are seen as (finite) transition systems, theto fully specify the target service he/she requires, instead he allows
common ontology is a set of atomic actions and propositions, as some degree of freedom to the composer in providing him/her with
in Planning; a service is mapped to the community ontology as a one, by choosing which one among the nondeterministic transitions
transition system using the alphabet of the community and defin- to actually implement. Such a form of nondeterminism can be still
ing how transitions affect the propositions, and the client service tackled through a reduction to satisfiability in PDL.

Again to fix the idea, it should be quite clear that the setting pre-
sented in this paper adheres to the client-tailored approach.

In fact, much of the research on automatic service composi-
tion has adopted, up to now, a service-tailored approach. For ex-
ample, the works based on Classical Planning in Al (e.g., [29],
[6]) consider services as atomic actions — only 1/O behavior is
modeled, and the community ontology is constituted by proposi-
tions/formulas (facts that are known to be true) and actions (which
change the truth-value of the propositions); available services are
mapped into the community ontology as atomic actions with pre-
and post-conditions. In order to render a service as an atomic ac-
tion, the atomic actions, as well as the propositions for pre- and
post-conditions, must be carefully chosen by analyzing the avail-
able services, thus resulting in a service-tailored approach.

Other works (e.g., Papazoglou’s et al. [30], Bouguettaya at
al. [18], Sheth et al. [9, 8]) have essentially considered available
services as atomic actions characterized by the 1/0 behavior and
possibly effects. But differently from those based on planning,
instead of concentrating on the automatic composition, they have
focused more on on modeling issues and automatic discovery of
services described making use of rich ontologies.

Also the work of Mcllraith at al. [17] can be classified as service-
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It should be noted that our approach, in which the orchestrator at
each step sends an execution request to available services and the
then send back to the orchestrator their states, is a form of control

that is communication intensit® In fact, if communication is of
concern, our model is too coarse. Indeed we should distinguis

between actions that affect the state of affairs and messages for
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Finally, we want to stress that composition, especially in rich dy-

namic settings as those studied in this paper, is essentially a form of
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Proc. of PODS 2002pages 233-246, 2002.

(reactive) program synthesis, and tight relationships exist with the [17] S. Mcllraith and T. Son. Adapting golog for composition of

literature on that field [23, 25, 28]. Although that literature often
does not offer off-the-shelf results for composition, it certainly of-

fers techniques and general approaches that can be profitably used

to tackle subtle issues, as, for example, partial observability [15],

semantic web services. Proc. KR 2002
[18] B. Medjahed, A. Bouguettaya, and A. EImagarmid.
Composing web services on the semantic oy Large
Data Base Journall2(4):333351, 2003.

which becomes an issue when the distinction between actions and19] M. Michalowski, J. Ambite, S. Thakkar, R. Tuchinda,

messages is taken into account: effects of actions are not observed

directly, but only communicated through messages.
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