ESC: A Tool for Automatic Composition of
e-Services Based on Logics of Programs

Daniela Berardi', Diego Calvanese?, Giuseppe De Giacomo!,
Maurizio Lenzerini', and Massimo Mecella!

! Universita di Roma “La Sapienza”,
Dipartimento di Informatica e Sistemistica “Antonio Ruberti”,
Via Salaria 113, 00198 Roma, Italy
{berardi, degiacomo, lenzerini, mecella}@dis.uniromal.it
2 Libera Universita di Bolzano/Bozen,

Facolta di Scienze e Tecnologie Informatiche,

Piazza Domenicani 3, 39100 Bolzano/Bozen, Italy
calvanese@inf.unibz.it

Abstract. In this paper we discuss an effective technique for automatic
service composition and we present the prototype software that imple-
ments it. In particular, we characterize the behavior of a service in terms
of a finite state machine. In this setting we discuss a technique based
on satisfiability in a variant of Propositional Dynamic Logic that solves
the automatic composition problem. Specifically, given (i) a client spec-
ification of his desired service, i.e., the service he would like to interact
with, and (%) a set of available services, our technique synthesizes the
orchestration schema of a composite service that uses only the available
services and fully realizes the client specification. The developed system is
an open-source software tool, called ESC (E-service Composer), that im-
plements our composition technique starting from services, each of them
described in terms of a WSDL specification and a behavioral description
expressed in any language that can capture finite state machines.

1 Introduction

One of the basic aspects of the Service Oriented Computing, and of the Ex-
tended Service Oriented Architecture proposed by [19], is the composition of
services. Basically, service composition addresses the situation when a client
request cannot be satisfied by any (single) available service, but a composite
service, obtained by combining “parts of” available component services, might
be used [I8ITL[7].

Service composition involves two different issues. The first, referred to as
composition synthesis is concerned with synthesizing such a new composite ser-
vice, thus producing a specification of how to coordinate the component services
to obtain the composite service. Such a specification can be obtained either
automatically, i.e., using a tool that implements a composition algorithm, or

M.-C. Shan et al. (Eds.): TES 2004, LNCS 3324, pp. 80-94] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

ESC: A Tool for Automatic Composition 81

manually by a human, possibly with the help of CASE-like tools. In what fol-
lows, we will refer to such a specification of the composite service as orchestration
schema, according to [I]. The second issue, referred to as orchestration, is con-
cerned with coordinating, during the composite service execution, the various
component services according to the orchestration schema previously synthe-
sized, and also monitoring control and data flow among the involved services, in
order to guarantee the correct execution of the composite service. Such activities
are performed by the orchestration engine [1].

It has been argued [T9[], that in order to be able to automatically synthe-
size a composite service starting from available ones, the available services should
provide rich service descriptions, consisting of (i) interface, (ii) capabilities, (iii)
behavior, and (iv) quality. In particular, the service interface description pub-
lishes the service signaturdi while the service capability description states the
conceptual purpose and expected results of the service. The (expected) behavior
of a service during its execution is described by its service behavior description.
Finally, the Quality of Service (QoS) description publishes important functional
and non-functional service quality attributedi.

Several works in the service literature (refer to [I7] for a survey) address the
problem of service composition in a framework where services are represented in
terms of their (static) interface. The aim of this work is twofold: first, we discuss
an effective technique for automatic service composition, when services are char-
acterized in terms of their behavior, and then we present the prototype design
and development of an open source software tool implementing our composition
technique, namely £ESC (E-service Composer)ﬁ.

In [8[7] we have devised a framework where services export their behavior as
finite state machines, and in [7] we have developed an algorithm that, given (i) a
client specification of his desired service, i.e., the service he would like to interact
with, and (i7) a set of available services, synthesizes the orchestration schema
of a composite service that uses only the available services and fully realizes
the client specification. We have also studied the computational complexity of
our algorithm: it runs in exponential time with respect to the size of the input
state machines. Observe that, it is easy to come up with examples in which
the orchestration schema is exponential in the size of the component services.
However, practical experimentation conducted over some real cases with the
prototype, shows that, given the complexity of the behavior of real services, the
tool can effectively build a composite service.

Although some papers have already been published that discuss either behav-
ioral models of services ([I7]), or propose algorithms for computing composition

3 E.g., as a WSDL file.

4 E.g., service metering and cost, performance metrics (e.g., response time), security
attributes, (transactional) integrity, reliability, scalability, availability, etc.

5 cf. the PARIDE (Process-based framewoRk for composition and orchestration of
Dynamic E-services) Open Source Project: http://sourceforge.net/projects/
paride/ that is the general framework in which we intend to release the various
prototypes produced by our research.

82 D. Berardi et al.

(e.g., [I8LITL20]), to the best of our knowledge, our research is the first one tack-
ling simultaneously the following issues: (i) presenting a formal framework where
the problem of service composition is precisely characterized, (ii) providing tech-
niques for automatically computing service composition in the case of services
represented as finite state machines and, (éii) implementing our composition
technique into an effective software tool.

The rest of the paper is organized as follows. In Section 2] we discuss our
framework for services that export their behavior. In Section [3] we present our
technique for automatic service composition. In Section [we describe our tool.
Finally, in Section [Bl we draw conclusions and discuss future work.

2 General Framework

A service is a software artifact that interacts with its client and possibly other
services in order to perform a specified task. A client can be either a human
or a software application. When executed, a service performs a given task by
executing certain actions in coordination with the client.

We characterize the exported behavior of a service by means of an ezecution
tree. The nodes of such a tree represent the sequence of actions that have been
performed so far by the service, while the successor nodes represent the actions
that can be performed next at the current point of the computation. Observe
that in such an execution tree, for each node we can have at most one successor
node for each action. The root represents the initial state of the computation
performed by the service, when no action have been executed yet. We label the
nodes that correspond to completed execution of the service as “final”, with the
intended meaning that in these nodes the service can (legally) terminate.

We concentrate on services whose behavior can be represented using a fi-
nite number of states. We do not consider any specific representation formalism
for representing such states (such as action languages, situation calculus, state-
charts, etc.). Instead, we use directly deterministic finite state machines (i.e.,
deterministic and finite labeled transition systems). FSMs can capture an inter-
esting class of services, that are able to carry on rather complex interactions with
their clients, performing useful tasks. Moreover, several papers in the service lit-
erature adopt FSMs as the basic model of exported behavior of services [I7,[].
Also, FSMs constitute the core of statecharts, which are one of the main com-
ponents of UML and are becoming a widely used formalism for specifying the
dynamic behavior of entities.

The alphabet of the FSM (i.e., of the symbol labeling transitions) is formed
by the actions that the service can execute. Such actions are the abstractions of
the effective input/output messages and operations offered by the service. As an
example, consider a service that allows for searching and listening to mp3 files;
in particular, the client may choose to search for a song by specifying either its
author(s) or its title (action search_by_author and search by_title, respec-
tively). Then the client selects and listens to a song (action listen). Finally,
the client chooses whether to perform those actions again. The WSDL interface

ESC: A Tool for Automatic Composition 83

of this service and the finite state machine describing its behavior are reported
in Figure .

To represent the set of services available to a client, we introduce the notion
of community C of services, which is a (finite) set of services that share a com-
mon (finite) set of actions X, also called the alphabet of the community. Hence,
to join a community, a service needs to export its behavior in terms of the al-
phabet of the community. From a more practical point of view, a community
can be seen as the set of all services whose descriptions are stored in a repos-
itory. We assume that all such service descriptions have been produced on the
basis of a common and agreed upon reference alphabet/semantics. This is not
a restrictive hypothesis, as many scenarios of cooperative information systems,
e.g., e-Government [4] or e-Business [I2] ones, consider preliminary agreements
on underlying ontologies, yet yielding a high degree of dynamism and flexibility.

Given a service A;, the execution tree T'(A;) generated by A; is the execution
tree containing one node for each sequence of actions obtained by following (in
any possible way) the transitions of A;, and annotating as final those nodes
corresponding to the traversal of final states.

When a client requests a certain service from a service community, there may
be no service in the community that can deliver it directly. However, it may be
possible to suitably orchestrate (i.e., coordinate the execution of) the services of
the community so as to provide the client with his desired service. In other words,
there may be an orchestration that coordinates the services in the community,
and that realizes the client desired service.

Formally, let the community C be formed by n services Ay,...,A,. An or-
chestration schema O of the services in C can be formalized as an orchestration
tree T'(O):

— The root ¢ of the tree represents the fact that no action has been executed yet.

— Each node z in the orchestration tree T'(O) represents the history up to now,
i.e., the sequence of actions as orchestrated so far.

— For every action a belonging to the alphabet X of the community and
Ie[l.n] [(1,...,n stand for the services Ay,..., A,, respectively), T(O)
contains at most oneﬁ successor node z-(a, I).

5 Final nodes are represented by two concentric circles.

" We use [i..5] to denote the set {4,...,5}.

8 Note that in our framework we focus on actions that a service may execute. There-
fore, at this level of abstraction each action has a well-determined functionality.
Observe also that we have avoided introducing data at the level of abstraction pre-
sented in this paper: in this way the complexity which is intrinsic in the data does
not have a disruptive impact on the complexity which is intrinsic in the process. In
fact, introducing data in a naive way is possible in our setting (e.g., by encoding
data within the state) but it would make composition exponential in the data. This
is considered unacceptable: the size of data is typically huge (wrt the size of the ser-
vices) and therefore the composition should be kept polynomial in the data. In the
future we will study how to add data to our framework by taking such observations
into account.

84 D. Berardi et al.

<definitions
xmlns:y="http://new.thiswebservice.namespace"
targetNamespace="http://new.thiswebservice.namespace">

<!-- Types -->

<types>
<element name="ListOfSong_Type">
<complexType>
<sequence>
<element minOccurs="1"
max0Occurs="unbound"
name="SongTitle"
type="xs:string"/>
</sequence>
</complexType>
</element>
</types>
<!-- Messages -->

<message name="search_by_title_request">
<part name="containedInTitle" type="xs:string"/>
</message>
<message name="search_by_title_response">
<part name="matchingSongs" xsi:type="List0fSong_Type"/>
</message>
<message name="search_by_author_request">
<part name="authorName" type="xs:string"/>
</message>
<message name="search_by_author_response">
<part name="matchingSongs" xsi:type="ListOfSong_Type"/>
</message>
<message name="listen_request">
<part name="selectedSong" type="xs:string"/>
</message>
<message name="listen_response">
<part name="MP3fileURL" type="xs:string"/>
</message>

<!-- Service and Operations -->
<portType name="MP3ServiceType">
<operation name="search_by_title">
<input message="y:search_by_title_request"/>
<output message=“y:search_by_title_response"/>
</operation>
<operation name="search_by_author">
<input message="y:search_by_author_request"/>
<output message="y:search_by_author_response"/>
</operation>
<operation name="listen">
<input message="y:listen_request"/>
<output message="y:listen_response"/>
</operation>
</portType>

</definitions>

(a) WSDL

a = search-by-_author

. W t
t = search_by_title ———

I = listen

(b) FSM

Fig. 1. The MP3 service

ESC: A Tool for Automatic Composition 85

a = search_by_author

t = search_by_title

|l = listen

t

4

l

l

©

Fig. 2. Client specification as a tree

— Some nodes of the orchestration tree are annotated as final: when a node is
final, and only then, the orchestration can be legally stopped.

— We call a pair (z,2:(a,I)) an edge of the tree. Each edge (x,z-(a,I))
of T(O) is labeled by a pair (a,I), where a is the orchestrated action,
I € [1..n] denotes the nonempty set of services in C that execute the
action.
As an example, the label (a, {1,3}) means that the action a requested by the
client is executed by, more precisely delegated to, the services A; and Ag.

Given an orchestration tree T(O) and a path p in T(O) starting from the
root, we call the projection of p on a service A; the path obtained from p by
removing each edge whose label (a, I) is such that ¢ ¢ {I}, and collapsing start
and end node of each removed edge.

We say that an orchestration O is coherent with a community C if for each
path p in T(O) from the root to a node x and for each service A; of C, the
projection of p on A; is a path in the execution tree T'(4;) from the root to some
node y, and moreover, if z is final in 7(0), then y is final in T'(A;).

In our framework, we define client specification a specification of the or-
chestration tree according to the client desired service. Of the orchestration
tree, the client only specifies the actions he would like to be executed by the
desired service. Figure 2] shows a (portion of an infinite) orchestration tree
representing the client specification: note that the edges of the tree are la-
beled only by actions. The client specification can be realized by an orches-
tration tree only if it is possible to find a suitable labeling for each action
with a non empty set I of (identifiers of) services that can execute it. In this

86 D. Berardi et al.

a = search_by_author

t = search_by_title V\@)/\@ w@%@
\/ \/

Il = listen

l l
(a) FSM for A; (b) FSM for Az
Fig. 3. Services in the community

@ {2h

@ {1}h)

Fig. 4. Composition of Ag wrt A; and As

work, we consider specifications that can be expressed using a finite number
of states, i.e., as FSMs.

Given a community C of services, and a client specification Ag, the problem
of composition existence is the problem of checking whether there exists an
orchestration schema that is coherent with C and that realizes Ag. The problem
of composition synthesis is the problem of synthesizing an orchestration schema
that is coherent with C and that realizes Ajg.

Since we are considering services that have a finite number of states, we would
like also to have an orchestration schema that can be represented with a finite
number of states, i.e., as a Mealy FSM (MFSM), in which the output alphabet
is used to denote which services execute which action.

As an example, consider the case in which the service community is con-
stituted by two services, Ay and A,, whose behaviors/FSMs are shown in Fig-
ure B A; allows for searching for a song by specifying its author(s) and for
listening to the song selected by the client; then, it allows for executing these
actions again. A behaves like Ap, but it allows for retrieving a song by spec-
ifying its title.

If the client specification is the FSM shown in Figure III(b, then a composi-
tion exists, and its orchestration schema is the Mealy FSM shown in Figure[d in
which all the actions requested by the client are delegated to services of the com-
munity. In particular, the execution of search _by_author action and its subse-
quent listen action are delegated to A;, and the execution of search by _title
action and its subsequent listen action to As.

9 Note that it compactly represents the tree in Figure

ESC: A Tool for Automatic Composition 87

3 Automatic Service Composition

In the framework presented in the previous section, we are interested in knowing
whether: (%) it is always possible to check the existence of a composition; (i) if
a composition exists, there exists an orchestration schema which is a finite state
machine, i.e., a finite state composition; (iii) if a finite state composition exists,
how to compute it. Our approach is based on reformulating the problem of ser-
vice composition in terms of satisfiability of a suitable formula of Deterministic
Propositional Dynamic Logic (DPDL [15]), a well-known logic of programs de-
veloped to verify properties of program schemas. DPDL enjoys three properties
of particular interest: (i) the tree model property, which says that every model
of a formula can be unwound to a (possibly infinite) tree-shaped model; (ii) the
small model property, which says that every satisfiable formula admits a finite
model whose size is at most exponential in the size of the formula itself; (i) the
EXPTIME-completeness of satisfiability in DPDL.

We represent the FSMs of both the client specification Ay and the services
Ay, ..., A, of community C, as a suitable DPDL formula &. Intuitively, for each
service A;,i = 0...n, involved in the composition, ¢ encodes (i) its current
state, and in particular whether A; is in a final state, and (ii) the transitions
that A; can and cannot perform, and in particular which component service(s)
performed a transition. Additionally, @ captures the following constraints: (i)
initially all services are in their initial state, (%) at each step at least one of the
component FSM has moved, (iii) when the desired service is in a final state also
all component services must be in a final state.

The following results hold [7,[6]:

1. From the tree model property, the DPDL formula @ is satisfiable if and only

if there exists a composition of Ay wrt Ay, ..., A,.

2. From the small model property, if there exists a composition of Ag wrt
A, ..., A,, then there exists one which is a MFSM of size which is at most
exponential in the size of the schemas of Ay, Aq,..., A,.

3. From the EXPTIME-completeness of satisfiability in DPDL and from point
1 above, checking the existence of a service composition can be done in
EXPTIME.

As an example, we can encode in a DPDL formula ¢ both the client spec-
ification shown in Figure [[{b) and the services in the community of Figure B
Then we can use a DPDL tableaux algorithm to verify the satisfiability of ¢.
Such an algorithm returns a model that corresponds to the composition shown
in Figure [(cf. [6]).

4 The Service Composition Tool £SC

In this section we discuss the prototype tool ESC that we developed to compute
automatic service composition in our framework.

Figure Bl shows the high level architecture for £ESC. We assume to have a
repository of services, where each service is specified in terms of both its static

88 D. Berardi et al.

Synthesis Engine
(DPDL SAT +
FSM minimizer)

Realization

Abstraction
Module Module

VN |

= 3.5

BPELA4WS spec
of composite service
to be enacted

by the Orchestrator.

‘WSDL + behavioral
descriptions of client
desired service

'WSDL + behavioral
descriptions of

services in the
community

Fig. 5. The Service Composition Architecture

interface, through a WSDL document, and its behavioral description, which can
be expressed in any language that allows to express a finite state machine (e.g.,
Web Service Conversation Language [13], Web Service Transition Language [9],
BPEL4WS [2], etc.). The repository implements the community of services and
can be seen, therefore, as an advanced version of UDDI. The client specifies his
desired service in terms of a WSDL document and of its behavioral description,
again expressed using one of the language mentioned befordd. Both the ser-
vices in the repository and the client desired service are then abstracted into
the corresponding FMS (Abstraction Module). The Synthesis Engine is the
core module of £SC. It takes in input such FSMs, processes them according to
our composition technique and produces in output the MFSM of the composite
service, where each action is annotated with (the identifier of) the component
service(s) that executes it. Finally, such abstract version of the composite ser-
vice is realized into a BPEL4WS specification (Realization Module), that can
be executed by an orchestration engine, i.e., a software module that suitably
coordinates the execution of the component e-Services participating to the com-
position.

The implementation of the Abstraction Module depends on which language
is used to represent the behavioral description of services[l] In the current proto-
type we have considered Web Service Transition Language, which can be trans-
lated into FSMs [9]. Therefore, (for the moment) the abstraction module can
deal only with it.

10 We assume that the behavioral description of both the client specification and the
services in the repository are expressed in the same language.

Y In particular, the Abstraction Module is constituted by one submodule for each
language used to specify a behavioral description as FSM. Such submodules can be
easily plugged-in each time a new language is used.

ESC: A Tool for Automatic Composition 89

ALC Tableau
O
FSM
]
Translator

Composer
e

Fig. 6. Sub-modules of the Synthesis Engine

In the next subsections we will explain in detail the implementation of the
Synthesis Engine and of the Realization Module.

4.1 Implementation of the Synthesis Engine Module

From a practical point of view, in order to actually build a finite state com-
position, we resort to Description Logics (DLs [3]), because of the well known
correspondence between Propositional Dynamic Logic formulas (which DPDL
belongs to) and DL knowledge bases. Tableaux algorithms for DLs have been
widely studied in the literature, therefore, one can use current highly optimized
DL-based systems [16L[14] to check the existence of service compositions. How-
ever, such the state-of-the-art DL reasoning systems cannot be used to build a
finite state composition because they do not return a model. Therefore, we de-
veloped our £SC that, implementing a tableau algorithm for DL, builds a model
(of the DL knowledge base that encodes the specific composition problem) which
is a finite state composition. For our purpose the well-known ALC [3], equipped
with the ability of expressing axioms, suffices.

The various functionalities of the Synthesis Engine are implemented into
three Java sub-modules, as shown in Figure [6l

— The FSM2ALC Translator module takes in input the FSMs produced by the
Abstraction Module, and translates them into an ALC knowledge base,
following the encoding presented in [5].

— The ALC Tableau Algorithm module implements the standard tableau al-
gorithm for ALC (cf., e.g., [I0]): it verifies if the composition exists and if
this is the case, it returns a model, which is a finite state machine.

— The Minimizer module minimizes the model, since it may contain states
which are unreachable or unnecessary. Classical minimization techniques can
be used, in particular, we implemented the Implication Chart Method [21].
The minimized FSM is then converted into a Mealy FSM, where each action
is annotated with the service in the repository that executes it.

Since these three modules are in effect independent, they are wrapped into
an additional module, the Composer, which also provides the user interface.

90 D. Berardi et al.

4.2 Implementation of the Realization Module

The technique for realizing an executable BPEL4AWS file (i.e., an executable
orchestration schema) starting from the automatically synthesized MFSM is as
follows:

— Each transition in the MFSM corresponds to a BPEL4WS pattern consisting
of (i) an <onMessage> operation (in order to wait for the input from the
client of the composite service), (ii) followed by an invocation to the effective
service (i.e., the deployed service that executes the operation), and then (i)
a final operation for returning the result to the client. Of course both before
invoking the effective service and before returning the result, messages should
be copied forth and back between the composite and the effective service. As
an example, Figure[flshows the BPEL4WS code corresponding to the MSFM
transition for the listen operation relative to the MFSM of Figure @l

— All the transitions originating from the same state are collected in a <pick>
operation, having as many <onMessage> clauses as transitions originating
from the state.

— The BPEL4WS file is built visiting the graph of the MFSM in depth, starting
from the initial state and applying the previous rules, so that the nesting on
pick and sequence operations reproduces the automata behavior. In Figure
Rlit is shown the pseudo—cod of the whole BPEL4WS file obtained by the
MFSM of Figure @l

The BPEL4WS files thus produced can be deployed and executed onto stan-
dard BPEL4WS orchestration engines. In particular, we have tested such files
using Collaxa BPEL Server 2.013.

5 Final Remarks and Future Work

In this paper we have presented £SC, a prototype tool for automatic composi-
tion, which starting from a client specification and a set of available services,
synthesizes a finite state composition.

We are currently extending our framework by allowing some advanced forms
of non-determinism in the client specification and we are studying automatic
composition techniques in this enhanced framework. In the future, we plan to
produce a new version of our prototype tool that takes such extensions into
account.

Finally, far-reaching future work may be identified along several directions.
First of all, it could be interesting to study the situation when the available
services export a partial description of their behavior, i.e., they are represented
by non deterministic FSMs. This means that, a large (possibly infinite) number

12 For sake of simplicity, we omit all BPEL4AWS details and provide an intuitive, yet
complete skeleton of the BPEL4AWS file.
13 ¢f. http://www.collaxa.com.

ESC: A Tool for Automatic Composition 91

<?xml version="1.0" encoding="UTF-8"7>
<process ... >

<partnerLinks>
<!-- The ’client’ role represents the requester of this service. It is used for callback.
In our case it is the client of the composite service -->
<partnerLink name="client"
partnerLinkType="tns:Transition"
myRole="MP3ServiceTypeProvider"
partnerRole="MP3ServiceTypeRequester"/>
<partnerLink name="service"
partnerLinkType="nws:MP3CompositeService"
myRole="MP3ServiceTypeRequester"
partnerRole="MP3ServiceTypeProvider"/>

</partnerLinks>

<variables>

<!-- Reference to the message passed as input during initiation -->
<variable name="input" messageType="tns:listen_request"/>
<!-- Reference to the message that will be sent back to the

requestor during callback -->
<variable name="output" messageType="tns:listen_response"/>
<variable name="request" messageType="nws:listen_request"/>
<variable name="response" messageType="nws:listen_response"/>
</variables>

<pick>
<onMessage partnerLink="client"
portType="tns:MP3ServiceType"
operation="listen"
variable="input">

<sequence>
<assign>
<copy>
<from variable="input" part="selectedSong"/>
<to variable="request" part="selectedSong"/>
</copy>
</assign>

<invoke partnerLink="service"
portType="nws:MP3ServiceType"
operation="listen"
inputVariable="request"
outputVariable="response"/>

<assign>
<copy>
<from variable="response" part="MP3FileURL"/>
<to variable="output" part="MP3FileURL"/>
</copy>
</assign>

<reply name="replyOutput"
partnerLink="client"
portType="tns:MP3ServiceType"
operation="listen"
variable="output"/>

<!-- Other operations here for describing the next transitions -->
</sequence>
</onMessage>
<onMessage>
<!-- Other sequences here for describing the other possible transitions originating
from the same state -—>
</onMessage>
</pick>

</process>

Fig. 7. BPEL4WS code for the listen transition of the MFSM shown in Figure [

92 D. Berardi et al.

<process>
<pick>
<onMessage="t">
<sequence>
<copy>...</copy>
<invoke operation="t" on service A2 />
<copy>...</copy>
<reply ... />
<pick>
<onMessage="1">
<sequence>
<copy>...</copy>
<invoke operation="1" on service A2 />
<copy>...</copy>
<reply ... />
</sequence>
</onMessage>
</pick>
</sequence>
</onMessage>
<onMessage="a'>
<sequence>
<copy>...</copy>
<invoke operation="a" on service Al />
<copy>...</copy>
<reply ... />
<pick>
<onMessage="1">
<sequence>
<copy>...</copy>
<invoke operation="1" on service Al />
<copy>...</copy>
<reply ... />
</sequence>
</onMessage>
</pick>
</sequence>
</onMessage>
</pick>
<process>

Fig. 8. BPEL4WS pseudo-code for the MFSM shown in Figure @

of complete description for services in the community exists that are coherent
with each partial description. In such case, the orchestration schema that is to
be synthesized should be coherent with all such possible complete descriptions.
Therefore, computing composition in such a framework is intuitively much more
difficult that in the framework presented here.

Also it is interesting to study how to add data in our framework and how this
impacts the automatic service composition. In particular, it is worth studying
how to introduce data in a way that the problem of automatic service composi-
tion, while exponential in the size of the service description, remains polynomial
in the size of the data.

Finally, we foresee the validation of our approach and an engineered imple-
mentation of the tool in the context of the eG4M (e-Government for Mediter-
ranean countries) project, in which the services offered by different Public Ad-
ministrations spread all over some Mediterranean countries will be composed
and orchestrated in order to offer value-added cooperative processes to citizens
and enterprises.

ESC: A Tool for Automatic Composition 93

Acknowledgements

This work has been supported by MIUR through the “FIRB 2001”
project MAIS (http://www.mais-project.it, Workpackage 2), and “Societd
dell’Informazione” subproject SP1 “Reti Internet: Efficienza, Integrazione e Si-
curezza”. It has been also supported by the European projects SEWASIE (IST-
2001-34825), EU-PUBLI.com (IST-2001-35217) and INTEROP Network of Ex-
cellence (IST-508011).

The authors would like also to thank Alessandro Iuliani, for collaborating in
the design and realization of the £SC tool, and Alessia Candido for her technical
support with BPEL4WS.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts, Ar-
chitectures and Applications. Springer-Verlag, 2004.

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business Process Execution Language for Web Services (Version 1.1).
http://wuw-106.1ibm.com/developerworks/library/ws-bpel/, May 2004.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

4. C. Batini and M. Mecella. Enabling Italian e-Government Through a Cooperative
Architecture. IEEE Computer, 34(2), 2001.

5. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. service
Composition by Description Logic Based Reasoning. In Proceedings of the Int.
Workshop on Description Logics (DL03), Rome, Italy 2003.

6. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic
composition of e-services. Technical Report 22-03, Dipartimento di Informatica e
Sistemistica, Universita di Roma “La Sapienza”, 2003.

7. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic
composition of e-services that export their behavior. In Proc. of the 1st Int. Conf.
on Service Oriented Computing (ICSOC2003), 2003.

8. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. A founda-
tional vision of e-services. In Proc. of the CAISE 2003 Workshop on Web Services,
e-Business, and the Semantic Web (WES 2003), 2003.

9. D. Berardi, F. De Rosa, L. De Santis, and M. Mecella. Finite State Automata
as Conceptual Model for e-Services. In Journal of Integrated Design and Process
Science, 2004. To appear.

10. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. J. of Artificial Intelligence Research, 1:109-138,
1993.

11. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification: A New Approach
to Design and Analysis of E-Service Composition. In Proceedings of the WWW
2003 Conference, Budapest, Hungary, 2003.

12. E. Colombo, C. Francalanci, B. Pernici, P. Plebani, M. Mecella, V. De Antonel-
lis, and M. Melchiori. Cooperative Information Systems in Virtual Districts: the
VISPO Approach. IEEE Data Engineering Bulletin, 25(4), 2002.

http://www-106.ibm.com/developerworks/library/ws-bpel/

94

13

14.

15.
16.

17.

18.

19.

20.

21.

D. Berardi et al.

A. K. H. Kuno, M. Lemon and D. Beringer. Conversations + Interfaces = Business
Logic. In Proceedings of the 2nd VLDB International Workshop on Technologies
for e-Services (VLDB-TES 2001), Rome, Italy, 2001.

V. Haarslev and R. Méller. RACER System Description. In Proc. of IJCAR 2001,
volume 2083 of LNAI, pages 701-705. Springer-Verlag, 2001.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.

I. Horrocks. The FaCT System. In H. de Swart, editor, Proc. of TABLEAUX’98,
volume 1397 of LNAI, pages 307—-312. Springer-Verlag, 1998.

R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: A Look Behind
the Curtain. In Proceedings of the PODS 2003 Conference, San Diego, CA, USA,
2003.

S. Mcllraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent Sys-
tems, 16(2), 2001.

M. Papazoglou and D. Georgakopoulos. Service Oriented Computing (special is-
sue). Communications of the ACM, 46(10), October 2003.

M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso. Planning and
Monitoring Web Service Composition. In Proc. of ICAPS Workshop on Planning
for Web and Grid Service (P4WGS 2004), 2004.

R.H. Katz. Contemporany Logic Design. Benjamin Commings/Addison Wesley
Publishing Company, 1993.

	Introduction
	General Framework
	Automatic Service Composition
	The Service Composition Tool ESC
	Implementation of the Synthesis Engine Module
	Implementation of the Realization Module

	Final Remarks and Future Work

