
Automatic Composition of Web Services in Colombo�

Daniela Berardi1, Diego Calvanese2, Giuseppe De Giacomo1,
Richard Hull3 and Massimo Mecella1

1Università di Roma “La Sapienza”,
lastname@dis.uniroma1.it

2Libera Università di Bolzano/Bozen
calvanese@inf.unibz.it

3Bell Labs, Lucent Technologies,
hull@lucent.com

Abstract. In this paper we present Colombo, a framework where web services
are characterized in terms of (i) message exchanges, (ii) data flow, and (iii) ef-
fects on the real world. While all these aspects have been separately considered
in the literature, Colombo is the first attempt to address all of them in a single
coherent framework. Dealing with all these aspects together, in fact, is particu-
larly challenging, especially with respect to the problem of automatic web service
composition. In this paper, we introduce novel techniques to synthesize compos-
ite web services in this setting, under certain simplifying assumptions.

1 Introduction

Service Oriented Computing (SOC [1]) is the computing paradigm that utilizes web
services (also called e-Services or, simply, services) as fundamental elements for re-
alizing distributed applications/solutions. Web services are self-describing, platform-
agnostic computational elements that support rapid, low-cost and easy composition of
loosely coupled distributed applications. SOC poses many challenging research issues,
the most hyped one being web service composition. Web service composition addresses
the situation when a client request cannot be satisfied by any available web service, but
by suitably combining “parts of” the available web services. Composition involves two
different issues [1]. The first, typically called composition synthesis, is concerned with
synthesizing a specification of how to coordinate the component services to fulfill the
client request. Such a specification can be produced either automatically, i.e., using a
tool that implements a composition algorithm, or manually by a human. The second
issue, often referred to as orchestration, is concerned with how to actually achieve the
coordination among services, by executing the specification produced by the compo-
sition synthesis and by suitably supervising and monitoring both the control flow and
the data flow among the involved services. Orchestration has been widely addressed by
other research areas, and most of the work on service orchestration is based on research
in workflows [5].

In this paper we address the problem of automatic composition synthesis of web
services. Specifically, we introduce an abstract model, called Colombo, that combines

� This paper is an extended abstract of [3]. The authors would like to thank Maurizio Lenz-
erini, Jianwen Su and the members of the SWSL working group for valuable discussions.
This work has been supported by MIUR through the “FIRB 2001” project MAIS, and “So-
cietà dell’Informazione”. It has been also supported by the European projects SEWASIE (IST-
2001-34825), EU-PUBLI.com (IST-2001-35217) and INTEROP Network of Excellence (IST-
508011).



four fundamental aspects of web services, namely: (i) A world state, representing the
“real world”, viewed as a database instance over a relational database schema. This is
similar to the family of “fluents” found in OWL-S [9]. (ii) Atomic processes, which
can access and modify the world state, and may include conditional effects and non-
determinism. These are inspired by the atomic processes of OWL-S. (iii) Message
passing, including a simple notion of ports and links, as found in web services stan-
dards (e.g., WSDL, BPEL4WS) and some formal investigations (e.g., [4, 11]). (iv) The
behavior of web services (which may involve multiple atomic processes and message-
passing activities) is specified using finite state transition system, following and extend-
ing [2, 4]. Thus, Colombo provides a bridge between BPEL4WS and OWL-S, at the
same time being compliant with the emerging SWSL for semantic web services [6]. We
also assume that each web service instance has a local store, used to capture parameter
values of incoming messages and the output values of atomic processes, and used to
populate the parameters of outgoing messages and the input parameters of atomic pro-
cesses. Conditional branching in a web service will be based on the values of the local
store variables at a given time.

A client of a web service interacts with it by repeatedly sending and receiving mes-
sages, until a certain situation is reached. In other words, also the client behavior can be
abstractly represented as a transition system having exactly two states, between which
the client toggles, called ReadyToTransmit and ReadyToRead, where the first is the
start state and also the final state.

In order to address the problem of automatic web service composition, we introduce
the notion of goal service, denoting the behavior of a desired composite service: it
is specified as a transition-based web service, that interacts with a client and invokes
atomic processes, thus differentiating with most approaches to automatic composition
(e.g. [10]), in which the goal is expressed as a condition on a situation in the real world.

Our challenge is to build a mediator, which uses messages to interact with pre-
existing web services (e.g., in an extended UDDI directory), such that the overall be-
havior of the mediated system faithfully simulates the behavior of the goal service.

The contribution of this paper is multifold: (i) Colombo unifies and extends the
most important frameworks for services and service composition; (ii) it presents a
technique to reduce infinite data value to finite symbolic data; (iii) it exploits and
extends techniques based on Propositional Dynamic Logic to automatically synthe-
size a composite service (see [2]), under certain assumptions (and we refer to this as
Colombok,b); (iv) it provides an upper bound on the complexity of this problem.

To the best of our knowledge, the work reported in this paper is the first one propos-
ing techniques for web service composition where web services are described in such a
rich framework.

The rest of the paper is organized as follows. Section 2 illustrates Colombo with an
example. Section 3 formally states the problem of web service composition, and gives
an intuition of our automatic composition techniques. Section 4 concludes the paper.

2 The Colombo Framework

In this section, we illustrate Colombo and give an intuition of our automatic web
service composition techniques by means of an example involving web services that
manage inventories, payment by credit or prepaid card, request shipments, and check
shipment status.



Accounts

CCNumber credit

1234 T

... ...

PREPaid

PREPaidNum credit

5678 T

... ...

Inventory

code available warehouse price

H.P.6 T NGW 5

H.P.1 T SW 10

... ... ... ...
Shipment
order# from to status date

22 NGW NYC ‘‘requested’’ 16/07/2005
... ... ... ... ...

Fig. 1. World Schema Instance

The real world is captured by the world (database) schema, which is a finite set
W of relations having the form: Rk(A1, . . . , Amk

;B1, . . . , Bnl
), where A1, . . . , Amk

is a key for Rk, and where each attribute Ai, Bj is defined over (i) the boolean do-
main Bool , (ii) an infinite set of uninterpreted elements Dom= (denoted in the exam-
ple by alphanumeric strings), on which only the equality relation is defined, or (iii)
an infinite densely ordered set Dom≤ (denoted in the example by numbers). We set
Dom = Bool ∪ Dom= ∪ Dom≤. Figure 1 shows a world instance, i.e., a database in-
stance over W . For each relation, the key attributes are separated from the others by the
thick separation between columns. The intuition behind these relations is as follows:
Accounts stores credit card numbers and the information on whether they can be
charged; PREPaid stores prepaid card numbers and the information on whether they
can be still be used; Inventory contains item codes, the warehouse they are available
in, if any, and the price; Shipment stores order id’s, the source warehouse, the target
location, status and date of shipping.

The available web services and the goal service specification are defined over a
common alphabet A of atomic processes, as the one shown in Figure 2. Formally, an
atomic process is an object p which has a signature of form (I,O,CE) with the follow-
ing properties. The input signature I and output signature O are sets of typed variables,
i.e., of variables belonging to Dom . The conditional effect, CE, is a set of pairs of
form (c, E), where c is a (atomic process) condition and E is a finite non-empty set
of (atomic process) effect (specifications). Intuitively, A represents the common under-
standing on an agreed upon reference alphabet/semantics that cooperating web services
should share [5]. For succinctness we use a pidgin syntax for specifying the atomic pro-
cesses in that figure. We denote the null value using ω. The special symbol “−” denotes
elements of tuples that remain unchanged after the execution of the atomic process.
When defining (conditional) effects of atomic processes, we specify the potential ef-
fects on the world state using syntax of the form ‘insert’, ’delete’, and ‘modify’. These
are suggestive of procedural database manipulations, but are intended as shorthand for
declarative statements about the states of the world before and after an effect has oc-
curred. Finally, we use the function fR

j (〈a1, . . . , an〉) to fetch the (n+ j)-th element of
the tuple in R identified by the key 〈a1, . . . , an〉 (i.e., the j-th element of the tuple after
the key).

Figure 3 shows (the transition systems of) the available web services: Bank checks
that a credit card can be used to make a payment; Storefront, given the code of an
item, returns its price and the warehouse in which the item is available, if any; Next
Generation Warehouse (NGW) allows for (i) dealing with an order either by
credit card or by prepaid card, according to the client’s preferences and to the item’s
price, and for (ii) shipping the ordered item, if the payment card is valid; Standard



CCCheck
I: c:Dom=; % CC card number
O: app:Bool; % CC approval
effects:

if fAccounts
1 (c) then

either modify Accounts(c;T) or
modify Accounts(c;F) and approved:= T

if ¬fAccounts
1 (c) then

approved:= F

checkItem:
I: c:Dom=; % item code
O: avail:Bool; wh:Dom=; p:Dom≤ % resp. item availa-

% bility, selling warehouse and price
effects:

if f
Inventory
1 (c) then

avail:= T and and wh:=f
Inventory
2 (c) and

p:=f
Inventory
3 (c) and either no-op on Inventory or

modify Inventory(c;F, -, -)

if ¬f
Inventory
1 (c) or f

Inventory
1 (c) = ω

then avail:= F

charge:
I: c:Dom=; % Prepaid card number;
O: paymentOK:Bool; % Prepaid card approval
effects:

if fP reP aid
1 (c) then

either modify PrePaid(c;T) or modify PrePaid(c;F)
and paymentOK:= T

if ¬fP reP aid
1 (c) then paymentOK:= F

requestShip:
I: wh:Dom=; addr:Dom=; % resp. source warehouse

% and target address
O: oid:Dom=; d:Dom≤; s:Dom=; % resp. order id,

% shipping date and status

effects:
∃d, o oid:=new(o) and
insert Shipment(new(oid); wh, addr, ‘‘requested’’, d)

and d:=f
Shipment
4 (oid) and s := ‘‘requested’’

checkShipStatus:
I: oid:Dom=; % order id
O: s:Dom=; d:Dom≤; % resp. shipping date & status

effects:

if f
Shipment
1 (oid) = ω then no-op and s,d uninit

else s:=f
Shipment
3 (oid) and d:=f

Shipment
4 (oid)

Fig. 2. Alphabet A of Atomic Processes

Warehouse (SW) deals only with orders by credit cards, and allows for shipping the
ordered item, if the card is valid. Throughout the example we are assuming that other
web services are able to change the status and, possibly, to postpone the date of item
delivery using suitable atomic processes, which are not shown in Figure 2. Finally, in
Figure 3, transitions concerning message exchanges are labeled with an operation to
transmit or to read a message, by prefixing the message with ! or ?, respectively.

All the available web services are also characterized by the following elements
(for simplicity, not shown in the figure): (i) An internal local store, i.e., a relational
database defined over the same domains as the world state (namely, Bool , Dom=,
and Dom≤). (ii) One port for each message (type) a service can transmit or receive.
As an example, the web service Bank has two ports, one for receiving messages
(of type) requestCCCheck(CCnum) and another for sending messages (of type)
replyCCCheck(approved). Each port for an incoming message has associated a
queue (see below) and a web service can always transmit messages, but can receive
them only if the queue is not full. A received message is then read (and erased from
the queue) when the process of the web service allows it. (iii) One queue (of length
one) for each message type the web service can receive. The queues are used to store
messages that have been received but not read yet. For example, the web service Bank
has one queue, for storing messages (of type) requestCCCheck(CCnum). (iv) A
set of links between pairs of services that allow communication among them. Specif-
ically, let F = {S1, . . . , Sn} be a family of services. A link for F is a tuple of form
(Si,m, Sj , n) where m is a message that can be transmitted by Si, n is a message that
can be read by Sj , having the same type as m. A linkage for F is a set L of links such
that the first two fields of L are a key for L, and likewise for the second two fields. In
this paper we assume that a linkage L is established at the time of designing a system
of interoperating services, and that L does not change at runtime.

Figure 4 shows (the transition system of) a goal service: it allows (i) to buy
an item characterized by a given code; (ii) to pay for it either by credit card
or prepaid, depending on the client’s preferences, the item’s price and the ware-
house in which the item is stored; and (iii) to check the shipment status. Note



! replyCCCheck(approved)

CCCheck(CCnum; approved)

? requestCCCheck(CCnum)

(a) Bank

! replyCheckItem(avail,
warehouse,price)

checkItem(code; 
avail,warehouse,price)

? requestCheckItem(code)

(b) Storefront

? requestOrder(payBy,cartNum,
addr,price)

(payBy == PREPAID) ∧ (price � 10) /
charge(cartNum; paymentOK)

(payBy == CC) ∨ (price > 10) /
! requestCCCheck(cartNum)

? replyCCCheck(approved)

approved == T /
requestShip(wh,addr; 

oid,date,status)

! shipStatus
(oid,date,status)

? requestShipStatus(oid)

! shipStatus(oid,date,status)

checkShipStatus(oid; 
date,status)

paymentOK == T / 
requestShip(wh,addr; 
oid,date,status)

approved == F /
! failMsg()

paymentOK == F /
! failMsg()

(c) Next Generation Warehouse

? requestOrder(CCNum,addr,price)

! requestCCCheck(CCnum)

? replyCCCheck(approved)
approved == F /
! refuseMsg() approved == T /

requestShip(wh,addr; 
oid,date,status)

? requestShipStatus (oid)

checkShipStatus(oid; 
date,status)

! shipStatus
(oid,date,status)

! shipStatus
(oid,date,status)

(d) Standard Warehouse

Fig. 3. Transition systems of the available services

that the goal service specifies both message-based interactions with the client (e.g.,
?requestPurchase(code,payBy) for receiving from the client the item code
and the preferred payment method) and atomic processes that the available web service
contained in the composition should execute.

With our composition techniques, we are able to automatically construct a mediator
such as S0 shown in Figure 5. As an aid to the reader, we explicitly indicate in the
figure the sender or the receiver of each message, in order to provide an intuition of the
linkage. Note that, differently from the goal service, the mediator specifies message-
based interaction only, involving either the client or a web service. The mediator is also
characterized by a local store, a set of ports and a queue for each incoming message
(type), not shown in the figure.

An example of interactions between S0, the client and the available web ser-
vices is as follows. S0 reads a requestPurchase(code,payBy) message that
has been transmitted by a client (into the suitable queue) and stores it into its lo-
cal store: such a message specifies the code of an item and the client’s preferred
payment method. Then, S0 transmits the message requestCheckItem(code)
to Storefront (i.e., into its queue) and waits for the answer (for simplicity we
assume that the queue is not full). Thus, Storefront reads from its queue that
message (carrying the item’s code), executes the atomic process checkItem(...)
by accessing the tuple of relation Accounts having as key the given code: at this
point, the information on the warehouse the item is available in (if any) and its
price can be fetched and transmitted to the mediator. Hence, S0 reads the message
replyCheckItem(avail,warehouse,price) and stores the values of its pa-
rameters into its local store. If no warehouse contains the item (i.e., avail == F),
S0 transmits a responsePurchase(‘‘fail’’) message to the client, inform-
ing her that the request has failed, otherwise (i.e., avail == T) S0 transmits a



? requestPurchase(code,payBy)

checkItem(code; 
avail,warehouse,price)

(payBy == CC) ∨ (price > 10) / 
CCCheck(cartNum; authorized) authorized == T /

requestShip(wh,addr;
oid,date,status)

(avail == F) ∨ ((payBy == 
PREPAID) ∧ (warehouse = SW)) /
! responsePurchase(“fail”)

(avail == T) ∧ ((payBy == CC) ∨ (
warehouse = NGW)) /
! responsePurchase(“provide cart number”)

(payBy == PREPAID) ∧ (price � 10) / 
charge(cartNum; authorized)

? requestShipStatus (oid)

checkShipStatus(oid; 
date,status)

! shipStatus
(oid,date,status)

! shipStatus
(oid,date,status)

? msgCartNum(cartNum)

Fig. 4. Transition system of the goal service

responsePurchase(‘‘provide cart num’’) to the client, asking her for
the card number, and the interactions go on.

3 The Composition Synthesis Problem Statement

In this section we formally address the composition synthesis problem.
Let W be a world schema and A be an alphabet of atomic processes. Assume that

a family of (pre-defined) services operating over A is available (e.g., in an extended
UDDI directory). We also assume that the desired composite service is specified in
terms of a goal system, i.e., a triple G = (C, {G}, L) where C is a client (modeled as
a transition system, see Section 1); G is the goal service, defined over A; and L is a
linkage involving only C and G.

In the general case, given goal system G = (C, {G}, L), the composition syn-
thesis problem is to (a) select a family S1, . . . , Sn of services from the pre-existing
set, (b) construct a web service S0 (the “mediator”) which can only send, receive and
read messages, and (c) construct a linkage L′ over C,S0, S1, . . . , Sn such that G and
S = (C, {S0, S1, . . . , Sn}, L′) are equivalent, i.e., the behaviors of G and S are in-
distinguishable relative to what is observable in terms of client messaging and atomic
process invocations (and their effects).

Decidability of the composition sythesis problem remains open for most cases of the
general Colombo framework. In the context of Colombok,b we can achieve decidabil-
ity and complexity results under the assumptions1 that: (i) concurrency is prevented in
our systems; (ii) in any enactment of G, only a finite number of domain values are read
(thus providing a uniform bound on the size of the “active domain” of any enactment);
(iii) all messages in a composition are either sent by the mediator S0 or received by the
mediator (note that this assumption affects the form of the linkages). Finally, we say
that a mediator service is (p, q)-bounded if it has at most p states in its transition system
and at most q variables in its global store.

1 We feel that the results obtained here are themselves quite informative and non-trivial to
demonstrate, and can also help show the way towards the development of less restrictive
analogs.



? requestPurchase(code,payBy) 
[from client]

! requestCheckItem(code)
[to Storefront]

(avail == F) /
! responsePurchase(“fail”)
[to client]

? replyCheckItem(avail,warehouse,price) 
[from Storefront]

? requestCCCheck(cartNum) 
[from NGW]

? failMsg() [from NGW]

? replyCCCheck(approved) 
[from Bank]

! requestCCCheck(cartNum) 
[to Bank]

! responsePurchase(“fail”)
[to client]

? requestShipStatus(oid) 
[from client]

! requestShipStatus(oid)
[to NGW]

? shipStatus(oid,date,status) 
[from NGW]

! shipStatus(oid,date,status)
[to client]

? shipStatus(oid,date,status) 
[from NGW]

! shipStatus(oid,date,status) 
[to client]

(avail == T) /
! responsePurchase(“provide cart num”)
[to client]

? msgCartNum_msgIN(cartNum) [from client]

(warehouse = SW) ∧ (payBy == CC) / ! 
requestOrder(cartNum,addr,price) [to SW]

? requestCCCheck(cartNum) 
[from SW]

! replyCCCheck(approved) 
[to SW]

? refuseMsg() [from SW]

? replyCCCheck(approved) 
from Bank

! requestCCCheck(cartNum) 
[to Bank]

? requestShipStatus(oid) [from client]

! requestShipStatus(oid)
[to SW]

? shipStatus(oid,date,status)
[from SW]

! shipStatus(oid,date,status) 
[to client]

! shipStatus(oid,date,status)
[to client]

? shipStatus(oid,date,status) 
[from SW]

(warehouse = NGW) ∧ ((payBy == CC) ∨ (price > 10))
/ ! requestOrder(“CC”,cartNum,addr,price)

[to NGW]

(warehouse = SW) ∧ (payBy == PREPAID) / 
! responsePurchase(“fail”) [to client]

(warehouse = NGW) ∧ ((payBy == PREPAID) ∨ (price � 10)) / ! 
requestOrder(“PREPAID”,cartNum,addr,price) [to NGW]

! replyCCCheck(approved) 
[to NGW]

! responsePurchase(“fail”)
[to client]

Fig. 5. Transition system of the mediator

Theorem 1. Let G = (C, {G}, L) be a goal system and U a finite family of available
web services. For each p, q it is decidable whether there is a set {S1, . . . , Sn} ⊆ U and
a (p, q)-bounded mediator S0, and linkage L′, such that S = (C, {S0, S1, . . . , Sn}, L′)
is equivalent to G. An upper bound on the complexity of deciding this, and constructing
a mediator if there is one, is doubly exponential time over the size of p, q,G and U .

We expect that the complexity bound can be refined, but this remains open at the
time of writing. More generally, we conjecture that a decidability result and a complex-
ity upper bound can be obtained for a generalization of the above theorem, in which the
bounds p, q do not need to be mentioned. In particular, we believe that based on G and
U there exist p0, q0 having the property that if there is a (p, q)-bounded mediator for
any p, q, then there is a (p0, q0)-bounded mediator.

From Infinite to Finite: the Case Tree. The proof of Theorem 1 is based on a tech-
nique that instead of reasoning over (the infinitely many) concrete values in Dom ,
allows us to reason over a finite, bounded set of symbolic values. The technique for
achieving this reduction is inspired by an approach taken in [8]. Intuitively, part of the
construction consists in creating “symbolic images” of most of the constructs that we
currently have for concrete values. For example, corresponding to a concrete world state
I we will have a symbolic world state ̂I. In particular, given a (concrete) execution tree
T for some system S of services, which has infinite branching, it will turn out that
the corresponding symbolic execution tree ̂T will have a strong (homomorphic) rela-
tionship to T , but have finitely bounded branching. In general, results that hold in the
concrete realm will have analogs in the symbolic realm. The details of the reduction can
be found in [3].



Characterization of Composition Synthesis in PDL. To complete the proof of Theo-
rem 1 we outline how the composition synthesis problem can be characterized by means
of a Proportional Dynamic Logic formula (PDL). For the necessary details about PDL,
we refer to [7]. Intuitively, the PDL formula we construct consists of (i) a general part
imposing structural constraints on the model, (ii) a description of the initial state of each
of the service, the goal, and the mediator, and (iii) a characterization of what happens
every time an action is performed. The only part of the execution that is left unspecified
by the PDL formula is the execution of the mediator to be synthesized. Since the execu-
tion of the mediator is characterized by which messages are sent to which component
services (and consequently, also by which messages are received in response), the PDL
formula contains suitable parts that “guess” such messages, including their receiver. In
each model of the formula, such a guess will be fixed, and thus a model will correspond
to the specification of a mediator realizing the composition (see [3] for more details).
Hence, starting from a model of the PDL formula, we are able to construct a mediator.

4 Conclusions

In this paper we have presented Colombo, a framework in which web services are
characterized in terms of (i) message exchanges, (ii) data flow, and (iii) effects on the
real world. We have presented novel techniques, based on case tree building and on
an encoding in PDL, for computing the composition of web services under certain as-
sumptions (Colombok,b).

A problem related to composition synthesis is that of choreography synthesis, which
consists in selecting a set of available services and in constructing a set of links among
them, in order to realize a goal system. Such a problem can, in fact, be seen as a a
specialized version of composition synthesis, hence our synthesis techniques apply [3].

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Concepts, Architectures and
Applications. Springer, 2004.

2. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic Com-
position of e-Services that Export their Behavior. In Proc. of ICSOC 2003.

3. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic Composition
of Transition-based Semantic Web Services with Messaging. Tech. Rep. DIS, 2005.

4. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification: A New Approach to Design
and Analysis of E-Service Composition. In Proc. of WWW 2003.

5. G. De Giacomo and M. Mecella. Service Composition. Technologies, Methods and Tools for
Synthesis and Orchestration of Composite Services and Processes. Tutorial at ICSOC 2004.

6. B. Grosof, M. Gruninger, M. Kifer, D. Martin, D. McGuinness, B. Parsia, T. Payne, and
A. Tate. Semantic Web Services Language Requirements. http://www.daml.org/
services/swsl/, 2004.

7. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.
8. R. Hull and J. Su. Domain Independence and the Relational Calculus. Acta Informatica,

31(6):513–524, 1994.
9. The DAML-S Coalition. Bringing Semantics to Web Services: The OWL-S Approach. In

Proc. of SWSWPC 2004.
10. S. McIlraith, T. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems,

16(2):46 – 53, 2001.
11. P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into Exe-

cutable Processes. In Proc. of ISWC 2004.


