
Synthesis of Compositee-Services based on Automated Reasoning

D. Berardi and D. Calvaneseand G. De Giacomo and M. Lenzerini and M. Mecella
Dipartimento di Informatica e Sistemistica,

Universit̀a di Roma “La Sapienza”
lastname @dis.uniroma1.it

Introduction
e-Services represent a new model in the utilization of the
network, in which self-contained, modular applications can
be described, published, located and dynamically invoked,
in a programming language independent way. This model,
sometimes calledService Oriented Computing(SOC (Pa-
pazoglou & Georgakopoulos 2003)), enables building agile
networks of collaborating business applications, distributed
within and across organizational boundaries.

Research one-Services spans over many interesting is-
sues, including description, discovery, composition, syn-
chronization, coordination, and verification (Hullet al.
2003). We are specifically interested in automatice-Service
composition.e-Servicecompositionaddresses the situation
when a client request cannot be satisfied by any availablee-
Service, but acomposite e-Service, obtained by combining
“parts of” availablecomponent e-Services, might be used.
Composition involves two different issues. The first, some-
times calledcomposition synthesis, or simplycomposition,
is concerned with synthesizing a new compositee-Service
based on a set of availablee-Services and the specification
of a client request (called client specification). The synthe-
sis process produces a specification of how to coordinate the
componente-Services to obtain the compositee-Service that
satisfies the client request. Such a specification can be pro-
duced eitherautomatically, i.e., using a tool that implements
a composition algorithm , ormanuallyby a human. The
second, often referred to asorchestration, is concerned with
coordinating the various componente-Services according to
some given specification, and also monitoring control and
data flow among the involvede-Services, in order to guar-
antee the correct execution of the compositee-Service, syn-
thesized in the previous phase.

Our research focuses on automatic composition synthesis.
More specifically, we have devised techniques that, given
(i) a client specification expressed as a transition system and
(ii ) a set of availablee-Services, described as transition sys-
tems, synthesizes a compositee-Service that (i) uses only
the availablee-Services and (ii ) interacts with the client “in
accordance” with the input specification.

In fact, such a problem can be seen as an advanced form
of Planning. In particular, as in Planning, the problem we
are solving is thesynthesis of a programof a specific form

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

(not simple sequences of actions as in traditional planning,
however, but more general transition systems); also, as in
Planning, we have agoalthat we want to realize (not a reach-
ability goal, however, but the realization of a branching be-
havior as specified by the client); also has in Planning we
haveconstraints on the object that we synthesize(not simple
operators, however, but component transition systems that
suitably orchestrated realize our goal).

This similarity to Planning also leads to related techniques
in solving our problem. In particular our techniques are
logic-based (as in deductive planning, but based on satis-
fiability instead of deduction). Specifically, our techniques
are based on reducing the problem of checking the existence
of a composition into concept satisfiability in a knowledge
base expressed in a Description Logic (DL) (Baaderet al.
2003) –or equivalently satisfiability of a formula in a the-
ory expressed in a variant of Propositional Dynamic Logic
(PDL) (Harel, Kozen, & Tiuryn 2000). With this reduction,
reasoning tools for DLs can be directly used for composition
synthesis, in particular by extracting a compositee-Service
from a model of the DL knowledge base.

We have developed (and currently continue to extend) an
open source prototype system1, that realizes our techniques,
which is, at the best of our knowledge, the first effective
tool for automatic composition synthesis ofe-Services that
export their behavior.

e-Service Model
An e-Service is a software artifact that interacts with its
client and possibly othere-Services in order to perform a
specified task. A client can be either a human or a soft-
ware application. When executed, ane-Service performs
a given task by executing certain actions in coordination
with the client or othere-Services. Specifically, each ac-
tion in the task has a (single)initiator, typically the client,
which requests the execution of the action possibly pass-
ing along information, and one or moreservants, which
are e-Services that respond to the request, possibly ex-
changing with the initiator further information. We build
on the approach of (Berardiet al. 2003b; 2003a; 2003d;

1cfr. the PARIDE (Process-based frAmewoRk for composItion
and orchestration of DinamycE-Services) Open Source Project:
http://sourceforge.net/projects/paride/ that is
the general framework in which we intend to release the various
prototypes produced by our research.



c = search_greeting_card_&_
select 

s = complete_&_send
a = user_authentication
p = pay

A2
�a

�p

A1

�s

�c p�
c = search_greeting_card_&_

select 
s = complete_&_send
a = user_authentication
p = pay

A2
�a

�p
A2

�a
�p

A1

�s

�c p�A1

�s

�c p�

Figure 1:e-Services of the community

2003c), and characterize the exported behavior of ane-
Service by the set of (possibly infinite) sequences of ac-
tions that thee-Service participates in, annotated with the
role (either initiator or servant) thee-Service takes in exe-
cuting each action. In order to represent such a role, we
adorn each action symbol in the execution tree as follows:
if the e-Service is one of the servants of an actiona, then
the action appears asÀa, conversely if thee-Service is the
initiator of a, then the action appears asaÀ.

The set of (annotated) sequences of actions of thee-
Service can be represented, by collapsing common prefixes,
as a (possibly infinite)execution tree. Observe that in such
an execution tree, for each node we can have at most one
successor node for each annotated action. We annotate the
nodes of the execution tree with the information on when a
sequence of actions from the root to the node can be con-
sidered a completed execution of thee-Service, in the sense
that thee-Service can terminate.

To represent the set ofe-Services available to a client, we
introduce the notion ofcommunityC of e-Services, which
is a (finite) set ofe-Services that share a common (finite)
set of actionsΣ, also called thealphabetof the community.
Hence, to join a community, ane-Service needs to export its
behavior in terms of the alphabet of the community.

We concentrate one-Services whose behavior can be rep-
resented using afinite number of states. We do not consider
any specific representation formalism for representing such
states (such as action languages, situation calculus, state-
charts, etc.). Instead, we use directly deterministic finite
state machines (i.e., deterministic and finite labeled transi-
tion systems).

Given ane-ServiceAi, the execution treeT (Ai) gener-
atedby Ai is obtained by following in all possible ways the
transitions ofAi, and annotating as final those nodes corre-
sponding to the traversal of final states.

Example 1 In Figure 1 is shown a community ofe-
Services A1, A2. A user would like to send an e-
card and, after a payment is requested (and obtained)
by the e-Service A1, the user can complete the e-
card and send it. A1 repeatedly is servant for search-
ing an e-card and selecting one among those returned
(search greeting card & select ), is initiator for a
pay action and servant for writing and sending the e-card
(complete & send ). A2, after validating a (registered)
user information (e.g., name, credit card number, account
number, . . .) (action user authentication it is ser-
vant of), repeatedly is ready to act as servant of apay action.

e-Service Composition
When a client requests a certain service from ane-Service
community, there may be noe-Service in the community
that can deliver it directly. However, it may be possible to
suitably orchestrate (i.e., coordinate the execution of) the
e-Services of the community so as to provide the service
requested by the client. In other words, there may be an
orchestration that coordinates both the initiator and the ser-
vants of each action, using thee-Services in the community,
and that realizes what requested by the client.

Let the community C be formed by n e-Services
A1, . . . , An, and let the service requested by the client be
denoted byA0. An orchestrationO (also called composite
e-Service) of thee-Services inC can be formalized as a so-
calledorchestration treeT (O), that is an execution tree in
which eachedgeof the tree is labeled by a triple(I, a, S),
wherea is the orchestrated action,I ∈ [0..n] denotes the
initiator, andS ⊆ [1..n] denotes the nonempty set ofe-
Services inC that act as servants. As an example, the label
(0, a, {1, 3}) means that the actiona is initiated by the client
and served by thee-ServicesA1 andA3.

Given an orchestration treeT (O) and a pathp in T (O)
starting from the root, we call theprojectionof p on ane-
ServiceAi the path obtained fromp by:

• removing each edge whose label(I, a, S) is such that
i 6∈ {I} ∪ S, and collapsing start and end node of each
removed edge;

• replacing, for each edge labeled by(I, a, S), with I = i,
the label withaÀ;

• replacing, for each edge labeled by(I, a, S), with i ∈ S,
the label withÀa.

We say that an orchestrationO iscoherentwith a community
C if for each pathp in T (O) from the root to a nodex and for
eache-ServiceAi of C, the projection ofp onAi is a path in
the execution treeT (Ai) from the root to some nodey, and
moreover, ifx is final inT (O), theny is final inT (Ai).

We define asclient specificationa specification of the or-
chestration tree that the client would like to have realized
using thee-Services in the community. Of the orchestration
tree the client only specifies the actions, and whether it is
the initiator of an action or not. Notably, we allow for in-
complete information on the tree specified by the client. In
other words the client may underspecify the sequences of
actions of which the client is not the initiator, allowing the
orchestrator to fill in the details left unspecified. Moreover
the client may allow for don’t care nondeterminism in the
specification.

We consider underspecified specifications that can be ex-
pressed using a finite number of states, specifically asnon-
deterministicFSM in which the alphabet includes a special
τ action that represents a finite sequence of actions in which
the client is not the initiator (nor a servant). The nonde-
terministic FSMA0 specifies a setT (A0) of orchestration
trees, and the client requires the orchestrator to realize one
(any one) among such trees. Specifically, each orchestration
tree inT (A0) is obtained by

• unfolding the FSM and while doing so, resolving the non-
determinism by choosing a single successor state for each



O

(a,0)/{2} (p,1)/{2}(c,0)/{1}

(s,0)/{1}
O

(a,0)/{2} (p,1)/{2}(c,0)/{1}

(s,0)/{1}

A0 a� c� τ

s�

A0 a� c� τ

s�

Figure 2: Client specification and orchestration

transition (includingτ transitions); this generates a (deter-
ministic), possibly infinite tree, whose edges are labeled
by Σ0 and whose nodes corresponding to final states of
A0 are annotated as final;

• replacing each edge labeled byaÀ with an edge labeled
by (0, a, ·); this means that in the orchestration the client
is the initiator ofa;

• replacing each edge labeled byτ with a finite sequence
of edges, each one labeled by(j, a, ·), wherea is some
action, andj ∈ [1..n]; this means that for aτ action the
orchestration is free to specify a finite sequence of interac-
tions initiate by whatevere-Service except for the client;

• choosing for each edge a set of servants, and adding it to
the label of the edge.
We say that an orchestrationO realizesa client specifica-

tionA0 if O ∈ T (A0). Given a communityC of e-Services,
and a client specificationA0, the problem ofcomposition
existenceis the problem of checking whether there exists
an orchestration that is coherent withC and that realizesA0.
The problem ofcomposition synthesisis the problem of syn-
thesizing an orchestration that is coherent withC and that
realizesA0. Since we are consideringe-Services that have
a finite number of states, we would like also to have an or-
chestration that can be represented with a finite number of
states, i.e., as a Mealy FSM (MFSM).

Example 2 Figure 2 shows a possible client specification
A0, which specifies that the client would like to act as ini-
tiator of auser authentication action, followed by
a search greeting card & select action. At this
point the client allows the orchestration to act in a way
not requiring interaction with the client itself, and then is
interested to act as initiator of acomplete & send ac-
tion. O is the MSFM of an orchestration coherent with
the e-Services of Example 1 and realizing the client spec-
ification A0. The orchestration specifies the client as ini-
tiator of the actionuser authentication with A1 as
servant, then specifies the client as initiator of the action
search greeting card & select with A2 as ser-
vant; at this point, the orchestration specifiesA1 as initia-
tor of the actionpay served byA2 (note that, correctly, the
client is not involved, as specified by theτ action inA0),
and finally the orchestration specifies the client as initiator
of the actioncomplete & send with A1 as servant.

Composition Synthesis
We address the problem of composition existence and syn-
thesis in the FSM-based framework introduced above, by

reducing the problem of composition existence to satisfia-
bility of a concept in a knowledge base expressed in the
well known Description Logic (DL)ALCQreg (Calvanese
& De Giacomo 2003).

By exploiting reasoning methods for DLs based on model
construction, such as tableaux algorithms, one can actually
construct the MFSM orchestration. Notice that such al-
gorithms need to be able to deal with reflexive transitive
closure, introduced inK due toτ transitions in the client
specification. If suchτ transitions are not present (while
the client specification may still be underspecified), one can
resort to state-of-the-art implemented DL systems, such as
FaCT and Racer, to check existence of a composition, while
these systems are not yet usable for the actual construction
of the MFSM orchestration, since they do not return the con-
structed model. A mentioned we developed an open source
prototype, implemented in Java, that actually generates a
composition (not supporting transitive closure yet) by build-
ing a DL model and extracting from it the MSFM that con-
stitute the composition.

Acknowledgement This work has been supported by
MIUR through the “FIRB 2001” ProjectMAIS, in the con-
text of the Workpackage 2 activities.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. Cambridge University
Press.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Lenzerini,
M.; and Mecella, M. 2003a. A Foundational Vision ofe-
Services. InProc. of the CAiSE 2003 Workshop on Web
Services, e-Business, and the Semantic Web (WES 2003).
Berardi, D.; Calvanese, D.; De Giacomo, G.; Lenzerini,
M.; and Mecella, M. 2003b. Automatic Composition of
e-Services that Export their Behavior. In Springer., ed.,
Proc. of the 1st Int. Conf. on Service Oriented Computing
(ICSOC 2003), volume 2910 ofLNCS.
Berardi, D.; Calvanese, D.; De Giacomo, G.; Lenzerini,
M.; and Mecella, M. 2003c.e-Service Composition by
Description Logics Based Reasoning. InProc. of the 2003
International Workshop on Description Logics (DL’03).
Berardi, D.; Calvanese, D.; De Giacomo, G.; and Mecella,
M. 2003d. Reasoning About Actions fore-Service Com-
position. InProc. of the ICAPS Workshop on Planning for
Web Services (P4WS 2003).
Calvanese, D., and De Giacomo, G. 2003. Expressive
description logics. In Baader et al. (2003). chapter 5, 178–
218.
Harel, D.; Kozen, D.; and Tiuryn, J. 2000.Dynamic Logic.
MIT Press.
Hull, R.; Benedikt, M.; Christophides, V.; and Su, J.
2003. e-Services: A Look Behind the Curtain. InProc.
of PODS 2003.
Papazoglou, M., and Georgakopoulos, D. 2003. Service
Oriented Computing (special issue).Comm. of the ACM
46(10).


