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ABSTRACT
In this paper we study automatic composition synthesis of
e-Services, based on automated reasoning. We represent the
behavior of an e-Service in terms of a deterministic transi-
tion system (or a finite state machine), in which for each ac-
tion the role of the e-Service, either as initiator or as servant,
is highlighted. In this setting we present an algorithm based
on satisfiability in a variant of Propositional Dynamic Logic
that solves the automatic composition problem. Specifically,
given (i) a possibly incomplete specification of the sequences
of actions that a client would like to realize, and (ii) a set
of available e-Services, our technique synthesizes a compos-
ite e-Service that (i) uses only the available e-Services and
(ii) interacts with the client “in accordance” to the given
specification. We also study the computational complexity
of the proposed algorithm.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; D.2.2 [Software Engineering]: Design
Tools and Techniques—State diagrams; D.2.4 [Software
Engineering]: Software/Program Verification—Formal me-
thods; F.3.1 [Logics and Meaning of Programs]: Speci-
fying and Verifying and Reasoning about Programs—Logics
of programs

General Terms
Theory, Verification, Design

Keywords
Theoretical Framework for Service Representation and Com-
positions, Service Composition Models and Language, Intel-
ligent Services
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1. INTRODUCTION
The Service Oriented Computing (SOC [33]) paradigm of-

fers strong potential for a revolutionary change in the way
the network technology is exploited. It allows for realizing
the so-called virtual enterprises and communities [18, 13],
i.e., a pool of companies that are able to export services as
semantically defined functionalities to a vast number of cus-
tomers, and to cooperate by automatically composing and
integrating services over a distributed network. Such ser-
vices, usually referred to as e-Services, are self-contained,
modular applications that can be described, published, lo-
cated and dynamically invoked, in a programming language
independent way.

Research on e-Services spans over many interesting issues,
including description, discovery, composition, synchroniza-
tion, coordination, and verification [25]. In [34], the Ser-
vice Oriented Architecture (SOA) is proposed, which is the
commonly accepted and minimal architecture for e-Services.
SOA provides the basic operations necessary to describe,
publish, find and invoke e-Services. One of the main issues
in SOC is e-Service composition [33]. e-Service composition
addresses the situation when a client request cannot be sat-
isfied by any available e-Service, but by a composition of
them. In other words, the client request can only be satis-
fied by suitably combining “parts of” available e-Services,
also called component e-Services in this context. Compo-
sition involves two different issues [17]. The first, typically
called composition synthesis, is concerned with synthesizing
a composition of available e-Services that satisfies a client
request. The synthesis process produces a specification of
how to coordinate, or orchestrate, the component e-Services
to fulfill the the client request. Such a specification can be
produced either automatically, i.e., using a tool that imple-
ments a composition algorithm, or manually by a human.
The second issue, often referred to as orchestration, is con-
cerned with how to actually execute the composition of the
e-Services produced by the composition synthesis, by suit-
ably supervising and monitoring both the control flow and
the data flow among the involved e-Services.

In this paper, we deal with composition synthesis, by fol-
lowing the approach of [6]. That approach has two notable
features on which we build here:

• The composition is based on the ability of executing
the available component e-Services concurrently, and



of controlling in a suitable way how such services are
interleaved to serve the client.

• The client request is not a specification of a desired
execution, but a set of possibly non terminating ex-
ecutions organized in an execution tree, whose nodes
correspond to sequences of transitions executed so far
and whose successor nodes represent the choices avail-
able to the client to choose from what to do next. In
other words the client specifies the so-called transition
system of the activities she is interested in doing.

Observe that both of these features are quite distinctive of
that approach, and set the stage for a quite advanced form
of composition.

Here we follow that approach, but introduce two funda-
mental extensions.

1. The composition is again based on controlling the con-
current execution of the the available component e-
Services, but in addition it allows for synchroniza-
tion and communication between the component e-
Services. These aspects are completely missing in [6].
Here instead, we introduce the notion of initiator and
servant of an (inter)action, and we require that each
action involves one initiator and one or more servants
that suitably synchronize and exchange information
in order to complete the action. The composition can
control who is interacting at each step and allows two
component e-Services to interact and synchronize suit-
ably before starting to serve the client, or while serv-
ing it/him. This provides us with a bridge towards the
message-based model of e-Services [9], and towards the
e-Service communication model that form the basis to
standard languages, such as BPEL4WS [2].

2. The client request is again a specification of the tran-
sition system that the client is interested in being able
to execute. However here we allow for several forms of
underspecification of such a transition system

• by introducing forms of don’t care nondetermin-
ism (angelic nondeterminism) on the next set of
transitions available to the client; that is the client
allows the composition synthesis to resolve non-
deterministic choices taking advantage of what
the available component e-Services can do at that
point of their computation1;

• and by allowing the activities in which the client
is involved (i.e., those described by its transition
system) to be interleaved in specified points with
activities that are performed by the component
e-Services without the client intervention (but of
which the client is in any case aware); this al-
lows the client (i) to exploit the synchronization
and communication abilities that the component
e-Services have (cf. point 1 above), and (ii) to
allow such e-Services to perform some prelimi-
nary/extra work before or while serving it/him.

1This has to be contrasted with the fact that at the same
time the composition synthesis must generate a composition
that allows the client to make all choices specified in its
transition system.

We study the problem of e-Service composition in this
enhanced framework. Our main result is a composition syn-
thesis technique, which is sound, complete and terminating,
i.e., if a composition of the available component e-Services
realizing the client specification exists, then such a tech-
nique will actually produce one such a composition. The
composition produced is finite state, and hence, as a col-
lateral result of our synthesis technique, we show that if a
composition exists then there exists one which is indeed fi-
nite state. Also, our technique give us an EXPTIME upper
bound in worst-case computational complexity for the com-
position synthesis problem. While assessing that such bound
is in fact tight is still open, we conjecture that the problem
is indeed EXPTIME-hard. From a more practical point of
view, it is easy to find cases in which the composition must
be exponential in the size of the component e-Services and
the client specification, hence exponentiality is inherent to
the problem.2

The synthesis technique is based on reducing the problem
of checking the existence of a composition into checking sat-
isfiability of a formula expressed in variant of Propositional
Dynamic Logic (PDL [23]), equipped with graded modali-
ties [14, 16, 38]. Interestingly such a logic corresponds to
a particular expressive Description Logic, namely ALCQreg ,
which is well-studied from the computational point of view
(see, e.g., [10] in [4]). This correspondence allows us, in
principle, to exploit the highly optimized DL-based reason-
ing systems, currently available [24, 21, 32].

The rest of this paper is organized as follows. In Section 2
we define our formal framework for e-Services. In Section 3
we present the notions of client specification and composi-
tion. In Section 4 we present our composition synthesis tech-
nique. In Section 5 we relate our work with other existing
approaches to e-Service composition. Finally, in Section 6
we draw some conclusions and discuss future work.

2. E-SERVICE MODEL
An e-Service is a software artifact that interacts with its

client and possibly other e-Services in order to perform a
specified task. A client can be either a human or a soft-
ware application. When executed, an e-Service performs a
given task by executing certain actions in coordination with
the client or other e-Services. Specifically, each action in
the task has a (single) initiator, typically the client, which
requests the execution of the action possibly passing along
information, and one or more servants, which are e-Services
that respond to the request, possibly exchanging with the
initiator further information.

We build on the approach of [6, 7], and characterize the
exported behavior of an e-Service by means of an execution
tree. The nodes of such a tree represent the sequence of
actions that have been performed so far by the e-Service,
while the successor nodes represent the actions that can be
performed next at each point of the computation. The root
represents the initial state of the computation performed by
the e-Service, when no action has been executed yet. We
label the nodes that correspond to completed execution of
the e-Service as “final”, with the intended meaning that in
these nodes the e-Service can (legally) terminate. In order
to represent the role an e-Service has wrt a given action, we

2Obviously, this does not give us a tight lower bound result,
since the problem could be, for example, PSPACE-hard.



annotate each action symbol as follows: if the e-Service is
one of the servants of an action a, then the action appears
as �a, conversely if the e-Service is the initiator of a, then
the action appears as a�. Observe that in such an execution
tree, for each node we can have at most one successor node
for each annotated action. That is, we assume that the state
of the e-Service is entirely determinated by the sequence of
(annotated) actions executed so far.

To represent the set of e-Services available to a client, we
introduce the notion of community C of e-Services, which
is a (finite) set of e-Services that share a common (finite)
set of actions Σ, also called the alphabet of the community.
Hence, to join a community, an e-Service needs to export its
behavior in terms of the alphabet of the community. Also,
a client interacts with e-Services in C using the alphabet Σ.

In this work, we concentrate on e-Services whose behavior
can be represented using a finite number of states. We do not
consider any specific representation formalism for represent-
ing such states (such as action languages, situation calculus,
state-charts, etc.). Instead, we use directly deterministic
finite state machines, (or equivalently, finite deterministic
transition systems)3.

Formally, each e-Service in the community is described by
a finite state machine (FSM) Ai = (Σ+, Si, s

0
i , δi, Fi), where:

• Σ+ = {�a, a� | a ∈ Σ} is the alphabet of the FSM;

• Si is the set of states, representing the finite set of
states of the e-Service;

• s0
i is the initial state, representing the initial state of

the e-Service;

• δE : Si × Σ+ → Si is the (partial) transition function,
which is a partial function that given a state s and an
annotated action �a (or a�) returns the state resulting
from executing the action in s;

• Fi ⊆ Si is the set of final states, representing the set
of states that are final for the e-Service, i.e., the states
where the e-Service can terminate.

Given an e-Service Ai, the execution tree T (Ai) generated
by Ai is the execution tree containing one node for each
sequence of actions obtained by following (in any possible
way) the transitions of Ai, and annotating as final those
nodes corresponding to the traversal of final states.

The different roles that an e-Service can play with respect
to a given action (i.e., either as initiator or as servant) in-
duces a classification between the e-Services of a community:

• pure-servant e-Service: it is an e-Service that acts only
as servant in all possible sequences of interactions it
can be involved in; its associated FSM presents only
actions of type �a; such an e-Service can be directly
exploited by a client, as it is able to completely satisfy
client requests and execute its tasks (this is the kind
of e-Services studied in [6]);

• pure-initiator e-Service: it is an e-Service that acts
only as initiator in all possible sequences of interac-
tions it can be involved in; its associated FSM presents

3Note that the finite state machines are deterministic since
they are used to compactly represent the execution tree of
the corresponding e-Service, which in turn has at most one
successor node for each (annotated) action.
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Figure 1: e-Services of the community

only actions of type a�; this kind of e-Service is, for
example, the one typically associated to the client, i.e.,
it represents what the client wants to actually perform
(c.f. [6]).

• mixed e-Service: it is an e-Service that acts as initiator
in at least one possible sequence of interactions it can
be involved in; its associated FSM presents at least one
action of type a�; such an e-Service can be exploited
in a composition only if a matching e-Service that acts
as servant can be found in the community, to which it
can delegate the execution of actions it initiates.

Observe that the fact that a client request is a specification
of a pure-initiator e-Service correspond to the idea, almost
universally accepted in the SOC literature, that the client
cannot be exploited by the e-Services in the community for
carrying on their tasks.

Example 2.1. Figure 1 shows a community of e-Services
constituted by e-Services A1, A2, A3, A4. A1 repeatedly al-
lows for ( i) searching an e-card and selecting one among
those returned (search ecard & select), for ( ii) writing the
e-card (compose), and for ( iii) sending it (send); A1 is ser-
vant for all these actions. A2 provides functionalities to
compose an e-card: ( i) it validates the (registered) user in-
formation (e.g., name, email address, . . .) received in in-
put, or it registers a new user along with his information
(authentication); then it repeatedly allows for either
( ii) writing a message and performing a spell check (spell
check), or for selecting a template, which provides help in
writing the message: such template can give suggestions
( iii) in English (select english template), or ( iv) in Ital-
ian (select italian template); finally, after one of such
templates has been selected, it can be edited (edit template).
A2 is servant for the authentication and spell check op-
eration and it is initiator for all the remaining operations.
A3 and A4 act as servants for the operations for which A2 is
initiator: A3 repeatedly allows for ( i) selecting an English
template and then for ( ii) editing it; A4 repeatedly allows
for ( i) selecting an Italian template and then for ( ii) editing
it.

Finally, note that A1, A3 and A4 are pure-servant e-
Services, whereas A2 is a mixed e-Service.

3. E-SERVICE COMPOSITION
When a client requests a certain service from an e-Service

community, there may be no e-Service in the community



that can deliver it directly. However, it may be possible
to suitably orchestrate (i.e., coordinate the execution of)
the e-Services of the community so as to provide the ser-
vice requested by the client. In other words, there may be
an orchestration that coordinates both the initiator and the
servants of each action, using the e-Services in the commu-
nity, and that realizes what requested by the client.

Formally, let the community C be formed by n e-Services
A1, . . . , An, and let the service requested by the client be
denoted by A0. A composition O of the e-Services in C can
be formalized as a so-called composition tree T (O).

• The root ε of the tree represents the fact that no action
has been executed yet.

• Each node x in the composition tree T (O) represents
the history up to now, i.e., the sequence of actions and
their initiator as orchestrated so far.

• For every action a belonging to the alphabet Σ of the
community and I ∈ [0..n] 4 (0 stands for the client
and 1, . . . , n stand for the e-Services A1, . . . , An, re-
spectively), T (O) contains at most one successor node
x·(a, I).

• Some nodes of the composition tree are annotated as
final : when a node is final, and only then, the orches-
tration can be stopped.

• Let’s call a pair (x, x·(a, I)) an edge of the tree. Each
edge (x, x·(a, I)) of T (O) is labeled by a triple (I, a, S),
where a is the orchestrated action, I ∈ [0..n] denotes
the initiator, and S ⊆ [1..n] denotes the nonempty set
of e-Services in C that act as servants. As an example,
the label (0, a, {1, 3}) means that the action a is initi-
ated by the client and served by the e-Services A1 and
A3.

Given a composition tree T (O) and a path p (i.e., a se-
quence of edges) in T (O) starting from the root and arriv-
ing to a node x in T (O), we call the projection of p on an
e-Service Ai the sequence of (annotated) actions obtained
from p as follows:

1. we remove from p all edges whose label (I, a, S) is such
that i �∈ {I} ∪ S

2. in the resulting sequence, we replace

(a) by a�, each edge labeled by (I, a, S) where I = i;

(b) by �a, each edge labeled by (I, a, S) where i ∈ S.

Intuitively, point 1 above throws away all edges where e-
Service Ai is neither servant nor initiator for action a; points
2(a) and 2(b) deal with edges where Ai is, respectively, the
initiator or a servant for action a.

We say that a composition O is coherent with a commu-
nity C if its tree T (O) has the following properties:

• for each edge labeled with (I, a, S), the action a is in
the alphabet of C, and for each e-Service Ai in I ∪ S,
Ai is a member of the community C;

4We use [i..j] to denote the set {i, . . . , j}.

• for each path p in T (O) from the root of T (O) to
a node x, and for each e-Service Ai appearing in p,
the projection of p on Ai is a (sequence of annotated
actions represented by) a node y in the execution tree
T (Ai) of Ai, and moreover, if x is final in T (O), then
y is final in T (Ai).

Next we turn to modeling client requests. Following [6],
we assume that the client request is a specification of the
pure-initiator e-Service that the client wants to realize. How-
ever in this paper we allow for underspecification of such a
pure-initiator client e-Service, that shows up in the form
of don’t-care nondeterminism in its specification. Moreover
we allow in specified points of the pure-initiator client e-
Service that the e-Service itself is interleaved with activities
performed by other e-Service in the community in which the
client is not involved at all (but of which the client is in any
case aware).

More precisely, we define as client specification a speci-
fication of the composition tree that the client would like
to have realized using the e-Services in the community. Of
the composition tree, the client specifies (i) the actions for
which he is the initiator, and (ii) the possibility of having ac-
tivities in which the client himself is not involved. Notably,
we allow for incomplete information on the tree specified by
the client, in forms of don’t-care nondeterminism. Formally,
we define the client specification as a nondeterministic FSM
A0 = (Σ0, S0, s

0
0, δ0, F0), where:

• Σ0 = {a� | a ∈ Σ} ∪ {τ} where τ is a special action
that represents a finite sequence of actions in which
the client is not the initiator (nor a servant);

• S0 is the set of states;

• s0
0 is the initial state;

• δ0 : S0 × Σ0 → 2S0 is a partial function that given a
state and an action returns the set of possible successor
states;

• F0 ⊆ S0 is the set of final states.

Observe that the nondeterministic FSM A0 specifies a set
T (A0) of composition trees, and the client requires the or-
chestrator to realize one (any one) among such trees. Specif-
ically, each composition tree in T (A0) is obtained by

• unfolding the FSM and while doing so, resolving the
nondeterminism by choosing a single successor state
for each transition (including τ transitions); this gen-
erates a (deterministic), possibly infinite tree, whose
edges are labeled by Σ0 and whose nodes, correspond-
ing to final states of A0, are annotated as final;

• replacing each edge labeled by a� with an edge la-
beled by (0, a, ·); this means that in the composition
the client is the initiator of a;

• replacing each edge labeled by τ with a finite sequence
of edges, each one labeled by (j, a, ·), where a is some
action, and j ∈ [1..n]; this means that for a τ action
the composition can contain any finite sequence of in-
teractions initiated by whatever e-Service except by
the client;

• choosing for each edge a set of servants, and adding it
to the label of the edge.
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Figure 2: Client specification and composition.

We say that a composition O realizes a client specification
A0 if T (O) ∈ T (A0).

Given a community C of e-Services (consisting of both
pure-servant, pure-initiator and mixed e-Services), and a
client specification A0, the problem of composition existence
is the problem of checking whether there exists a composi-
tion that is coherent with C and that realizes A0. The prob-
lem of composition synthesis is the problem of synthesizing
a composition that is coherent with C and that realizes A0.

Since we are considering e-Services that have a finite num-
ber of states, we would like also to have a composition that
can be represented with a finite number of states, i.e., as a
Mealy FSM (MFSM) of the form O = (Σ×[0..n], 2[1..n], Sc, s

0
c ,

δc, ωc, Fc), where:

• Σ× [0..n] is the alphabet of the MSFM, which denotes
actions and their initiator;

• Sc, s0
c , δc, Fc are the set of states, the initial state, the

transition function, and the final set of states of the
MSFM, in analogy with the e-Service FSMs;

• 2[1..n] is the output alphabet of the MFSM, which is
used to denote which are the servants of each action;

• ωc : Sc × Σ × [0..n] → 2[1..n] is the output function of
the MFSM, which, given a state, an action a, and an
initiator for a, returns the set of servant e-Services for
a; we assume that the output function ωc is defined
exactly when δc is so.

Example 3.1. Figure 2 shows a client specification A0,
which specifies that the client would like to act as initiator
of a authentication action, followed by a search ecard

& select action. At this point the client specifies a nonde-
terministic choice between two possible paths: along one path
he first composes a message and then asks for a spell check;
along the other path he composes a message and then he al-
lows the orchestration to act in a way not requiring interac-
tion with the client himself (τ action). The client “doesn’t
care” which path is followed and sets the composition syn-
thesis free to specify which sequence of action to execute.
Next, the client would like to send a message. Finally, he
wants to choose whether to stop or send another e-card by
performing the action search ecard & select.

O is the MSFM5 that represents a composition coherent
with the e-Services of Example 2.1 and realizing the client
specification A0. The composition specifies the client as ini-
tiator of the action authentication with A2 as servant, then
specifies the client as initiator of the action search ecard

& select with A1 as servant; at this point, the composi-
tion executes the “lower path” of the client specification and
again specifies the client as initiator of the compose action,
for which A1 is the servant. Then, the composition specifies
A2 as initiator of the actions select italian template and
edit template, which are served by A3 (note that, correctly,
the client is not involved, as specified by the τ action in A0).
Next, the composition specifies the client as initiator of the
action send with A1 as servant. Finally, the client chooses
whether to stop the service execution or to send another e-
card: in the latter case, the composition specifies that the
client is initiator for the action search ecard & select for
which A1 is servant.

Note that O is not the only composition which is coher-
ent wrt the client specification. In effect, several ones exists.
For example, a first one is identical to O, but the τ action
is realized by the sequence select english template and
edit template. Another one is obtained when the nondeter-
minism is resolved in the composition by choosing the “upper
path” of the client specification: it specifies the client as ini-
tiator of ( i) the compose action, for which A1 is the servant,
and of ( ii) the spell check action for which A2 is the ser-
vant. No τ action exists along this path. Next, the computa-
tion continues as before, wrt the send and search ecard &

select actions.

4. SYNTHESIS TECHNIQUE
We address the problem of composition existence and syn-

thesis in the FSM-based framework introduced above. The
basic tool we use is reducing the problem of composition
existence to satisfiability of a formula written in PDLgm , a
variant of PDL [23] equipped with graded modalities [14,
16, 38].

4.1 PDLgm

In PDLgm , starting from a set of atomic propositions and
atomic actions, one can build complex formulas and complex
programs by applying the constructs shown in Figure 3. We
also use the usual abbreviation φ1 → φ2 for ¬(¬φ1 ∨ φ2).

In PDL and its variants, the semantics is specified through
the notion of interpretation. An interpretation I is a pair
(∆I , ·I), where ∆I is the interpretation domain and ·I is
an interpretation function that assigns to each formula φ a
subset φI of ∆I , and to each program R a binary relation
RI over ∆I , respecting the conditions specified in Figure 3.

An interpretation I is a model of a formula φ if φI �= ∅.
A formula φ is satisfiable if it admits a model.

PDLgm formally corresponds to the well-known descrip-
tion logic ALCQreg [10]. Exploiting such a correspondence
we can state that PDLgm enjoys two properties that are of
particular interest for our aims. The first is the tree model
property, which says that every model of a PDLgm formula
can be unwound to a (possibly infinite) tree-shaped model
(considering domain elements as nodes and atomic actions

5An edge (s1, s2) labeled (a, I)/S indicates a transition
δ(s1, (a, I)) = s2 with output S, where I is the initiator
of a and S is the set of servants.



Formulas φ Syntax Semantics

atomic propositions A AI ⊆ ∆I

negation ¬φ ∆I \ φI

conjunction φ1 ∧ φ2 φI
1 ∩ φI

2

disjunction φ1 ∨ φ2 φI
1 ∪ φI

2

universal modalities [R]φ {o | ∀o′.(o, o′) ∈ RI → o′ ∈ φI}
existential modalities 〈R〉φ {o | ∃o′.(o, o′) ∈ RI ∧ o′ ∈ φI}
graded modalities (≤ n 〈P 〉φ) {o | �{(o, o′) ∈ P I | o′ ∈ φI} ≤ n}
Programs R Syntax Semantics

atomic action P P I ⊆ ∆I × ∆I

union R1 ∪ R2 RI
1 ∪ RI

2

concatenation R1; R2 RI
1 ; RI

2

refl. trans. clos. R∗ (RI)∗

test (φ)? {(o, o) | o ∈ φI}

Figure 3: Syntax and semantics of PDLgm .

as edges). The second is the small model property, which
says that every PDLgm that is satisfiable, admits a finite
model whose size (in particular the number of domain el-
ements) is at most exponential in the size of the formula
itself.

4.2 PDLgm Encoding
Given the specification of a client e-Service in terms of a

nondeterministic FSM A0 and a community of n e-Services
A1, . . . , An, we build an PDLgm formula Φ. As set of atomic
propositions in Φ we have (i) one atomic proposition s for
each state s of Aj , for j ∈ [0..n], which intuitively de-
notes that Aj is in state s;6 (ii) atomic propositions Fj , for
j ∈ [0..n], denoting whether Aj is in a final state; (iii) atomic
propositions servedj , for j ∈ [1..n], denoting whether (com-
ponent) FSM Aj is a servant of a transition; (iv) atomic
propositions initiatedj , for j ∈ [0..n], denoting whether FSM
Aj is a servant of a transition; (v) an atomic proposition Init
representing the initial state of the required service; (vi) one
atomic proposition a for each action a ∈ Σ. We have a single
atomic action trans in Φ, such a role will be used to denote
state transitions caused by actions. The formula Φ is formed
as follows.

• For the client specification A0 = (Σ, S0, s
0
0, δ0, F0) we

form the formula [trans∗]Φ0 where Φ0 is the conjunc-
tion of:

– s → ¬s′, for all pairs of states s, s′ ∈ S0; these say
that atomic concepts representing different states
are disjoint.

– s →
∨

s′∈δ0(s,a�)〈trans〉(initiated0 ∧ a ∧ s′), for

each a ∈ Σ and s with δ0(s, a
�) �= ∅; these encode

the transitions different from τ .

– s →
∨

s′∈δ0(s,τ) 〈R
∗
τ 〉s′, for each s with δ0(s, τ) �=

∅, where Rτ stands for

((≤ 1 〈trans〉¬initiated0))?; trans; (¬initiated0)?

6In this paper we are not concerned with compact represen-
tations of the states of the FMS. However, we observe that
if states are succinctly represented (e.g., in binary format)
then, in general, we can exploit such a representation in Φ
to get a corresponding compact PDLgm formula Φ as well.

These encode the τ transitions of A0; a τ tran-
sition is realized through a single sequence of ac-
tions in which A0 does not participate; the qual-
ified number restriction is used to ensure that
there is a single sequence.

– s → [trans](a → ¬initiated0), for each a such that
δ(s, a�) is not defined; these say that a� is not a
possible transition.

– s → [trans]initiated0, if δ(s, τ) is not defined; these
say when a τ transition is not possible.

– F0 ≡
∨

s∈F0
s; this highlights final states of A0.

• For each component FSM Ai = (Σ, Si, s
0
i , δi, Fi), we

form the formula [trans∗]Φi, where Φi is the conjunc-
tion of:

– s → ¬s′, for all distinct pairs of states s, s′ ∈ Si.

– s → [trans](a∧servedi → s′), for each s and a such
that s′ = δi(s,

�a); these encode the transitions
of Ai, conditioned to the fact that Ai is required
to be a servant of a in the composition.

– s → [trans](a ∧ initiatedi → s′), for each s and a
such that s′ = δi(s, a

�); these encode the tran-
sitions of Ai, conditioned to the fact that Ai is
required to be the initiator of a in the composi-
tion.

– s → [trans](a → ¬servedi), for each s and a such
δi(s,

�a) is not defined.

– s → [trans](a → ¬initiatedi), for each s and a
such δi(s, a

�) is not defined.

– s → [trans](servedi∨initiatedi∨s), for each s ∈ Si;
this encodes that when Ai does not participate to
an action, it does not change state.

– Fi ≡
∨

s∈Fi
s; this highlights final states of Ai.

• to encode the general structure of models, we form the
formula [trans∗]Ψ, where Ψ is the conjunction of:

– (≤ 1 〈trans〉(a∧initiated0)), for each action a ∈ Σ:
this represents that the realized composition is
deterministic wrt to the action annotated by the
initiator.



– [trans](
∨

a∈Σ a); to represent that each transition
is caused by an action.

– [trans](
∨

i∈[1..n] servedi); to represent that each

transition must have some e-Service as servant.

– [trans](
∨

i∈[0..n] initiatedi); to represent that each

transition must have an initiator, either an e-
Service in the community or the client.

– [trans](¬initiatedi ∨ ¬initiatedj), for each i, j ∈
[0..n] with i �= j; to represent that transitions
have a single initiator (but possibly several ser-
vants).

– F0 →
∧

i∈[1..n] Fi; this says that when the client

specification is in a final state also all component
e-Services must be in a final state.

– Init → s0
0∧

∧
i∈[1..n] (s

0
i ); to represent that initially

all e-Services are in their initial state.

– Init →
∧

a∈Σ (¬a)
Init →

∧
i∈[0..n] (¬initiatedi)

Init →
∧

i∈[1..n] (¬servedi);

to represent that initially no action has been ex-
ecuted yet.

Finally, we define Φ as Init∧[trans∗]Φ0∧
∧

i=1,...,n[trans∗]Φi∧
[trans∗]Ψ.

4.3 Results

Theorem 4.1. The PDLgm formula

Φ = Init ∧ [trans∗]Φ0 ∧
∧

i=1,...,n

[trans∗]Φi ∧ [trans∗]Ψ

is satisfiable if and only if there exists a composition that is
coherent with A1, . . . , An and that realizes the client specifi-
cation A0.

Proof (sketch). “⇐” From the composition tree T (O) of
an composition O that is coherent with A1, . . . , An and that
realizes A0, we can construct a tree-like model of Φ such
that Init is satisfied in the root. Such a model is essentially
obtained from T (O) by annotating the nodes of T (O) with
the states of the services, and the client specification, and
with the initiator and servant(s) of each action.

“⇒” If Φ is satisfiable, then there exists a tree-like model
of Φ where Init is satisfied in the root. From such a model,
one can derive a composition tree T (O) that is coherent with
A1, . . . , An and realizes A0, essentially by extracting the in-
formation on initiator and servants from the interpretation
of the propositions initiatedi and servedi.

Observe that, the size of Φ is polynomially related to the
size of A0, A1, . . . , An. By the small model property of
PDLgm , if Φ is satisfiable, then it is satisfiable in a model
that is at most exponential in the size of Φ. From such a
finite model one can extract a representation of the compo-
sition that has the form of a MFSM. Specifically, given a
finite model I = (∆I , ·I), we define such an MFSM O =

(Σ × [0..n], 2[1..n], Sc, s
0
c , δc, ωc, Fc) as follows:

• Sc = ∆I ;

• s0
c = InitI ;

• s′ = δc(s, (a, I)) iff (s, s′) ∈ transI , s′ ∈ aI , and s′ ∈
initiatedI

I ;

• {j1, . . . , j�} = ωc(s, (a, I)) iff (s, s′) ∈ transI , s′ ∈ aI ,
s′ ∈ initiatedI

I , and s′ ∈ servedI
j , for exactly those j in

{j1, . . . , j�};

• Fc = F I
0 .

From the above construction, we have the following lemma.

Lemma 4.2. Any finite model of the PDLgm formula Φ
built as above denotes a MFSM composition that is coherent
with A1, . . . , An and realizes the client specification A0.

By Theorem 4.1 and Lemma 4.2, we get the following
result.

Theorem 4.3. If there exists a composition that is coher-
ent with A1, . . . , An and that realizes a client specification
A0, then there exists one that is a MFSM of size at most
exponential in the size of A0, A1, . . . , An.

Proof (sketch). By Theorem 4.1, if there exists a compo-
sition tree, then the PDLgm formula Φ constructed as above
is satisfiable. In turn, if Φ is satisfiable, for the small-model
property of PDLgm , there exists a model I of size at most
exponential in Φ, and hence in A0 and A1, . . . , An. From
I we can construct a MFSM Ac as above. Notice that the
composition tree generated by Ac essentially corresponds
the tree-like model obtained by unwinding I.

By the theorems above and the EXPTIME-completeness
of satisfiability in PDLgm (cf. [10]), we get the following
complexity upper bound.

Theorem 4.4. Checking the existence of a (MFSM) com-
position that is coherent with A1, . . . , An and that realizes a
client specification A0 can be done in EXPTIME.

We do not have a tight lower bounds for the complexity
of the composition existence problem, however we conjec-
ture that the above bounds are in fact tight (i.e., that the
problem is EXPTIME-hard). Notice that, even if we do
not have a tight lower bound yet, it is easy to find cases in
which the composition must be exponential in the size of the
component e-Services and the client specification. Hence ex-
ponentiality (though not necessarily EXPTIME-hardness) is
inherent to the problem.

Exploiting reasoning methods for PDLs (or correspond-
ing Description Logics) based on model construction, such
as tableaux algorithms [8, 12, 5], one can actually construct
such a MFSM composition. Notice that such algorithms
need to be able to deal with full reflexive transitive clo-
sure, introduced in Φ due to τ transitions in the client spec-
ification. If such τ transitions are not present (while the
client specification may still be underspecified), one can re-
sort to state-of-the-art implemented Description Logics sys-
tems, such as FaCT [24] and Racer [21, 32], to check the
existence of a composition, while these systems are not yet
usable for the actual construction of the MFSM composi-
tion, since they do not return the constructed model. A
prototype implemented in Java that actually generates a
composition using PDL tableaux techniques (not fully sup-
porting transitive closure yet) is available7.
7cf. the paride (process-based framework for composition
and orchestration of dynamic e-services) Open Source
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Figure 4: Model of the PDLgm formula encoding our running example.

We conclude the section by showing the encoding of our
running example in a PDLgm formula Φ and then show and
discuss its model. For lack of space we report only part of
the encoding of the client specification A0.

The transitions different from τ are encoded in Φ as fol-
lows:

s0
0 → 〈trans〉(initiated0 ∧ a ∧ s1

0)
s1
0 → 〈trans〉(initiated0 ∧ ss ∧ s2

0)
s2
0 → 〈trans〉(initiated0 ∧ c ∧ s3

0) ∨ 〈trans〉(initiated0 ∧ c ∧ s4
0)

· · ·

Note that the or in the third assertion is due to the fact
that two c-transitions are defined from state s2

0, leading to
states s3

0 and s4
0, respectively.

The transition involving τ is captured by:
s3
0 → 〈R∗

τ 〉s5
0 where Rτ stands for

((≤ 1 〈trans〉¬initiated0))?; trans; (¬initiated0)?

The following set of assertions encode that transitions dif-
ferent from τ are not defined from a state:

s0
0 → [trans](ss → ¬initiated0)

s0
0 → [trans](c → ¬initiated0)
· · ·
s0
0 → [trans](it → ¬initiated0)

s0
0 → [trans](et → ¬initiated0)
· · ·
s1
0 → [trans](a → ¬initiated0)

s1
0 → [trans](c → ¬initiated0)
· · ·

s3
0 → [trans](ss → ¬initiated0)

s3
0 → [trans](a → ¬initiated0)

s3
0 → [trans](c → ¬initiated0)

s3
0 → [trans](s → ¬initiated0)

s3
0 → [trans](it → ¬initiated0)

s3
0 → [trans](et → ¬initiated0)

s3
0 → [trans](e → ¬initiated0)

s3
0 → [trans](sc → ¬initiated0)
· · ·

In A0 from s3
0 a single τ transition is defined. While no τ

transitions are defined for states different from s3
0:

s0
0 → [trans]initiated0

s1
0 → [trans]initiated0

s2
0 → [trans]initiated0

s4
0 → [trans]initiated0

s5
0 → [trans]initiated0

s6
0 → [trans]initiated0

Observe that, in general, our framework does not prevent
to define two τ transitions starting from a state: in this case,
the client leaves the composition synthesis free to choose one
transition and replace it with whatever sequence of actions.

Project: http://sourceforge.net/projects/paride/ that
is the general framework in which we intend to release the
various prototypes produced by our research.

Also, our framework allows for both a τ transition and a
non-τ transition, say labeled by action a, originating from a
same state. Observe that even if the composition synthesis
chooses to realize the τ transition by the a action, the com-
position remains deterministic, since the two a actions have
different initiators (in one case it is the client, in the other
it is an e-Service in the community).

Figure 4 shows a model for the PDLgm formula Φ: for
sake of clarity, for each state, we report only the atomic
propositions that are true in that state and we highlight
in italics the propositions that change their value from one
state to another; also, we do not show the role trans, which
labels all transitions of the model.

It is easy to verify that the interpretation in Figure 4 is in-
deed a model of Φ, since for each state (domain element), all
constraints expressed in Φ are satisfied. For example, in the
initial state s0

c , (i) Init holds, (ii) all the FSM associated to
the component e-Services and to the client specification start
from their initial state, (iii) no action is executed, there-
fore no e-Service act as initiator nor as a servant, (iv) since
the composition is in a final state, also all the component
e-Services are in a final state. State s1

c is reached after per-
forming action a, whose initiator is the client and whose
servant is A2: therefore, both the client specification and
A2 moved, respectively, to states s1

0 and s1
2, while the other

e-Services do not change state. Note that in s1
c despite the

fact that all e-Services are in a final state, the client speci-
fication is not. Finally, observe that in this model s3

0 holds
in s4

c . In fact the formula in Φ talking about τ transitions
does not require any specific state to be assigned to the in-
termediate steps that realize the τ transition, namely s4

c in
our model.

It is easy to see that the (MFSM) composition reported
in Figure 2 can be obtained from the model in Figure 4 by
following the construction shown at the beginning of this
section.

5. RELATED WORK
Generally speaking, research on e-Service description and

modeling, and e-Service composition (especially synthesis,
less orchestration) is relevant for our work [17]. A nice sur-
vey on such issues is [25]. Most of the work on these issues is
based on research in workflows, which model business pro-
cesses as sequences of (possibly partially) automated activ-
ities, focusing on both data and control flow among them



(e.g., [36, 37]). Specific representations of e-Services are of-
ten based on finite state formalisms, e.g., in [31] e-Services
are represented as statecharts, and in [9] e-Services are mod-
eled as Mealy machines. In our paper, we are not concerned
with the representation of e-Services. We are only interested
in singling out (in the abstract) the computations that such
e-Services can execute. Hence we simply model e-Services
as finite state machines (i.e., deterministic finite transition
systems).

Following [6] two specific features form the base of our
proposal. The first one is that the composition involves the
concurrent executions of several e-Services. Only few pro-
posals in the literature follow a similar idea. In particular,
the most related ones are [9, 29, 35]: they have in common
with our proposal the fact that the e-Services are seen as
white-boxes and hence they can be interleaved if needed.
The composition deals with suitably controlling such an in-
terleaving so as to realize the client request. Note that, most
work on composition is based on the idea of sequentially
composing the available e-Services, which are considered as
black boxes, and hence atomically executed [3, 26, 28, 39, 1].
Such an approach to composition is tightly related to Clas-
sical Planning in AI [19]. The second basic feature is that
the client request is a specification of the transition system
that the client wants to be able to execute. This feature is, to
the best of our knowledge, unique to the proposal in [6] and
hence to the one here. Indeed even [9, 29] actually focus
on realizing a single execution fulfilling the client request.
Notice that such an execution may depend on conditions to
be verified at run time, but not on further choices made by
the client. Only the proposal in [35] has some similarities
with our: indeed, there, the client goal is expressed in a spe-
cific branching-time logic, that allows to specify alternative
paths of execution under the control of the client. Though,
their goals are still essentially based on having a main exe-
cution to follow, plus some side paths that are typically used
to resolve exceptional circumstances.

Wrt architectural distinctions, in [25] two main different
kinds of composition are identified: (i) the peer-to-peer
approach in which the individual e-Services interact among
themselves and with the client directly, and (ii) the me-
diated approach in which the control over the available e-
Services is centralized. With respect to such a classification,
the research works reported in [29, 11, 37, 30] can be classi-
fied into the mediated approach to composition. Conversely
in [15] the enactment of a composite e-Service is carried out
in a decentralized way, through peer-to-peer interactions.
In [9], a peer-to-peer approach is considered, and the in-
terplay between a composite e-Service and component ones
is analyzed, also in presence of unexpected behavior. Our
proposal naturally fits in the mediated approach. However,
using standard distribution and replication techniques de-
veloped by the Distributed Systems community, it is pos-
sible, in principle, to partition the synthesized composition
by suitably projecting it over the peers (the available e-
Services) and to distribute the various partitions, thus ob-
taining a peer-to-peer approach. This issue will be further
investigated in future work.

The last point that we want to discuss here regards the
distinction between data and process that often shows up
in the e-Service literature. Indeed we have two extremes in
dealing with data and process. One end of the spectrum is
well explored by the literature on data integration that fully

takes into account the data, but not the process [22, 27].
Interestingly, there are some proposals that base e-Service
composition for data intensive e-Services on such a litera-
ture, avoiding to talk about the process as much as possible
[20]. The other end of the spectrum is much less studied.
Our proposal, together with those in [9, 29, 35], tries to
explore such an end of the spectrum. Observe that, intro-
ducing data in a naive way in our setting is in fact possible,
but would make composition exponential in the data. This
is to be considered unacceptable, since the amount of data
is typically huge (wrt the size of the e-Services) and hence
one wants to keep the computations polynomial in the data.
More generally, both ends of this spectrum (only data and
only process) deal with problems that are quite difficult.
Finding a good way to integrate the two, without multiply-
ing the complexities, is probably going to become one of the
key problems in e-Service composition in the future.

6. CONCLUSIONS
In this paper we have developed a sound, complete, and

terminating technique for automatic composition synthesis
of e-Services, starting from a client specification, which al-
lows for underspecification of the transition system that the
client wants to be able to execute. The technique is based
on reasoning in a variant of PDL.

In e-Service composition, there is a clear distinction be-
tween the role of the client asking for a service, and the
role of the software artifact that realizes the service. In our
model, such distinction is reflected in the fact that a client
is always considered as an initiator of actions, and not as a
servant, while an e-Service is seen mostly as a servant. By
blurring such distinction, one makes the notion of e-Service
similar to the notion of agent. Under this perspective, the
results presented here become relevant for automatic syn-
thesis of agents. In the future, we aim at investigating this
perspective in detail.
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