
Using the CIM Conceptualization in Autonomic System Management:
the System Management Ontology Project

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Giuseppe Santucci
Dipartimento di Informatica e Sistemistica

Università di Roma La Sapienza
lastname@dis.uniroma1.it

Antonio Perrone, Guido Vetere
IBM SWG Rome Lab

firstname.lastname@it.ibm.com

1. Introduction
The administrator of current IT environments is facing a continuous increase in the complexity that s/he needs to
handle. S/he can be compared to a power jet pilot sitting in front of a console with a plenty of gouges, leds,
counters, each of them measuring or showing a particular part of the overall aircraft status. The pilot looks to all
these indications, correlate each other these data sources, provide them a context (the air craft is landing, is
taking off, and so forth) and, on the light of his knowledge and experience, he can understand if the system is
working within acceptable parameters or experiencing a problem or can anticipate if the system is going to face
a crisis state. The previous example suggest us two considerations:

• You need data collection about the several components of the system to implement system
management.
• Collected data, in almost any case, are useless, without the knowledge and experience (we will refer to
this ensemble as best practices) of the “pilot”.

To address the autonomic computing challenge, systems management has to shift from a data driven approach
to a knowledge-based approach able to alleviate the problem of making sense of the collected data. It can be
difficult to draw any conclusion about a single system or about an application from the raw data provided by
most systems management tools. A graphical performance monitor and an event viewer tool can be useful, but
only an experienced administrator can detect if a problem exists or not. In the mind of the administrator exist the
right domain knowledge that allows him to opportunely correlate a set of data, metrics and events obtained from
the tools into information useful to answer relevant questions such as ‘Is there a bottleneck?’ ‘What is the root
cause of this bottleneck?’ ‘How do I can fix it?’ In this context, best practices are the way to correlate data about
system resources to identify problems and trends and maintain the systems in a status that allows them fulfilling
their business objective.

The first step in making system management tools able to own, deploy and actuate best practices in an
autonomic computing environment is building an appropriated conceptualization in the system management
domain. This conceptualization layer, or ontology, would provide the appropriate vocabulary to express,
manipulate and share knowledge about the autonomic environment.

The Common Information Model developed by the Distributed Management Task Force organization is an
approach to the modeling of systems for management that applies the basic structuring and conceptualization
techniques of an object-oriented paradigm. The approach uses a uniform formalism that supports the
cooperative development of an object-oriented schema across multiple organizations. The CIM standard

schemas, on which system databases on CIM-enabled machines (CIMOM) are based, is having a wider
acceptance and support year by year. They provide an interesting set of classes and relationships among
classes, based on UML, that can be considered an appropriate starting point for the development of a system
management domain conceptualization, to be used for supporting automatic reasoning tasks.

The System Management Ontology project is a joint research initiative of IBM SWG Rome Laboratory and the
Department of Informatic Engineering of University of Rome "La Sapienza", Italy. The project has been recently
outlined in [Lanfranchi et al, 2003], with emphasis on the relevance in the field of Autonomic Computing. This
paper aims at giving readers an insight in the knowledge representation and reasoning methods at the basis of
the project, and illustrating the way the DMTF Common Information Model can be used as ontology of the
system management domain, with the purpose of modeling state descriptions to be exploited in automatic
system management tasks.

The first part of this paper illustrates the adoption of Description Logics as a formalism for representing system
management knowledge suitably for automatic reasoning. Then, an overlook on the architecture of a first
prototype is given, along with a picture of some basic technical options. Finally, a discussion of ontological
issues concerning the CIM conceptualization is presented.

2. Knowledge Representation and Reasoning for System Management
As mentioned in the introduction, there is a general consensus on expressing the ontology of a domain of
interest for System Management in terms of classes and relationships between classes, by making use of class
based formalisms such as UML [Rumbaugh et al, 1998]. In particular, CIM is a standardized conceptualization of
System Management that is extensionally supported by a wide range of automatic systems. Interestingly, it is
possible to re-express such UML-like formalizations into specific forms of formal logic, called Description Logics,
which are well behaved from a computational point of view. This can be profitably exploited by system
management tools to provide systems with an autonomic behavior based on automated reasoning in such
logics.

Description logics (DLs) have been introduced in the early 80's to provide a formal ground to class-based
knowledge representation formalisms such as Semantic Networks and Frames. Since then they have evolved
into powerful logics that are able to capture virtually all class-based representation formalisms used in Artificial
Intelligence, Software Engineering, and Databases [Calvanese et al, 1999-1, 1999-2]. DLs are also at the base
of state-of-the-art ontology languages like OIL and DAML+OIL [Fensel et al, 2001], which in fact can be viewed
as dialects of DLs. One of the distinguishing features of the work on these logics is the detailed computational
complexity analysis both of the associated reasoning algorithms, and of the logical implication problem that the
algorithms are supposed to solve. By virtue of this analysis, most of these logics have optimal reasoning
algorithms, and practical systems implementing such algorithms are now used in several projects [Horrocks,
2001].

Generally speaking, in DLs, the domain of interest is modeled by means of concepts (unary predicates), which
denote classes of objects, and relations (n-ary predicates), which denote relationships among classes. A DL is
characterized by three basic components:

1. A description language, which specifies how to construct complex concept and relation expressions, by
starting from a set of atomic symbols and by applying suitable constructs. Typical constructs include,
besides Boolean constructs on concepts and relations, restricted forms of quantification, which allow for
expressing typing constraints on relation components,and numerical restrictions, which allow for
expressing participation constraints as well as more general cardinality constraints.

2. A knowledge specification mechanism, which specifies how to construct a DL knowledge base, in which
properties of concepts and relations are specified by means of suitable assertions. Typical kinds of
assertions allow for expressing inclusions between concepts and relations respectively, forms of
concept/relation definitions, and universal constraints of various kinds.

3. A set of reasoning procedures provided by the DL, which allow one to carry out suitable inferences from
the knowledge expressed in the knowledge base, such as logical implication, knowledge base
satisfiability, concept/relation satisfiability, concept/relation subsumption.

The expressive power of a DL depends on the generality of the constructs allowed in the description language
and on the kind of assertions allowed in knowledge bases. In general there is a tradeoff between the expressive
power of a DL and the computational complexity of the associated reasoning tasks. Such a tradeoff has been
thoroughly investigated and DLs that are “optimal” with respect to such a tradeoff have been devised. That is,
such DLs have sufficient expressive power to express most constructs of class-based formalisms (e.g., they can
express the UML class diagram constructs) while admitting sound, complete and terminating inference
procedures. A notable example of such DLs is DLR [Calvanese et al, 1998-1, 1998-2, 2001], which is at the base
of the work described here.

Automated reasoning tools for expressive DLs, including DLR, have been developed. Such tools are highly
optimized in order to cope with the inherently high computational complexity of such logics, and in practice can
deal with quite large knowledge bases, such as those resulting from modeling real world application domains
[Berardi et al, 2001]

2.1. The Basic Formalism

SMO components, including CIM schemas and user models are expressed using UML class diagrams with
specific conventions. Since DLR is able to fully capture UML class diagrams together with the specific
conventions adopted in SMO, it can be used to equip SMO with automated reasoning capabilities. More
specifically:

• SMO, including the CIM Core Model and Resource Models, are expressed in terms of DLR knowledge
bases.

• New classes describing additional concepts of interest are translated to DLR concepts and, by exploiting
the automated reasoning capabilities of DLR, are automatically classified with respect to the existing
classes.

• Queries posed to SMO are translated into queries to the corresponding DLR knowledge base, and are
answered by evaluating the corresponding concepts on the available data.

Next we illustrate the main ideas behind the encoding of SMO into DLR knowledge bases. We introduce for each
class C an atomic concept C, for each attribute a an atomic binary relation a, for each aggregation G an atomic
binary relation G, and for each association A with roles r1,…,rn an atomic concept A and n atomic binary relations
r1,…,rn. The latter allows for dealing with associations with and without corresponding association class in a
uniform way. Built-in predicates denoting arithmetic comparisons may also be used. Such predicates are suitably
evaluated in query answering, but are treated as ordinary atomic binary relations during classification. Note that
more sophisticated forms of reasoning based on the special meaning of such predicates over concrete
numerical domains could also be used [Lutz, 1999]. However, state-of-the-art implemented description logics
reasoning systems still do not support concrete domains.

We introduce suitable assertions that capture the semantics of the various UML constructs. For each attribute a
of type T for a class C, we introduce a DLR inclusion assertion encoding the typing of the attribute:

(C ISA (FORALL [1] (a IMPLIES (2:T))))
Such an assertion literally expresses that each instance of concept C participating as first component to the
binary relation a, is related by a only to objects/values that are instances of T.

The multiplicity [i..j] of attribute a, expressing that for each instance of the class C there are at least i and at most
j values of a, is captured by means of the assertion:

(C ISA ((ATLEAST i [1] a) AND (ATMOST j [1] a)))

Each association A relating classes C1,…,Cn via roles r1,…,rn respectively is represented by the atomic concept
A together with the inclusion assertion
(A ISA ((ATMOST 1 [1] AND … AND ATMOST 1 r) AND r1) ([1] n

 (SOME [1] (r1 AND (2:C1))) AND … AND (SOME [1] (rn AND (2:Cn))))

For each aggregation G between a containing class C1 and a contained class C2, and represented by the atomic
binary relation G, we encode the typing of G by means of the inclusion assertion:

(G ISA ((1:C1) AND (2:C2)))

Multiplicities on binary associations and on aggregations can be represented in a similar way as multiplicities on
attributes.

A generalization between a class C and a derived class D can be represented using the inclusion assertion

(D ISA C)

Given generalizations (D1 ISA C),…, (Dn ISA C), the covering constraint asserting that each instance of C
must appear among (at least) one of D1,…,Dn, can be expressed as

(C ISA (D1 OR … OR Dn))

Analogously, disjointness constraints among the derived classes D1,…, Dn can be formalized as

(Di ISA (NOT Dj)), for each i ≠ j

Additional forms of constraints on the class diagram can also be expressed in DLR, such as

• More general forms of negative information, e.g., to enforce that no instance of a class has a given
attribute, or that no instance of a class participates in a given association or aggregation;

• More general forms of disjunctive information, e.g., to express that a given attribute is present only for a
specified set of classes;

• Subset constraints on attributes, associations, and aggregations.

More generally, the expressive power of DLR allows to formalize several types of constraints that allow to better
represent the application semantics and that are typically not dealt with in a formal way.

DLR reasoning tasks allow for automated support in dealing with SMO, fully taking into account the semantics of
the various constructs and the additional constraints specified in SMO. In particular, the following tasks can be
reduced to DLR reasoning tasks:

• Consistency of the class diagram, i.e., whether the diagram admits an instantiation. If this is not the
case, there is no set of instances that satisfies the diagram, which indicates that the definitions
altogether are inconsistent.

• Class consistency (association/aggregation consistency), i.e., whether there is an instantiation of the
diagram such that a given class (association/aggregation) has a nonempty extension. Observe that, if
this is not the case, then there is an inconsistency in the class specification, or at the very least the class
is inappropriately named since it is a synonym for the empty class.

• Class subsumption (association/aggregation subsumption), i.e., whether the extension of one class
(association/aggregation) is a subset of the extension of another class (association/aggregation) in every
instantiation of the diagram. This property suggests the possible omission of an explicit generalization.
Alternatively, if all instances of the more specific class are not supposed to be instances of the more
general class, then something is wrong in the rest of the diagram, since it is forcing an undesired
conclusion.

• Classification, i.e., determining class subsumption between all pairs of named classes.
• Detection of redundancies, e.g., if two classes (associations/aggregations) subsume each other, then

one of them is redundant.
• Refinement of properties, e.g., when the properties of various classes and associations/aggregations

interact to yield stricter multiplicities or typing than those explicitly specified by the designer. The
simplest cases arise with multiple inheritance.

By making use of state-of-the-art reasoning tools supporting DLR, all of the above reasoning tasks can be
effectively realized.

2.2. The Extension Formalism

With respect to a database system like CIM, where classes are primitive constructs whose instances are created
by processes running on singular machines, SMO gives the possibility to introduce new classes described in
terms of necessary and sufficient constraints, whose instances can be dynamically evaluated without changing,
supplementing, or populating the primitive databases.

Figure 1

Figure 1 shows a UML class diagram obtained from the Physical Specification, which is part of the CIM Schema,
version 2.7 (released in 21/04/2003) available at http://www.dmtf.org/standards/cim_schema_v27.php.

The CIM schema above models the relations between physical connectors, physical packages and slots, i.e.,
between hardware devices such as cards (referred to as physical packages) that can be inserted into suitable
supports such as slots (referred to as physical connectors).

With respect to the CIM Specification, we have added the class BrokenPhysicalConnector and a subclass
BrokenSlot with the purpose of modeling, respectively, a broken physical connector and a broken slot.
Possibly we may define such classes in terms of the values of attributes of classes/association in CIM. For
example, one may define a broken physical connector as a physical connector that has reached an error status
from which there is no recovery mechanism. This may be encoded by considering the OperationalStatus
attribute of class ManagedSystemElement from which PhysicalConnector is derived, and introducing the
followingDLR assertion:

(BrokenPhysicalConnector DEFN
 (PhysicalConnector AND
 (SOME [1] (OperationalStatus AND (2: “Non-Recoverable Error”))))

where “Non-Recoverable Error” is a particular value that the attribute OperationalStatus, inherited
from ManagedSystemElement, may assume. For the considerations that follow, however, we do not need to
enforce any particular definition for the classes BrokenPhysicalConnector and BrokenSlot; we only
enforce certain properties (see below).

Apart from the above two classes we have also introduced two associations PackageInBrokenConnector
and PackageInBrokenSlot, relating respectively instances of BrokenPhysicalConnector and
BrokenSlot to instances of PhysicalPackage. Note that, a physical connector contains at most one
physical package. Broken physical connectors are particular kinds of physical connectors. Since we are not
interested in monitoring broken connectors in which no package is inserted, we assume that in each physical
connector a package is inserted (multiplicity 1..1). A slot is a particular physical connector that contains at most
one physical package. A broken slot is a slot and a broken physical connector, which contains exactly one
physical package. As before, we want to monitor broken slots in which a package is inserted, therefore the class
BrokenSlot participates to association PackageInBrokenSlot with multiplicity 1..1. Note that each package
that is contained in a slot is also contained in a connector, each package that is contained in a broken connector
is also contained in a connector, and each package that is contained in a broken slot is also contained in a slot.
Finally, a physical package is contained in zero or more physical connectors, broken physical connectors, slots
and broken slots. For brevity, we have not detailed attributes in this example.

According to the discussion made so far, the classes BrokenPhysicalConnector and BrokenSlot are
expressed in DLR as follows.

(BrokenPhysicalConnector ISA
 (PhysicalConnector AND
 (ATLEAST 1 [2] (antecedent AND (1:PackageInBrokenConnector))) AND
 (ATMOST 1 [2] (antecedent AND (1:PackageInBrokenConnector)))))

(BrokenSlo ISA t
 (Slot AND BrokenPhysicalConnector AND
 (ATLEAST 1 [2] (antecedent AND (1:PackageInBrokenSlot))) AND
 (ATMOST 1 [2] (antecedent AND (1:PackageInBrokenSlot)))))

The associations PackageInBrokenConnector and PackageInBrokenSlot are captured by the following
DL formulas:

(PackageInBrokenConnector ISA
 (PackageInConnector AND
 (ATMOST 1 [1] antecedent) AND (ATMOST 1 [1] dependent) AND
 (SOME [1] (antecedent AND (2:BrokenPhysicalConnector))) AND
 (SOME [1] (dependent AND (2:PhysicalPackage)))))

(PackageInBrokenSlot ISA
 (PackageInSlot AND
 (ATMOST 1 [1] antecedent) AND (ATMOST 1 [1] dependent) AND
 (SOME [1] (antecedent AND (2:BrokenSlot))) AND
 (SOME [1] (dependent AND (2:PhysicalPackage)))))

2.3. Reasoning on the Ontology
By reasoning on the part of the class diagram described above one can infer that the association
PackageInBrokenSlot is contained in the association PackageInBrokenConnector, i.e. that if a package
is inserted into a broken slot, it is also inserted into a broken connector. The class diagram shows that each
physical connector contains at most one physical package, and that each broken slot is also a slot and a
physical connector. Therefore, if a physical connector participates to the association PackageInConnector, it
participates to at most one tuple of the association. Hence, if this physical connector is actually a broken slot, the
same tuple is also contained in the association PackageInBrokenSlot. Additionally, since a broken slot is a
broken physical connector, it participates to the association PackageInBrokenConnector. Therefore, since
the multiplicity is 1..1, there cannot be two different tuples, one in PackageInBrokenConnector and one in
PackageInSlot, relating the same broken slot to two different physical packages. This implies that each tuple

of PackageInBrokenSlot is also a tuple of PackageInBrokenConnector. This inference is easily drawn
by state-of-the-art DLs automated reasoning tools from the DLR knowledge base corresponding to the above
class diagram.

Observe that this kind of reasoning allows one to make explicit knowledge that is only implicit in the ontology.
Apart from detecting properties of interest, such as inconsistencies and redundancies, this allows for avoiding
the explicit introduction in the ontology of concepts which can be inferred, thus keeping the ontology simpler to
manage and to maintain.

2.4. Query Answering
Each DLR concept expressed over the class diagram can be directly translated into a query on the database
corresponding to an extension of the diagram, by taking into account the first-order semantics of DLR. In
particular, for a SMO concept that is either a CIM class or a definition based on CIM classes, one can
automatically obtain an SQL query to fetch the extension of the SMO concept from a CIMOM database. We
illustrate this on a simple example. Consider the concept above used for defining the class
BrokenPhysicalConnector:

(PhysicalConnector AND
 (SOME [1] (OperationalStatus AND (2: “Non-Recoverable Error”))))

The SQL query retrieving the extension of the class BrokenPhysicalConnector is then as follows:

(SELECT PC.id
 FROM PhysicalConnector PC, ManagedSystemElement ME,
 WHERE PC.id = MC.id AND MC.operationalstatus = “Non-Recoverable Error”)

where we have assumed that: (i) each class is represented by means of a relational table in which the attribute
id is the primary key and all the (single value) attribute of the class are represented by attributes of the relational
table itself; (ii) each ISA is represented by means of foreign key in the subclass to the id of the superclass.

As another example, consider the following concept denoting the set of PhysicalPackages that are related via
the association PackageInConnector to a BrokenPhysicalConnector:

(PhysicalPackage AND
 (SOME [2] (dependent AND
 (1:(PackageInConnector AND
 (SOME [1] (antecedent AND (2:BrokenPhysicalConnector)))
))
)))

The SQL query retrieving the extension of the above concept is as follows:

(SELECT PP.id
 FROM PhysicalPackage PP, PackageInConnector PC,
 BrokenPhysicalConnector BC
 WHERE PP.id = PC.dependent AND PC.antecedent = BC.id)

where we have assumed that each association is represented by means of a relational table containing one
attribute for each role of the association, having as foreign key the id of the class to which the role is related.
Observe that the first join could be avoided (and so could be the first conjunct of the corresponding concept).
However, one is in general interested in retrieving not only the id of the instances of the class, but also values of
attributes (which we have not considered in this example).

Interestingly, by taking into account the constraints imposed by the class diagram, one can show that the above
query is equivalent to the following one, in which the last join is avoided:

(SELECT PP.id
 FROM PhysicalPackage PP, PackageInBrokenConnector PC,
 WHERE PP.id = PC.dependent)

Observe that the equivalence between this query and the one above holds only due to the constraints in the
class diagram. In particular, the equivalence holds since each instance of BrokenPhysicalConnector
necessarily participates to the association PackageInBrokenConnector, which is a specialization of
PackageInConnector, and each PhysicalConnector, including BrokenPhysicalConnectors,
participates at most once in PackageInConnector. Again, automated reasoning support may allow for
automatically detecting such kinds of optimizations.

3. The SMO Development Environment
This section provides the reader with a general idea of the SMO development environment. SMO has client-
server architecture, as shown in Figure 3, and is mainly intended for an Intranet usage. The client component,
which has the role of ontology browser/editor, is developed as a Plug-in in the Eclipse environment [ECLIPSE].
The server component is a J2EE Web Service, which delegates most of the functionalities to specific Java
modules. Communications between client and server are therefore carried on the HTTP/SOAP protocol. An
LDAP directory supplied with a suitable schema acts as database for ontologies, dictionaries, and other specific
data. The reasoning module is based on FaCT [Horrocks 1998]. At the current stage, the reasoner doesn’t have
a direct access to the LDAP repository of ontology data, and import/export files are used for data exchange.

Figure 2

The user interface is available as a Perspective in the Eclipse runtime shell, i.e. a predefined set of windows
associated with a specific task. This has been developed by integrating SWT widgets with the JFace library and
the GEF (Graphical Editor Framework) plug-in for the graph drawing.

The Eclipse Plug-in is composed of five views on the ontology the user is interacting with. Four of them are
intended for querying and browsing the ontology and one devoted to allow defining new ontology concepts.

Figure 3

In Figure 3, a typical user session is depicted. Through the SMO Search window the user can search the
concept(s) s/he is interested in. The search is driven by a controlled vocabulary, extracted from CIM class and
attributes names (e.g. CIM_LogicalElement -> logical, element). An auto-completion mechanism
allows the user for easily writing down terms that actually belong to the ontology. Also, the user can exploit some
Meta information to narrow the query answer (e.g., the user can specify that the term s/he is looking for refers to
a class). The user is presented a list of either class or attributes matching the search criteria. Then, s/he can
double-click the intended one and thus be pointed to the corresponding node of the SMO Hierarchy, which is
presented in a Tree View. Such a window contains the topmost ontology concepts and automatically reacts to
the user selection in the SMO search windows, opening a path down to the selected concept. Tree nodes
corresponding to concepts can be expanded to show hierarchy, attributes, and association roles. The other two
windows (Focus View and Details) provide further pieces of information about the explored concept. Note that
the search activity is not mandatory: the user can just browse the tree presented in the SMO Hierarchy,
exploring the ontology content by hand.

Once the user finds a relevant concept, s/he can drag it in the Editor Window with the purpose of constructing a
new ontology concept. The idea is that the Editor Window shows the classes the user focused on, allowing for
defining different types of relationships among them, either exploiting the ontology associations or declaring new
ones based on comparison operators. The user interacts with the classes graphically, by drawing links between
classes. Then, a Wizard drives the user in specifying the intended relationship, by allowing semantically
consistent constraints to be set. The expressive power of the graphical query interface is limited to conjunctive
queries, which trade-off expressiveness and simplicity.

By interacting with the reasoning module, it is possible to activate a consistency check that validates the user
definition comparing it with other previously defined indications. Redundancies and or inconsistencies are
graphically outlined on the drawing, giving a visual feedback of the reasoning outcomes.

4. Beyond the CIM Conceptualization
This paper mainly deals with knowledge representation formalisms and reasoning. In this section, however, we
want to start a discussion about giving SMO models a valuable content, i.e. making them effective in describing
real things, events, relationships, states of affairs, and so on. At the time being, the SMO basic content is
provided by CIM standard schemas, but it is important to make clear that this choice is not compelling. In fact,
providing a mapping of CIM concepts to a different ontology would allow the adoption of a different conceptual
backbone, while keeping the bindings to the CIM extensional layer.

Generally speaking, a good model should provide an empirically adequate conceptualization that captures the
essence of the target domain, facilitates the knowledge sharing, prevents misuses and interpretation errors
[Guarino, 1994]. Coming to ontological adequacy is not an easy task. On one hand, modelers would benefit of
the possibility to apply strong a-priori structuring principles, on the other hand they cope with large and complex
real-world domains, where legacy knowledge corpora already exist and must be taken into account. A promising
approach to this kind of complexity is based on the adoption of general-purpose, standardized top-level
ontologies such as [IEEE SUO], i.e. a small number of highly abstracted concepts valid for any domain. Based
on this kind of ontological foundation, the development of domain-specific models comes out a process of
particularization, while refactoring existing knowledge results in working out a sort of conceptual mapping. Even
if a generally agreed reference ontology has not been released yet, a number of basic and widely accepted
ontological distinctions can be already exploited, both for driving the development of high quality domain models
and for reforming available conceptualizations with the purpose of increasing their adequacy.

With respect to some of generally accepted ontological principles mentioned above, CIM schemas show a
number of deviations that could limit somehow their usage for the purposes of our work. For this reason, our
future plans include a complete refactoring of the CIM conceptualization, by remapping some of the most
general CIM classes to a principled top-level ontology. Even if this work is just at the beginning, the awareness
of these problems can help using CIM, as is, more effectively, and therefore it is worth to briefly discuss them
here.

First, we have considered the commonly accepted distinction of continuants (e.g. objects) from occurrents (e.g.
events) [Simons 1987]. Continuant concepts are abstracted from time, in that they don't have temporal parts (i.e.
they are all present if they are present at all). Occurrents, on the other hand, flow in time and do have temporal
parts. We have noticed that the CIM conceptual root represented by the class LogicalElement is mostly
intended to account for continuants (e.g. FileSystem), and yet contains concepts like CIM_Process that
would rather fall in the category of occurrents, because they do have temporal parts. Another important time-
related concept like "state", which is essential for describing system dynamics, is spread over the entire CIM
class hierarchy by a variety of attributes (e.g. EnabledLogicalElment::EnabledStatus). Furthermore,
time related attributes, that would probably qualify their carriers as occurrents, are introduced in many classes
that are placed under different conceptual roots. In conclusion, dependency on time appears to be not an
analytical criterion for CIM conceptualization, while it is a crucial conceptual driver for modeling system
dynamics.

Another important ontological principle that CIM seems to be missing is that of rigidity [Guarino et al, 1994].
Informally, rigid classes (often called types) provide their instances with a permanent identity criterion, while non-
rigid classes (roles) do not. Types are well suited to represent natural kinds and artifacts (e.g. human being,
hammer) whereas Roles are mostly intended to model behaviors and functions (e.g. student, tool). Although, in
principle, nothing prevents type hierarchies to allow multiple inheritance, it is a good common practice to adopt
the Identity Disjointness Constraint [Guarino and Welty, 2001] to model them as a tree of disjoint classes. Roles,
on the contrary, can be freely arranged into multiple hierarchies. Event though types and roles can be mixed in
the same hierarchy (provided that Roles do not subsume Types), and they usually come together indeed, it
would be safe keeping the two hierarchies separated, for the reasons discussed in [Steimann 2000]. Now,
having a look to the ManagedSystemElement hierarchy and related associations, which play a central role in
CIM, there is evidence that Type concepts (e.g. artifacts like FileSystem) and Role concepts (e.g.
functionalities like LogicalDevice) are both included, but no explicit distinctions are made. To some extent,

accounting for Role concepts is assigned to the LogicalIdentity association, which allows a sort of multiple
inheritance, but this modeling style appears somehow problematic.

To give a preview of how the SMO ontology could look like in the future, we briefly describe the top-level we are
working on Figure 4, which is inspired to DOLCE [Gangemi et al, 2002]. In this model, continuants and
occurrents are represented by the concepts Entity and Event, respectively. Moreover, we have assumed that
Object is a type, being strictly intended to represent concrete artifacts. Also, we have introduced the concept
Role to keep together all the different roles that Objects can play, while the association named embodiment
allows specifying, for each Role, its underlying Object types (e.g. student → human being). We also adopted the
notion of homeomericity for distinguishing Matter from Object and State from Process. Intuitively, parts of
homeomeric concepts can be all described by the same predicates (e.g. a piece of clay, a run), while this is not
true for non-homeomeric concepts (e.g. a cup, a fall). Finally, conceptual roots for Locations in Time and Space
have been provided, with binding associations with Entities and Events, respectively.

Figure 4

5. Conclusions
In this paper we have presented the approach taken by the SMO project to deal with the challenges posed by
Systems Management in an Autonomic environment.

The main distinguishing feature of our work is to base the description of the system on precise logical and
ontological notions, which allows for automated reasoning to detect relevant properties of the system. Such an
approach is not limited to modeling only the structural/static aspects of a system defined by CIM class diagrams,
as done in this paper, but can be extended in several directions. Along with the adoption of a suitable top level
ontology, as discussed in the previous paragraph, one could introduce a temporal dimension to model dynamic
aspects of a system. Several temporal and programming logics have been proposed for this task [Allen, 1996,
Kozen and Tiuryn, 1990]. There has been some work on the interaction of such aspects with the structural ones
captured by DLs, however more work has to be done to understand the impact on decidability and complexity of
reasoning [Artale and Franconi, 2000].

The framework we are developing is designed to be integrated in the available infrastructures, and to leverage
the existing standards and knowledge resources. The SMO development environment will allow the production
of conceptual models of system behaviors, states, and dynamic that the next generation of system management
application might exploit. A definite proof of the effectiveness of our approach, however, will come from
experimenting the highly formalized methodology we developed in the real life of IT management.

6. Bibliography
[Allen, 1996] E. Allen Emerson. Automated temporal reasoning about reactive systems. In Logics for Concurrency:
Structure versus Automata, F. Moller and G. Birtwistle editors. LNCS 1043, Springer, pages 41-101, 1996.

[Artale and Franconi, 2000] A. Artale and E. Franconi. A survey of temporal extensions of description logics. Annals
of Mathematics and Computer Science, volume 1-4, pages 171-210, 2000.

[Baader et al, 2003] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

[Berardi et al, 2001] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams using
description logic based systems. In Proc. of the KI'2001 CEUR 2001 Workshop on Applications of Description Logics.
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-44/, 2001.

[Cali et al, 2001] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning on UML class diagrams in
description logics. In Proc. ofthe IJCAR Workshop on Precise Modelling and Deduction for Object-oriented Software
Development (PMD 2001), 2001.

[Calvanese et al, 1998-1] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query containment
under constraints. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS'98), pages 149-158, 1998.

[Calvanese et al, 1998-2] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description logic
framework for information integration. In Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR'98), pages 2-13, 1998.

[Calvanese et al, 1999] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation formalisms. J. of
Artificial Intelligence Research, 11:199-240, 1999.

[Calvanese et al, 2001] D. Calvanese, G. De Giacomo, and M. Lenzerini. Identification constraints and functional
dependencies in description logics. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages
155-160, 2001.

[Fensel et al, 2001] D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-Schneider. OIL: An
ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2):38-45, 2001.

[Gangemi et al, 2002] A.Gangemi, N.Guarino, C.Masolo, A.Oltramari, L. Schneider, Sweetening ontologies with
DOLCE. In Proc. of the Int. Conf. on Knowledge Acquisition, Modeling and Management (EKAW) 2002.

[Guarino 1994] N. Guarino, The ontology level, in R. Casati, B. Smith and G. White, editors, Philosophy and the
Cognitive Sciences, Vienna: Hölder-Pichler-Tempsky, 1994.

[Guarino el al, 1994] N. Guarino, M. Carrara,and P.Giarretta, An ontology of meta-level categories, in Proc. of the 4th
Int. Conf. on Principles of Knowledge Representation and Reasoning, (KR’94), 1994.

[Guarino and Welty, 2001] N.Guarino and C.Welty, Identity and Subsumption, LADSEB-CNR Internal Report, 2001.

[Haarslev and Möller, 2001] V. Haarslev and R. Möller. High Performance Reasoning with Very Large Knowledge
Bases: A Practical Case Study. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), 2001.

[Horrocks, 1998] I. Horrocks. The FaCT system. In Proc. of the 2nd Int. Conf. on Analytic Tableaux and Related
Methods (TABLEAUX'98), volume 1397 of Lecture Notes in Artificial Intelligence, pages 307-312. Springer, 1998.

[IEEE SUO] IEEE Standard Upper Ontology, working group P1600.1, http://suo.ieee.org/.

[Lutz, 1999] C. Lutz. Reasoning with Concrete Domains. In Proc. of the 16th Int. Joint Conf. on Artificial Intelligence
(IJCAI`99), pages 90-95, 1999.

[Kozen and Tiuryn, 1990] D. Kozen and J. Tiuryn. Logics of Programs. In Handbook of Theoretical Computer Science
– Formal Models and Semantics, J. van Leeuwen editor. Elsevier Science Publishers, pages 789-840, 1990.

[Rumbaugh et al, 1998] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual.
Addison Wesley Publ. Co., Reading, Massachussetts, 1998.

[Simons, 1987] P. Simons. Parts: a Study in Ontology. Oxford: Clarendon Press. 1987.

[Steimann 2000] F. Steimann. On the representation of roles in object-oriented and conceptual modeling. Data &
Knowledge Engineering 35, Elsevier Science, 2000.

	Introduction
	Knowledge Representation and Reasoning for System Management
	The Basic Formalism
	The Extension Formalism
	Reasoning on the Ontology
	Query Answering

	The SMO Development Environment
	Beyond the CIM Conceptualization
	Conclusions
	Bibliography

