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Abstract

UML is the de-facto standard formalism for software design and analysis. To support the design of
large-scale industrial applications, sophisticated CASE tools are available on the market, that provide
a user-friendly environment for editing, storing, and accessing multiple UML diagrams. It would be
highly desirable to equip such CASE tools with automated reasoning capabilities in order to detect
relevant formal properties of UML diagrams, such as inconsistencies or redundancies. With regard to
this issue, we consider UML class diagrams, which are one of the most important components of UML,
and we address the problem of reasoning on such diagrams. We resort to several results developed
in the field of Description Logics (DLs), a family of logics that admit decidable reasoning procedures.
Our first contribution is to show that reasoning on UML class diagrams is EXPTIME-hard, even under
restrictive assumptions; we prove this result by showing a polynomial reduction from reasoning in DL. The
second contribution consists in establishing EXPTIME-membership of reasoning on UML class diagrams,
provided that the use of arbitrary OCL (first-order) constraints is disallowed. We get this result by using
DLRifd , a very expressive EXPTIME-decidable DL that is able to capture conceptual and object-oriented
data models. The last contribution has a more practical flavor, and consists in a polynomial encoding of
UML class diagrams in the DL ALCQI, which is the most expressive DL supported so far by DL-based
reasoning systems. Though less expressive than DLRifd , the DL ALCQI preserves enough semantics to
keep reasoning about UML class diagrams sound and complete. Exploiting such an encoding, one can
use current standard DL-based reasoning systems as core reasoning engines for equipping CASE tools
with reasoning capabilities on UML class diagrams.

Categories and Subject Descriptors: [Software Engineering]: Design Tools and Techniques – UML
Class Diagrams; [Software Engineering]: Software Verification – Formal Methods ; [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods – Description Logics ; [Mathematical Logic and Formal
Languages]: Mathematical Logic – Complexity Analysis
General Terms: Design, Theory, Verification
Additional Key Words and Phrases: Automated Reasoning, CASE Tools, Computational Complexity,
Description Logics, UML Class Diagrams

1 Introduction

UML (Unified Modeling Language) is the de-facto standard formalism for the analysis and design of software.
One of the most important components of UML are class diagrams, which model the information on the
domain of interest in terms of objects organized in classes and relationships between them1. The use of
UML in industrial-scale software applications brings about class diagrams that are large and complex to
design, analyze, and maintain. To simplify these tasks, sophisticated CASE tools are commonly adopted,

1In this paper we deal with UML class diagrams for the conceptual perspective, as opposed to the implementation perspective,
see, e.g., [29].
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e.g., Rational Rose2, Together3, Poseidon4, ArgoUML5 (see also the OMG home page6). Such tools support
the designer with a user-friendly graphical environment for editing, storing, and accessing multiple UML
class diagrams. However, the expressiveness of the UML constructs and their interaction in different parts
of complex diagrams may lead to implicit consequences that can go undetected by the designer, and cause
various forms of inconsistencies or redundancies in the diagram. This may result in a degradation of the
quality of the design and/or increased development times and costs. Hence, it would be highly desirable to
equip CASE tools with capabilities to automatically detect relevant formal properties of UML class diagrams,
such as inconsistencies and redundancies.

Several works propose to describe UML class diagrams using various kinds of formal systems [24, 25, 26,
21, 36, 12]. Using such formal systems, one can potentially reason on UML class diagrams, and formally
prove properties of interest through inference. Hence, in some sense, such works lay the foundation for next
generation CASE tools, able to help the designer in understanding the hidden implications of his choices
when building a class diagram. In order to select the appropriate kind of formal tool for UML class diagrams,
a fundamental question needs to be addressed: What is the computational complexity of reasoning on UML
class diagrams? That is, independently of the particular formal tool adopted for describing such diagrams,
how difficult is it to reason about them from the computational point of view?

In this paper we address this question in several ways, resorting to results developed through the years
in Description Logics (DLs) [1]. These are logics specifically designed for the conceptual representation of
an application domain in terms of classes and relationships between classes that admit decidable reasoning.

Our first contribution in this paper is to show that reasoning on UML class diagrams is EXPTIME-
hard even under fairly restrictive assumptions, namely: only binary associations, only minimal multiplicity
constraints, generalizations (between classes and associations) with disjointness and completeness constraints.
We get this result by exhibiting a polynomial reduction from reasoning in the basic DL ALC7 [1], which is
EXPTIME-complete. In particular we show that every ALC knowledge base can be expressed as a UML
class diagram preserving soundness and completeness of reasoning. This possibility is quite surprising, since
UML class diagrams apparently have very limited means to express negative and disjunctive information,
namely disjointness and covering constraints in generalization hierarchies. Instead ALC is equipped with
unrestricted negation and disjunction. That is, it is able to treat negative information in the same way as
positive one, and to reason by cases to fully take into account disjunctive information.

Our second contribution is to establish EXPTIME-membership of reasoning on UML class diagrams, once
we disallow the use of arbitrary OCL (first order) constraints [45], which would make reasoning undecidable,
but still allow for covering and disjointness constraints on generalization hierarchies. We get this result by
using one of the most expressive EXPTIME-decidable DLs studied so far, namely DLRifd [15, 14]. This
DL is equipped with means to represent n-ary relations, identification constraints (i.e., keys), and functional
dependency constraints on components of n-ary relations. This logic was developed with the aim of being
able to capture conceptual and object-oriented data models, and is the final result of a series of studies on
DLs for reasoning on conceptual data models and object oriented models [8, 20, 9, 13, 17, 19, 30]. The
maturity of these studies is testified in the present paper by the fact that we are able to fully capture every
UML class diagram as a DLRifd knowledge base: the DLRifd knowledge base is such that its models are
exactly the possible instantiations of the UML class diagram.

Our third contribution is more practically oriented. Indeed the ability of being able to capture UML
class diagrams using a DL suggests that we can use DL-based implemented systems to reason on UML
class diagrams. However current state-of-the-art DL-based systems [37, 33] are not able to deal with n-
ary relations, identification constraints, or functional dependency constraints. These constructs are needed
to fully capture in DLRifd the semantics of UML class diagrams. However, due to a specific property of
DLRifd models, namely the tree model property, we can renounce to them while preserving sound and
complete reasoning [15]. On the base of this property, we propose a (polynomial) encoding of UML class
diagrams in a simpler DL, called ALCQI [1], which is still EXPTIME-complete, but lacks the features above

2http://www.rational.com/products/rose/
3http://www.togethersoft.com/
4http://www.gentleware.com/
5http://argouml.tigris.org/
6http://www.omg.org/
7In this paper when we mention reasoning in a DL, we always intend reasoning over a knowledge base expressed in that DL.
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that are problematic from an implementation point of view. Such a logic is essentially the most expressive
DL that the current DL-based system can support. The encoding in ALCQI, while not preserving entirely
the semantics of UML class diagrams, preserves enough of it to keep reasoning sound and complete. Using
this encoding we were able to validate on industrial scale examples, namely the UML class diagrams of the
Common Information Model (CIM)8, the feasibility of the idea of using DL-based systems as core inference
engines for reasoning on UML class diagrams.

The rest of the paper is organized as follows. In Section 2 we give some preliminary notions on DLs
that we use later on. In Section 3, we briefly discuss UML class diagrams giving a natural formalization
in first-order logic. In Section 4 we discuss various forms of reasoning on UML class diagrams and show
examples of how they can be usefully exploited in order to detect interesting properties of the diagram. In
Section 5 we present our EXPTIME-hardness result for reasoning on UML class diagrams, by showing a
polynomial reduction from reasoning in the EXPTIME-complete DL ALC. In Section 6 we show how UML
class diagrams not including general OCL constraints, but including covering and disjointness constraints
on generalization hierarchies, can be fully captured in the EXPTIME-complete DL DLRifd , thus giving
an EXPTIME upper bound for reasoning on UML class diagrams. In Section 7 we show how UML class
diagrams can be expressed in the simpler DL ALCQI, preserving enough semantics to keep reasoning on
them sound and complete. In Section 8 we discuss our experience in using state-of-the art DL-based reasoning
systems for reasoning on the CIM UML class diagrams. Finally, in Section 9, we draw some conclusions.

2 Description Logics

Description Logics (DLs) are logics tailored towards representing knowledge in terms of classes and rela-
tionships between classes. Formally they are a well behaved fragment of first order logic (FOL) equipped
with decidable reasoning. In DLs, the domain of interest is modeled by means of concepts and relationships,
which denote classes of objects and relations, respectively. Generally speaking, a DL is formed by three basic
components:

• a description language, which specifies how to construct complex concept and relation expressions (also
called simply concepts and relations), by starting from a set of atomic symbols and by applying suitable
constructors,

• a knowledge specification mechanism, which specifies how to construct a DL knowledge base, in which
properties of concepts and relations are asserted, and

• a set of automatic reasoning procedures provided by the DL.

The set of allowed constructors characterizes the expressive power of the description language. Various
languages have been considered by the DL community, and numerous works investigate the relationship
between expressive power and computational complexity of reasoning (see [23] for a survey). The research
on these logics has resulted in a number of automated reasoning systems [38, 40, 31], which have been
successfully tested in various application domains (see e.g., [43, 46, 42]).

In this Section we briefly review three Description Logics that we will consider in the rest of the paper,
namely DLRifd [15], ALCQI [16] and ALC [1].

2.1 The Description Logic DLRifd

DLRifd is a DL that is characterized by the ability of representing n-ary relations, functional dependencies on
n-ary relations, and identification constraints on concepts [15, 14]. The basic elements of DLRifd are concepts
(unary relations), and n-ary relations. Let P and A denote atomic relations (of given arity between 2 and
nmax) and atomic concepts respectively. DLRifd relations, denoted by R, and DLRifd concepts, denoted by
C, are built according to the following syntax:

R ::= �n | P | (i/n :C) | ¬R | R1 � R2

C ::= �1 | A | ¬C | C1 � C2 | (≤ k [i]R)
8http://www.dmtf.org/standards/standard_cim.php/
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�I
n ⊆ (∆I)n

P I ⊆ �I
n

(i/n :C)I = {t ∈ �I
n | t[i] ∈ CI}

(¬R)I = �I
n \ RI

(R1 � R2)I = RI
1 ∩ RI

2

�I
1 = ∆I

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 � C2)I = CI
1 ∩ CI

2

(≤ k [i]R)I = {a ∈ ∆I | �{t ∈ RI
1 | t[i] = a} ≤ k}

Figure 1: Semantic rules for DLRifd (P , R, R1, and R2 have arity n)

where i denotes a component of a relation, i.e., an integer between 1 and nmax, n denotes the arity of a
relation, i.e., an integer between 2 and nmax, and k denotes a non-negative integer. We consider only concepts
and relations that are well-typed, which means that (i) only relations of the same arity n are combined to
form expressions of type R1 �R2 (which inherit the arity n), and (ii) i ≤ n whenever i denotes a component
of a relation of arity n. We also make use of the following standard abbreviations:

C1 � C2 for ¬(¬C1 � ¬C2)
C1 ⇒C2 for ¬C1 � C2

(≥ k [i]R) for ¬(≤ k−1 [i]R)
∃[i]R for (≥ 1 [i]R)
∀[i]R for ¬∃[i]¬R

Moreover, we abbreviate (i/n :C) with (i : C) when n is clear from the context.
As usual in DLs, a DLRifd Knowledge Base (KB) is constituted by a finite set of inclusion assertions.

In DLRifd , these assertions have one of the forms:

R1 � R2 C1 � C2

with R1 and R2 of the same arity.
Besides inclusion assertions, DLRifd KBs allow for assertions expressing identification constraints and

functional dependencies. An identification assertion on a concept C has the form:

(id C [i1]R1, . . . , [ih]Rh)

where each Rj is a relation, and each ij denotes one component of Rj . Intuitively, such an assertion states
that no two different instances of C agree on the participation to R1, . . . , Rh. In other words, if a is an
instance of C that is the ij-th component of a tuple tj of Rj , for j ∈ {1, . . . , h}, and b is an instance of C
that is the ij-th component of a tuple sj of Rj , for j ∈ {1, . . . , h}, and for each j, tj agrees with sj in all
components different from ij , then a and b coincide.

A functional dependency assertion on a relation R has the form:

(fd R i1, . . . , ih → j)

where h ≥ 2, and i1, . . . , ih, j denote components of R. The assertion imposes that two tuples of R that
agree on the components i1, . . . , ih, agree also on the component j.

Note that unary functional dependencies (i.e., functional dependencies with h = 1) are ruled out in
DLRifd , since these lead to undecidability of reasoning [15]. Note also that the right hand side of a functional
dependency contains a single element. However, this is not a limitation, because any functional dependency
with more than one element in the right hand side can always be split into several dependencies of the above
form.

As usual in DLs, the semantics of DLRifd is specified through the notion of interpretation. An interpre-
tation I = (∆I , ·I) of a DLRifd KB K is constituted by an interpretation domain ∆I and an interpretation
function ·I that assigns to each concept C a subset CI of ∆I and to each relation R of arity n a subset RI

of (∆I)n, such that the conditions in Figure 1 are satisfied. In the figure, t[i] denotes the i-th component
of tuple t, and �S denotes the cardinality of the set S. Observe that �1 denotes the interpretation domain,
while �n, for n > 1, does not denote the n-Cartesian product of the domain, but only a subset of it that
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covers all relations of arity n. It follows, from this property, that the “¬” constructor on relations is used to
express difference of relations, rather than complement.

To specify the semantics of a KB we first define when an interpretation satisfies an assertion as follows:

• An interpretation I satisfies an inclusion assertion R1 � R2 (resp. C1 � C2) if RI
1 ⊆ RI

2 (resp. CI
1 ⊆

CI
2 ).

• An interpretation I satisfies the assertion (id C [i1]R1, . . . , [ih]Rh) if for all a, b ∈ CI and for all
t1, s1 ∈ RI

1 , . . . , th, sh ∈ RI
h we have that:

a = t1[i1] = · · · = th[ih],
b = s1[i1] = · · · = sh[ih],
tj [i] = sj[i], for j ∈ {1, . . . , h}, and for i �= ij


 implies a = b

• An interpretation I satisfies the assertion (fd R i1, . . . , ih → j) if for all t, s ∈ RI , we have that:

t[i1] = s[i1], . . . , t[ih] = s[ih] implies t[j] = s[j]

An interpretation that satisfies all assertions in a KB K is called a model of K.
We say that a KB K is satisfiable if there exists a model of K. A concept C is satisfiable in a KB K if

there is a model I of K such that CI is non-empty. An assertion α is logically implied by K if all models of
K satisfy α. It can be shown that all these reasoning tasks, namely KB satisfiability, concept satisfiability
in a KB, and logical implication, are mutually reducible (in polynomial time).

One of the distinguishing features of DLs is that they are designed so as to admit reasoning procedures
that are sound and complete with respect to the semantics and decidable. In particular, reasoning (i.e., KB
satisfiability, concept satisfiability in a KB, and logical implication) in DLRifd is EXPTIME-complete [15,
14].

2.2 The Description Logics ALCQI and ALC
ALCQI [1] is a rich DL that represents knowledge in terms of concepts (classes) and roles (binary relations).
It can be seen as a fragment of DLRifd where relations are restricted to be binary and KBs are restricted to be
a finite set of inclusion assertions on concepts only (no inclusion assertions on relations, and no identification
assertions, and obviously no functional dependency assertions since they require a relation of arity at least
three).

Let P and A denote atomic roles (binary relations) and atomic concepts respectively. ALCQI roles,
denoted by R, and ALCQI concepts, denoted by C, are built according to the following syntax:

R ::= P | P−

C ::= A | ¬C | C1 � C2 | (≤ k R.C)

Additionally, we make use of the standard abbreviations below:

⊥ for A � ¬A (where A is any atomic concept)
� for ¬⊥

C1 � C2 for ¬(¬C1 � ¬C2)
C1 ⇒C2 for ¬C1 � C2

(≥ k R.C) for ¬(≤ k − 1 R.C)
∃R.C for (≥ 1 R.C)
∀R.C for ¬∃R.¬C

An ALCQI KB is constituted by a finite set of inclusion assertions of the form C1 � C2, with C1 and C2

arbitrary concept expressions.
Notably ALCQI includes inverse roles P−, which allow for talking about the inverse of a relation,

and qualified number restrictions, which are the most general form of cardinality constraints on roles. The
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number[1..*]: String
brand: String

lastDialed(): String
lengthCall(String): int

phone
class name

attributes

operations

Figure 2: Representation of a class in UML

semantics of ALCQI constructs and KBs is analogous to that of DLRifd . In particular the semantic rules
for inverse roles and qualified number restrictions are as follows:

(P−)I = {(a, a′) ∈ ∆I × ∆I | (a′, a) ∈ P I}
(≤ k R.C)I = {a ∈ ∆I | �{a′ ∈ ∆I | (a, a′) ∈ RI ∧ a′ ∈ CI} ≤ k}

We can define KB satisfiability, concept satisfiability in a KB, and logical implication, as for DLRifd . More-
over, as for DLRifd , reasoning (i.e., KB satisfiability, concept satisfiability in a KB, and logical implication)
in a ALCQI KB is EXPTIME-complete [1].

Finally we turn to ALC [1]. This is a simpler DL, obtained from ALCQI by dropping inverse roles and
restricting qualified number restrictions to existential restrictions only. The syntax of ALC concept is thus
as follows:

C ::= A | ¬C | C1 � C2 | ∃P .C

We also introduce the standard abbreviations:

C1 � C2 for ¬(¬C1 � ¬C2)
∀P .C for ¬∃P .¬C

The semantics of the existential restrictions is

(∃P .C)I = {a ∈ ∆I | ∃b.(a, b) ∈ P I ∧ b ∈ CI}.

The semantics of the other constructs is as in ALCQI. As for ALCQI, an ALC KB is a finite set of inclusion
assertions on ALC concepts. In spite of its simplicity, reasoning in ALC KBs is EXPTIME-complete, as for
ALCQI [28, 22, 1].

3 UML class diagrams

UML class diagrams allow for modeling, in a declarative way, the static structure of an application domain,
in terms of concepts and relations between them. We concentrate on UML class diagrams for the conceptual
perspective [45, 29]. In particular, we do not deal with those features that are relevant for the implementation
perspective, such as public, protected, and private qualifiers for operations and attributes. We describe the
semantics of each construct of UML class diagrams in terms of first order logic (FOL).

3.1 Classes

A class in an UML class diagram denotes a set of objects with common features. A class is graphically
rendered as a rectangle divided into three parts (see e.g., Figure 2). The first part contains the name of the
class, which has to be unique in the whole diagram. The second part contains the attributes of the class,
each denoted by a name, possibly followed by the multiplicity, and with an associated type9, for the attribute
values. The third part contains the operations of the class, i.e., the operations associated to the objects of
the class. Note that both the second and the third part are optional. Formally, a class C corresponds to a
FOL unary predicate C.

9For simplicity, we do not distinguish between classes, i.e., collection of objects, and types, i.e., collections of values, such as
integers, reals, . . . .
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Example 3.1 Figure 2 models the class phone, characterized by the attributes number and brand, both of
type String, and by the operations lastDialed(), which returns the last number called, and lengthCall(String),
which returns the duration time of the call given as input.

An attribute a of type T for a class C associates to each instance of C a set of instances of T . Attributes are
unique within a class, but two classes may have the same attribute, possibly of different types. An optional
multiplicity [i..j] for a specifies that a associates to each instance of C at least i and most j instances of
T . When there is no upper bound on the multiplicity, the symbol ∗ is used for j. When the multiplicity
is missing, [1..1] is assumed, i.e., the attribute is mandatory and single-valued. For example, the attribute
number[1..*]: String in Figure 2 means that each instance of the class has at least one phone number, and
possibly more, and that each phone number is an instance of String. Formally, an attribute a of type T for
class C corresponds to a binary predicate a for which the following FOL assertion holds:

∀x, y. (C(x) ∧ a(x, y)) ⊃ T (y)

i.e., for each instance x of class C, an object y related to x by a is an instance of T . The multiplicity [i..j]
associated to the attribute a can be expressed by

∀x. C(x) ⊃ (i ≤ �{y | a(x, y)} ≤ j)

where (i ≤ �{y | a(x, y)} ≤ j) is an abbreviation for the FOL formula with free variable x expressing that
there are at least i and at most j different y’s such that a(x, y) holds.

An operation of a class is a function from the objects of the class to which the operation is associated,
and possibly additional parameters, to objects or values. An operation definition for a class C has the form

f(P1, . . . , Pm) : R

where f is the name of the operation, P1, . . . , Pm are the types of the m parameters, and R is the type of the
result10. Observe that in class diagrams the actual definition of the function is not considered, and what is
represented is only the signature (i.e., the name of the function and the number and the types of parameters,
where the object of invocation is an implicit parameter) and the return type of the function.

Formally, such an operation corresponds to an (1 + m + 1)-ary predicate fP1,...,Pm , in which the first
argument represents the object of invocation, the next m arguments represent the additional parameters,
and the last argument represents the result. Observe that the name of the predicate depends on the whole
signature, i.e., it includes the types of the parameters.

The predicate fP1,...,Pm (in the following referred to simply as f , to improve readability) has to satisfy
the following FOL assertions:

∀x, p1, . . . , pm, r. f(x, p1, . . . , pm, r) ⊃ ∧m
i=1 Pi(pi)

∀x, p1, . . . , pm, r, r′. f(x, p1, . . . , pm, r) ∧ f(x, p1, . . . , pm, r′) ⊃ r = r′

∀x, p1, . . . , pm, r. C(x) ∧ f(x, p1, . . . , pm, r) ⊃ R(r)

The first assertion imposes the correct typing for the parameters, which, observe, depends only on the name
of the operation, and not the class to which the operation belongs (in fact, an operation may belong to several
classes). The next assertion imposes that invoking the operation on a given object with given parameters
determines in a unique way the return value (i.e., the relation corresponding to the operation is in fact a
function from the invocation object and the parameters to the result). The last assertion imposes the correct
type of the result, depending on the class (and the parameters) to which the operation is applied.

UML allows for the overloading of operations, which takes place between two or more functions having
the same name but different signatures. Overriding takes place when two operations have the same signature,
but behave in different ways. In UML class diagrams for the conceptual perspective, where the bodies of
operations are not specified, overriding may only show up as a restriction on the type of the result. Observe
that the above formalization allows one to have operations with the same name or even with the same name
and the same signature in two different classes, and correctly captures overloading and overriding.

10Observe that a function returning multiple results can be represented by a function returning a single tuple of results, i.e.,
a complex value.
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C1

ml..mu

A

nl..nu
C2

Figure 3: Binary association in UML

C1

A

Cn

· · ·

C2

Figure 4: n-ary association in UML

3.2 Associations and aggregations

An association in UML is a relation between the instances of two or more classes. Names of associations (as
names of classes) are unique in a UML class diagram. A binary association A between two classes C1 and C2

is graphically rendered as in Figure 3. The multiplicity n�..nu on the binary association specifies that each
instance of the class C1 can participate at least n� times and at most nu times to relation A; m�..mu has
an analogous meaning for the class C2. When the multiplicity is omitted, it is intended to be 0..∗. Observe
that an association can also relate several classes C1, C2, . . . , Cn, as depicted in Figure 411.

Often, an association has a related association class that describes properties of the association, such as
attributes, operations, etc. A binary association A between two classes C1 and C2 with an association class
is graphically rendered as in Figure 5, where the class A is the association class related to the association,
and r1 and r2 are the role names of C1 and C2 respectively, which specify the role that each class plays
within the association A. An association class can also be added to an n-ary association, as in Figure 6.

Example 3.2 The association in Figure 7 models phone calls originating from phones: a phone call orig-
inates from exactly one phone, whereas from a phone 0 or more phone calls can originate. Note that the
association origin is characterized by an attribute place of type String.

When the association class is not present, an association A between the instances of classes C1, . . . , Cn,
can be formalized as an n-ary predicate A that satisfies the following FOL assertion:

∀x1, . . . , xn. A(x1, . . . , xn) ⊃ C1(x1) ∧ . . . ∧ Cn(xn)

An association A between n classes C1, . . . , Cn that has a related association class is represented by a
unary predicate A and n binary predicates r1, . . . , rn, one for each role name12, for which the following FOL
assertions hold:

∀x, y. ri(x, y) ∧ A(x) ⊃ Ci(y), for i = 1, . . . , n
∀x. A(x) ⊃ ∃y. ri(x, y), for i = 1, . . . , n
∀x, y, y′. A(x) ∧ ri(x, y) ∧ ri(x, y′) ⊃ y = y′, for i = 1, . . . , n
∀y1, . . . , yn, x, x′. A(x) ∧ A(x′) ∧ ∧n

i=1(ri(x, yi) ∧ ri(x′, yi)) ⊃ x = x′

The first assertion types the association; the second and the third ones specify, respectively, that there exists
at least one and at most one element playing role ri for each component of A; the fourth one imposes that
there are no two instances of A that represent the same tuple, which is required for the association class to
faithfully represent the relation.

11In UML, different from other conceptual modeling formalisms, such as Entity-Relationship diagrams [4], multiplicities are
look-across cardinality constraints [47]. This makes their use in non-binary associations difficult with respect to both modeling
and reasoning.

12These binary relations may have the name of the roles of the association, if available in the UML diagram, or an arbitrary
name if role names are not available. In any case, we allow for using the same role name in different associations.
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C1

A

C2

nl..nu

r2r1

ml..mu

Figure 5: Binary association with association class in UML

C1

r1

A

rn
Cn

C2

r2

. . .

Figure 6: n-ary association with association class in UML

Observe that the formalization for associations differs from the one for attributes, since associations are
unique in the diagram, while attributes, being local to classes, are not.

For binary associations without association class (see Figure 3), multiplicities are formalized by the FOL
assertions

∀x. (n� ≤ �{y | A(x, y)} ≤ nu)
∀y. (m� ≤ �{x | A(x, y)} ≤ mu)

where we have abbreviated FOL formulas expressing cardinality restrictions as before. For binary associations
with association class (see Figure 5) the formalization of multiplicities is similar.

A particular kind of binary associations are aggregations, which play an important role in UML class
diagrams. An aggregation is a binary relation between the instances of two classes, denoting a part-whole
relationship, i.e., a relationship that specifies that each instance of a class (the containing class) contains a set
of instances of another class (the contained class). Aggregations have no associated class. An aggregation is
graphically rendered as shown in Figure 8, where the diamond indicates the containing class. The aggregation
of Figure 8 is represented by a binary predicate G for which the following FOL assertion holds:

∀x, y. G(x, y) ⊃ C1(x) ∧ C2(y)

where we use the convention that the first argument of the predicate is the containing class. Multiplicities
are treated as for binary associations.

Example 3.3 The aggregation in Figure 9 models phone bills containing phone calls: a phone call is con-
tained in one and only one phone bill, while a phone bill contains at least one phone call.

3.3 Generalization and hierarchies

In UML one can use a generalization between a parent class and a child class to specify that each instance
of the child class is also an instance of the parent class. Hence, the instances of the child class inherit the
properties of the parent class, but typically they satisfy additional properties that in general do not hold
for the parent class. Several generalizations can be grouped together to form a class hierarchy, as shown in
Figure 10. Disjointness and covering constraints can also be enforced on a class hierarchy (graphically, by
adding suitable labels).
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place: String

origin

phone call 0..∗
call from

1..1 phone

Figure 7: Example of association in UML

G

ml..mu nl..nu
C2C1

Figure 8: Aggregation in UML

Example 3.4 Figure 11 shows a class hierarchy among the parent class phone and the child classes cell phone
and fixed phone. In particular, it models the facts that both cell and fixed phones are phones, that no other
kind of phones exist and that no phone is at the same time both fixed and cell. Note that, as shown in
Figure 13, mobile calls originate only from cell phones.

Observe that UML allows for inheritance among association classes, which are treated exactly as all other
classes, and for multiple inheritance between classes (including association classes, see Figure 13).

An UML class C generalizing a class C1 can be formally captured by means of the FOL assertion

∀x. C1(x) ⊃ C(x)

Note that each attribute or operation of C, and each association involving C is correctly inherited by C1.
A class hierarchy as the one in Figure 10 is formally captured by means of the FOL assertions

∀x. Ci(x) ⊃ C(x), for i = 1, . . . , n

Disjointness among C1, . . . , Cn is expressed by the FOL assertions

∀x. Ci(x) ⊃ ∧n
j=i+1 ¬Cj(x), for i = 1, . . . , n − 1

Observe that disjointness of classes is a form of negative information.
The covering constraint expressing that each instance of C is an instance of at least one of C1, . . . , Cn is

expressed by
∀x. C(x) ⊃ ∨n

i=1 Ci(x)

Sometimes, in UML class diagrams, it is assumed that all classes not in the same hierarchy are a priori
disjoint. Here we do not force this assumption; instead we allow two classes to have common instances.
When needed, disjointness can be enforced by means of explicit disjointness constraints. Similarly, we do
not assume that objects in a hierarchy must belong to a single most specific class. Hence, two classes in
a hierarchy may have common instances, even when they do not have a common subclass. Again, when
needed, suitable covering and disjointness assertions that express the most specific class assumption can be
added to a class diagram.

For example, referring to Figure 12, besides the assertions representing the hierarchy, the most-specific-
class assumption is captured by means of the FOL assertions

∀x. C1(x) ∧ C2(x) ⊃ C12(x)
∀x. C3(x) ⊃ ¬C1(x)
∀x. C3(x) ⊃ ¬C2(x)

3.4 General constraints

Disjointness and covering constraints are in practice the most commonly used constraints in UML class
diagrams. However, UML allows for other forms of constraints, specifying class identifiers, functional depen-
dencies for associations, and, more generally through the use of OCL [45], any form of constraint expressible

10



1..1 1..∗phone bill phone call
reference

Figure 9: Example of aggregation in UML

C2 Cn

C

. . .C1

Figure 10: A class hierarchy in UML

in FOL. The use of general OCL constraints moves the semantics of the domain from the diagram to the OCL
constraints, and this may compromise the understandability of the diagram. Hence, the use of constraints is
typically limited. Also, unrestricted use of OCL constraints makes reasoning on a class diagram undecidable,
since it amounts to full FOL reasoning. In the following, we will not consider general constraints.

We conclude the section with an example of a full UML class diagram.

Example 3.5 Figure 13 shows a complete UML class diagram that models phone calls originating from
different kinds of phones, and phone bills they belong to13. The diagram shows that a mobile call is a
particular kind of phone call and that the origin of each phone call is one and only one phone. Additionally,
a phone can be only of two different kinds: a fixed phone or a cell phone. Mobile calls originate (through the
association m origin) from cell phones. The association m origin is contained in the binary association origin:
hence m origin inherits the attribute place of association class origin. Finally, a phone call is referenced in
one and only one phone bill, whereas a phone bill contains at least one phone call. In FOL, the diagram is

13This diagram is based on an example provided with i.com, a prototype design tool for conceptual modeling with reasoning
support [30].
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{covering, disjoint}

phone

cell phone fixed phone

Figure 11: Example of class hierarchy

C3C2

C

C12

C1

Figure 12: A class hierarchy with most-specific-class assumption

represented as follows.

∀x, y. origin(x) ∧ place(x, y) ⊃ String(x)
∀x, y. call(x, y) ∧ origin(x) ⊃ phone call(y)
∀x, y. from(x, y) ∧ origin(x) ⊃ phone(y)
∀x. origin(x) ⊃ ∃y. call(x, y)
∀x. origin(x) ⊃ ∃y. from(x, y)
∀x, y, y′. origin(x) ∧ call(x, y) ∧ call(x, y′) ⊃ y = y′

∀x, y, y′. origin(x) ∧ from(x, y) ∧ from(x, y′) ⊃ y = y′

∀x, x′, y1, y2. origin(x) ∧ origin(x′) ∧ call(x, y1) ∧ call(x′, y1)
∧from(x, y2) ∧ from(x′, y2) ⊃ x = x′

∀x. 1 ≤ �{y | origin(x, y) ∧ call(x, y)} ≤ 1
∀x, y. call(x, y) ∧ m origin(x) ⊃ mobile call(y)
∀x, y. from(x, y) ∧ m origin(x) ⊃ cell phone(y)
∀x. m origin(x) ⊃ ∃y. call(x, y)
∀x. m origin(x) ⊃ ∃y. from(x, y)
∀x, y, y′. m origin(x) ∧ call(x, y) ∧ call(x, y′) ⊃ y = y′

∀x, y, y′. m origin(x) ∧ from(x, y) ∧ from(x, y′) ⊃ y = y′

∀x, x′, y1, y2. m origin(x) ∧ m origin(x’) ∧ call(x, y1) ∧ call(x′, y1)
∧from(x, y2) ∧ from(x′, y2) ⊃ x = x′

∀x, y, . reference(x, y) ⊃ phone bill(x) ∧ phone call(y)
∀x. 1 ≤ �{y | reference(x, y)} ≤ 1
∀y. 1 ≤ �{x | reference(x, y)}
∀x. mobile call(x) ⊃ phone call(x)
∀x. m origin(x) ⊃ origin(x)
∀x. cell phone(x) ⊃ phone(x)
∀x. fixed phone(x) ⊃ phone(x)
∀x. cell phone(x) ⊃ ¬fixed phone(x)
∀x. phone(x) ⊃ cell phone(x) ∨ fixed phone(x)

12



phone_bill phone_call

mobile_call

m_origin

phone

cell_phone fixed_phone

reference

1..1 1..*

origin

place: String

call

0..*

call

0..* 0..*

from

{covering, disjoint}

1..1

from

Figure 13: UML class diagram modeling phone calls

Notice that, in the above diagram, one would like to express that each mobile call is related via the
association origin only to instances of cell phone. Similarly for the other direction of the association. This
can be expressed in FOL as follows:

∀x, y. mobile call(x) ∧ origin(x, y) ⊃ cell phone(y)
∀x, y. cell phone(y) ∧ origin(x, y) ⊃ mobile call(x)

The association m origin approximates this, making it explicit in the diagram that mobile calls and cell phones
are related to each other. It would be possible to express the above constraints directly in the diagram.
However, it would require the introduction of additional classes and would make the diagram more complex
(see later).

4 Reasoning on UML class diagrams

The design of UML class diagrams modeling complex real world domains is facilitated by automated CASE
tools. Currently, CASE tools support the designer with a user friendly graphical environment and provide
powerful means to access different kinds of repositories that store information associated to the elements of
the developed project. The fact that UML class diagrams can be re-expressed in FOL allows one in principle
to go far beyond such a kind of support. Indeed, the designer can use the FOL formalization to formally
check relevant properties of class diagrams so as to assess the quality of the diagram according to objective
quality criteria. Typical properties of interest are the following (see, e.g., [18, 10]).

Consistency of the whole class diagram A class diagram is consistent, if it admits an instantiation,
i.e., if its classes can be populated without violating any of the requirements imposed by the diagram.
Formally, this means that the corresponding set of FOL assertions admits a model in which at least
one class has a nonempty extension. When the diagram is not consistent, the definitions altogether
are contradictory, since they do not allow any class to be populated. Observe that the interaction of
various types of constraints may make it very difficult to detect inconsistencies.

Class consistency A class is consistent, if the class diagram admits an instantiation in which the class has a
non-empty set of instances. Intuitively, the class can be populated without violating the requirements
imposed by the class diagram. Formally, the set of FOL assertions corresponding to the diagram
admits a model in which the class has a nonempty extension. The inconsistency of a class may be
due to a design error or due to over-constraining. In any case, the understandability of the diagram is
weakened, since the class stands for the empty class, and thus, at the very least, it is inappropriately
named. To increase the quality of the diagram, the designer may remove the inconsistency by relaxing
some constraints (possibly by correcting errors), or by deleting the class, thus removing redundancy
and increasing understandability.

Class subsumption A class C1 subsumes a class C2, if the class diagram implies that C1 is a generalization
of C2. Formally, in every model of the set of FOL assertions, the extension of C1 is a superset of the
extension of C2. Such a subsumption allows one to deduce that properties for C1 hold also for C2.
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reference
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{covering, disjoint}

1..1
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Figure 14: Modified version of the UML class diagram modeling phone calls

This suggests the possible omission of an explicit generalization. Alternatively, if all instances of the
more specific class are not supposed to be instances of the more general class, then something is wrong
with the diagram, since it is forcing an undesired conclusion. Class subsumption is also the basis for a
classification of all the classes in a diagram. Such a classification, as in any object-oriented approach,
can be exploited in several ways within the modeling process [7].

Class equivalence Two classes are equivalent if they denote the same set of instances whenever the require-
ments imposed by the class diagram are satisfied: in this case one of them is redundant. Determining
equivalence of two classes allows for their merging, thus reducing the complexity of the diagram.

Refinement of properties The properties of various classes and associations may interact to yield stricter
multiplicities or typing than those explicitly specified in the diagram. Detecting such cases allows the
designer for refining the class diagram by making such properties explicit, thus enhancing the readability
of the diagram.

Implicit consequences More generally, a property is an (implicit) consequence of a class diagram if it
holds whenever all requirements imposed by the diagram are satisfied. Formally, this means that
the property is logically implied by the FOL assertions corresponding to the class diagram, i.e., the
property holds in every model of the assertions. Determining implicit consequences is useful on the one
hand to reduce the complexity of the diagram by removing those parts that implicitly follow from other
ones, and on the other hand it can be used to make properties explicit, thus enhancing its readability.
Note that the above properties can be seen as special cases of implicit consequences.

We illustrate the above properties on our running example.

Example 4.1 Consider the UML class diagram shown in Figure 13. By reasoning on such a diagram, one can
deduce that the class mobile call participates to association m origin with multiplicity 0..1. Indeed, m origin
is included in origin, hence every tuple of m origin is-a tuple of origin; moreover, since every phone call
participates exactly once to association origin, necessarily every mobile call participates at most once to
association m origin, since mobile call is a subclass of phone call. This is an example of refinement of a
multiplicity.

If we add a generalization to the diagram in Figure 13 that asserts that each cell phone is a fixed phone
(see Figure 14), we get several undesirable properties. First, the class cell phone is inconsistent, i.e., it has no
instances. Indeed, the disjointness constraint asserts that there are no cell phones that are also fixed phones,
and since the empty set is the only set that can be at the same time disjoint from and contained in the class
fixed phone, the class cell phone is equivalent to it. Second, since the class phone is made up by the union
of classes cell phone and fixed phone, and since cell phone is inconsistent, the classes phone and fixed phone
are equivalent, hence one of them is redundant. Finally, since there are no cell phones, there are no pairs in
the association m origin, and so it is inconsistent too. The class mobile call is not inconsistent since it can be
populated by instances that do not participate to association m origin. Note that, if we added the constraint

∀x, y. mobile call(x) ∧ origin(x, y) ⊃ cell phone(y)

discussed in Example 3.5, considering the minimal multiplicity 1 of mobile call in origin, mobile call would be
inconsistent too.
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Figure 15: Reduction from class subsumption to class consistency
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C∅

C1 C
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Figure 16: Reduction from class consistency to class subsumption

The example above shows that reasoning is required in order to understand whether the class diagram
enjoys required properties. Considering the high complexity of industrial software, it can be very difficult
to verify the properties of a UML class diagram and to guarantee that they are preserved during the design
of the diagram. Thus, it would be highly desirable to have CASE tools equipped with automated reasoning
capabilities to support the designer. One possibility would be to resort to a full FOL theorem prover [3, 35].
While certainly worth exploring, due to the intrinsic undecidability of FOL, such an approach cannot provide
completely automated techniques for reasoning on UML class diagrams. Here instead we follow a different
approach, and we investigate the intrinsic complexity of reasoning on UML class diagrams, taking into
account restricted forms of constraints. We characterize the complexity by resorting to DLs [1]. On the
one hand, we show that reasoning on UML class diagrams (that include as constraints only disjointness
and covering) is EXPTIME-hard. On the other hand, we show that EXPTIME-decidable DLs can fully
capture UML class diagrams with restricted forms of FOL constraints. This demonstrates that DL reasoning
algorithms are ideal candidates for being used as core reasoning engines in advanced CASE tools with
reasoning support.

5 Hardness of reasoning on UML class diagrams

From the formal point of view, one can see that the reasoning tasks necessary for checking the various
properties discussed in Section 4 are mutually reducible to each other. As an example, we show the mutual
reducibility between class consistency and class subsumption.

Given a class diagram with classes C1 and C2, if we want to check whether C1 subsumes C2, then we
can add to the class diagram the part depicted in Figure 15, where O, C, and C1 are new classes, and check
whether C is inconsistent. Indeed, if C1 subsumes C2, there can be no object that is both in C1, hence not
in C1, and in C2, and so C is inconsistent. Conversely, if C1 does not subsume C2, this means that there is
a model I of the (original) diagram with an object o not in C1 but in C2. We can take the extension of C1

in I to include o. Hence C has a nonempty extension in I and is consistent.
Given a class diagram with a class C, if we want to check whether C is inconsistent, then we can add

to the class diagram the part depicted in Figure 16, where O, C1, C1, and C∅ are new classes, and check
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whether C∅ subsumes C. Indeed, since C1 and C1 are disjoint, C∅ denotes the empty class, and so C is
inconsistent if and only if it is subsumed by C∅.

Hence in the following, without loss of generality, we focus on class consistency only. Specifically, we show
that class consistency in UML class diagrams with only disjointness and covering constraints is EXPTIME-
hard. We prove the claim by a reduction from concept satisfiability in ALC KBs, which is EXPTIME-hard [1].
We proceed in two steps:

1. First, we show that we can restrict the attention to a syntactically restricted form of ALC called ALC−

below.

2. Then, we describe a reduction from atomic concept satisfiability in ALC− KBs to class consistency in
UML class diagrams.

In the following, we call primitive an inclusion assertion of the form A � C, where A is an atomic concept
and C is an arbitrary concept. The DL ALC− is obtained from ALC by dropping intersection and allowing
only for complex concepts built with at most one construct of ALC, i.e.,

C ::= A | ¬A | A1 � A2 | ∃P .A | ∀P .A

where A denotes an atomic concept and P denotes an atomic role. An ALC− KB is a finite set of primitive
ALC− inclusion assertions, i.e., inclusion assertions of the form A � C where C is an ALC− concept.

By exploiting a result in [11] we can reduce concept satisfiability in ALC KBs to atomic concept satisfi-
ability in ALC− KBs.

Lemma 5.1 Concept satisfiability in an ALC KB can be linearly reduced to atomic concept satisfiability in
a primitive ALC KB.

Proof. Let K be an ALC KB and C an ALC concept. By a result in [11], C is satisfiable in K if and
only if AT � C is satisfiable in the KB K1 consisting of the single assertion

AT � �
C1�C2∈K

(¬C1 � C2) � �
1≤i≤n

∀Pi.AT

where AT is a new atomic concept and P1, . . . , Pn are all atomic roles appearing in K and C.
Then, in order to reduce the problem to atomic concept satisfiability, we introduce a new atomic concept

AC , and check its satisfiability in K2 = K1 ∪ {AC � AT � C}. Indeed, if K1 admits a model I such that
(AT � C)I �= ∅, then by extending I so that AI

C = (AT � C)I , we get a model of K2 in which AI
C �= ∅.

Conversely, every model of K2 with AI
C �= ∅ is also a model of K1 with (AT � C)I �= ∅.

Below we assume, without loss of generality, that primitive ALC KBs are in negation normal form.
Indeed, every primitive ALC KB can be put in negation normal form in linear time.

Given a primitive ALC KB K (in negation normal form), we construct a primitive ALC− KB K′ by
recursively replacing each ALC assertion in K that is not already a (primitive) ALC− assertion as follows:

1. A � C1 � C2 is replaced by A � C1 and A � C2;

2. A � C1 � C2 is replaced by A � A1 � A2, A1 � C1 and A2 � C2, where A1 and A2 are new atomic
concepts;

3. A � ∀P .C is replaced by A � ∀P .A1 and A1 � C, where A1 is a new atomic concept;

4. A � ∃P .C is replaced by A � ∃P .A1 and A1 � C, where A1 is a new atomic concept.

Notice that the number of such replacements is finite (in fact linear), since for each occurrence of an ALC
construct in K at most one replacement is done.

Lemma 5.2 Given a primitive ALC KB K, the size of the (primitive) ALC− KB K′ obtained as above is
linear in the size of K.
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Proof. By construction.

Lemma 5.3 An atomic concept A0 is satisfiable in a primitive ALC KB K if and only if A0 is satisfiable
in the (primitive) ALC− KB K′ obtained as above.

Proof. We show that A0 in K is satisfiable if and only if it is satisfiable in the KB obtained after n
replacements, for each n > 0. We proceed by induction on n. Let Ki be the KB obtained from K after i
replacements.

Base case: K0 = K (obvious).
Inductive case: By inductive hypothesis, we have that A0 is satisfiable in K if and only if A0 is satisfiable

in Kn. We prove that, given a model I of Kn with AI
0 �= ∅ we can construct a model J of Kn+1 with AJ

0 �= ∅,
and conversely, that every model J of Kn+1 with AJ

0 �= ∅ is also a model of Kn.

1. If the next step to be applied is the replacement of A � C1 � C2 with A � C1 and A � C2, then:

Kn+1 = Kn ∪ {A � C1, A � C2} \ {A � C1 � C2}
In this case, the statement is obvious, since {A � C1 � C2} logically implies {A � C1, A � C2} and
vice-versa. Therefore Kn+1 and Kn have the same models.

2. If the next step consists in the replacement of A � C1 � C2 by A � A1 � A2, A1 � C1 and A2 � C2,
where A1 and A2 are new atomic concepts, we get:

Kn+1 = Kn ∪ {A � A1 � A2, A1 � C1, A2 � C2} \ {A � C1 � C2}

“⇐” Let I be a model of Kn with AI
0 �= ∅, let J coincide with I on all atomic concepts and roles

in Kn, and additionally let AJ
1 = CI

1 and AJ
2 = CI

2 . Since I satisfies A � C1 � C2, we have by
construction that J satisfies A � A1 � A2, A1 � C1 and A2 � C2, and hence is a model of Kn+1 with
AJ

0 �= ∅.
“⇒” Let J be a model of Kn+1 with AJ

0 �= ∅. Since it satisfies A � A1�A2, for each instance a ∈ AJ ,
we have a ∈ AJ

1 or a ∈ AJ
2 . In the first case, by A1 � C1, we get a ∈ CJ

1 ; in the second case, by
A2 � C2, we get a ∈ CJ

2 . Therefore, J satisfies A � C1 � C2, and hence is a model of Kn as well.

3. If the next step to be applied is to replace A � ∀P .C by A � ∀P .A1 and A1 � C, where A1 is a new
atomic concept, we have:

Kn+1 = Kn ∪ {A � ∀P .A1, A1 � C} \ {A � ∀P .C}

“⇐” Let I be a model of Kn with AI
0 �= ∅, let J coincide with I on all atomic concepts and roles

in Kn, and additionally let AJ
1 = CI . Since I satisfies A � ∀P .C, we have by construction that J

satisfies A � ∀P .A1 and A1 � C, and hence is a model of Kn+1 with AJ
0 �= ∅.

“⇒” Let J be a model of Kn+1 with AJ
0 �= ∅. Since it satisfies A � ∀P .A1, for each instance a ∈ AJ ,

if a is connected via role P to an instance a′, then a′ ∈ AJ
1 . By A1 � C, we have that a′ ∈ CJ .

Therefore J satisfies A � ∀P .C, and hence is a model of Kn as well.

4. If the next step to be applied is to replace A � ∃P .C by A � ∃P .A1 and A1 � C, where A1 is a new
atomic concept, we have:

Kn+1 = Kn ∪ {A � ∃P .A1, A1 � C} \ {A � ∃P .C}

“⇐” Let I be a model of Kn with AI
0 �= ∅, let J coincide with I on all atomic concepts and roles

in Kn, and additionally let AJ
1 = CJ . Since I satisfies A � ∃P .C, we have by construction that J

satisfies A � ∃P .A1 and A1 � C, and hence is a model of Kn+1 with AJ
0 �= ∅.

“⇒” Let J be a model of Kn+1 with AJ
0 �= ∅. Since it satisfies A � ∃P .A1, there exists an instance

a ∈ AJ that is connected via role P to an instance a′ ∈ AJ
1 . By A1 � C, we have that a′ ∈ CJ .

Therefore J satisfies A � ∃P .C, and hence is a model of Kn as well.
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Figure 17: UML encoding of the assertion A � ¬B
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Figure 18: UML encoding of the assertion A � B1 � B2

Next, we reduce concept satisfiability in a primitive ALC− KB K′ to class consistency in an UML class
diagram D. For each atomic concept A in K′, we introduce a class A in D. Additionally, we add a class O
that generalizes (possibly indirectly) all classes in D. O is also used to specify disjointness among classes
(see later). For each atomic role P , we introduce an association P (with related association class), involving
the class O twice. Intuitively, using O in such a way, we do not constrain in any way the classes to which
the component instances of P may belong. More classes and associations, as well as generalizations between
O and the new classes, are added below as needed.

The assertions in the ALC− KB K′ are encoded in the class diagram as follows:

1. For each assertion of the form A � B, we introduce a generalization between the classes A and B
(where A is the subclass).

2. For each assertion of the form A � ¬B, we construct the hierarchy in Figure 17, exploiting the
superclass O to express disjointness between A and B.

3. For each assertion of the form A � B1 � B2, we introduce an auxiliary class B, and construct the
hierarchy in Figure 18. Intuitively, being B a covering of B1 and B2, and A a subclass of B, it follows
that A is a subclass of the union of B1 and B2.

B

P

PA

A

O

{disjoint}

{covering}

A

PA

Figure 19: UML encoding of the assertion A � ∀P .B
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Figure 20: UML encoding of the assertion A � ∃P .B

4. For each assertion of the form A � ∀P .B, we introduce a new class A and two new binary associations
PA and PA (with their associated classes) and we construct the portion of diagram in Figure 19, where
A and A are disjoint and there is a generalization with covering constraint between P and its children
PA and PA. Note that A and B are the components of PA, whereas A and O are the components of
PA. Intuitively, the diagram enforces that each instance of A participating to P is in fact participating
to PA, and hence associated via P to an instance of B.

5. For each assertion of the form A � ∃P .B, we introduce a new binary association PAB, with its associ-
ated class, and we construct the portion of diagram shown in Figure 20. Note the proper multiplicity
constraint 1..∗ on the participation of A to PAB

14. Intuitively, this implies that for each instance of
A, there exists an instance of B related to it through PAB, and hence through P .

Lemma 5.4 Given a primitive ALC− KB K′, the size of the UML class diagram D constructed as above is
linear in the size of K′.

Proof. By construction.

Lemma 5.5 An atomic concept A is satisfiable in an ALC− KB K′ if and only if the class A is consistent
in the UML class diagram D constructed as above.

Proof. “⇐” Let J = (∆J , ·J ) be an instantiation for D (i.e., a model of the corresponding FOL
assertions). We show that J is also a model of all assertions in K′.

1. For each assertion of the form A � B in K′, there is a generalization in D between the child class A
and the parent class B. Hence, J populates A and B so that AJ ⊆ BJ .

2. For each assertion of the form A � ¬B in K′, we have in D the hierarchy shown in Fig. 17, characterized
by a disjointness constraint between A and B. J assigns to the classes A, B and O the sets AJ , BJ , OJ

so that AJ ⊆ OJ , BJ ⊆ OJ and AJ ∩ BJ = ∅. From the latter we have that AJ ⊆ ∆J \ BJ .

3. Each assertion of the form A � B1 � B2 in K′ corresponds in D to the hierarchy shown in Fig. 18,
characterized by a covering constraint among B and its children B1 and B2. J populates the classes
A, B, B1 and B2, so that AJ ⊆ BJ , and BJ = BJ

2 ∪ BJ
2 . Hence we get AJ ⊆ BJ

1 ∪ BJ
2 .

4. Each assertion of the form A � ∀P .B in K′ corresponds, in D, to the sub-diagram in Fig. 19. J
14In fact, in the case where we also have the assertion A � ∀P .B for some B, instead of proceeding as in Figure 20, we can

simply add the cardinality constraint 1..∗ to the association PAB in Figure 19.
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populates it according to the following constraints:

AJ ⊆ OJ

A
J ⊆ OJ

AJ ∩ A
J

= ∅
BJ ⊆ OJ

PJ ⊆ OJ × OJ

PJ
A

⊆ A
J × OJ

PJ
A ⊆ AJ × BJ

PJ
A ⊆ PJ

PJ
A

⊆ PJ

PJ ⊆ PJ
A ∪ PJ

A

From the constraints above, we get that PJ
A ∩ PJ

A
= ∅. Therefore, if x ∈ AJ then for all x′ ∈ OJ if

(x, x′) ∈ PJ then (x, x′) ∈ PJ
A and therefore x′ ∈ BJ , i.e., AJ ⊆ {x ∈ OJ | ∀x′ ∈ OJ . (x, x′) ∈ PJ ⊃

x′ ∈ BJ }.
5. Each assertion of the form A � ∃P .B in K′ corresponds, in D, to the sub-diagram shown in Figure 20.

J populates it and satisfies the constraints AJ ⊆ OJ , BJ ⊆ OJ , PJ ⊆ OJ × OJ , PJ
AB ⊆ PJ and

PJ
AB ⊆ AJ × BJ , and for each x ∈ AJ we have that �{x′ ∈ ∆I | (x, x′) ∈ PJ

AB} ≥ 1 (mandatory
participation constraint). From these we get that for each x ∈ AJ there exists x′ ∈ OJ such that
(x, x′) ∈ PJ and x′ ∈ BJ , i.e., AJ ⊆ {x ∈ OJ | ∃x′ ∈ OJ (x, x′) ∈ PJ ∧ x′ ∈ BJ }.

“⇒” Let I = (∆I , ·I) be a model of K′ with AI �= ∅. We show that it can be seen as an instantiation
of D, once we assign a suitable extension to the auxiliary classes and roles introduced in the construction of
D. First, we define OI = ∆I .

1. For each assertion of the form A � B in K′, we have a generalization between classes A and B in D.
I assigns to concepts A and B in K′ the subsets AI and BI of ∆I , such that AI ⊆ BI , and hence
correctly captures the generalization between classes A and B in D.

2. For each assertion of the form A � ¬B in K′, we have a fragment of D as in Fig. 17. I assigns
to concepts A and B the subsets AI and BI of ∆I , such that AI ⊆ ∆I \ BI . Then we have that
AI ⊆ OI , BI ⊆ OI and AI ∩ BI = ∅, thus correctly capturing the fragment of D.

3. For each assertion of the form A � B1 � B2 in K′, we have a fragment of D as in Fig. 18. I assigns to
concepts B1 and B2 the subsets BI

1 and BI
2 of ∆I , respectively, and to A a subset of their union, i.e.,

AI ⊆ BI
1 ∪ BI

2 . Let us define BI = BI
1 ∪ BI

2 . Then AI ⊆ BI , thus correctly capturing the fragment
of D.

4. For each assertion of the form A � ∀P .B in K′, we have a fragment of D as in Fig. 19. Let us define:

• A
I

= ∆I \ AI

• P I
A = {(x, x′) ∈ P I | x ∈ AI}

• P I
A

= {(x, x′) ∈ P I | x ∈ A
I}
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Then, by AI ⊆ {x ∈ ∆I | ∀x′ ∈ ∆I . (x, x′) ∈ P I ⊃ x′ ∈ BI}, we get:

AI ⊆ OI

A
I ⊆ OI

AI ∩ A
I

= ∅
BI ⊆ OI

P I ⊆ OI × OI

P I
A ⊆ AI × BI

P I ⊆ P I
A ∪ P I

A

P I
A ⊆ P I

P I
A

⊆ P I

thus correctly capturing the fragment of D.

5. For each assertion of the form A � ∃P .B in K′, we have a fragment of D as in Fig. 20. Let us define
P I

AB = {(x, x′) ∈ P I | x ∈ AI}. Then, by AI ⊆ {x ∈ ∆I | ∃x′ ∈ ∆I . (x, x′) ∈ P I ∧ x′ ∈ BI}, we get
that for each x ∈ AI we have �{x′ ∈ ∆I | (x, x′) ∈ P I

AB} ≥ 1, and we have that such an instantiation
is correct for the fragment of D.

By Lemmata 5.1, 5.2, 5.3, 5.4, 5.5, and EXPTIME-hardness of reasoning in ALC knowledge bases [1],
we get our hardness result.

Theorem 5.6 Class consistency in UML class diagrams is EXPTIME-hard.

6 Complexity of Reasoning on UML Class Diagrams

The FOL formalization of class diagrams presented in Section 3, allows one to exploit FOL theorem provers
to perform the various reasoning tasks on class diagrams. However, using the full power of a FOL theorem
prover may be an overkill. Moreover, one incurs in the undecidability of FOL, which does not guarantee
that the theorem prover will always terminate providing the answer to the requested task. Instead, one can
resort to less expressive logics, in particular DLs, which provide enough expressive power to represent UML
class diagrams, while keeping reasoning decidable, with known complexity bounds.

In this section we show that reasoning on UML class diagrams in decidable, and in fact EXPTIME-
complete. To do so we show that we can polynomially encode UML class diagrams in DLRifd knowledge
bases [12, 6] and that such an encoding precisely captures the FOL semantics of UML class diagrams. Hence,
reasoning on such diagrams is reduced to reasoning on DLRifd knowledge bases, which is in EXPTIME.

6.1 Encoding of UML Class Diagrams in DLRifd

We now illustrate the encoding of UML class diagrams in DLRifd , discussing each construct separately.

6.1.1 Classes

An UML class is represented by a DLRifd concept. Indeed, both UML classes and DLRifd concepts denote
sets of objects.

To capture an attribute a of type T for a class C we use a DLRifd binary relation a, and we specify the
type of the attribute with the assertion:

C � ∀[1](a⇒(2 :T ))

Such an assertion specifies that, for each instance c of the concept C, all objects related to c by a, are
instances of T . Note that an attribute name is not necessarily unique in the whole diagram, and hence
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two different classes could have the same attribute, possibly of different types. This situation is correctly
captured by the formalization in DLRifd . To specify a multiplicity [i..j] associated to the attribute we add
the assertion:

C � (≥ i [1]a) � (≤ j [1]a)

Such an assertion specifies that each instance of C participates at least i times and at most j times to relation
a via component 1. If i = 0, i.e., the attribute is optional, we omit the first conjunct, and if j = ∗ we omit
the second one. Observe that, for attributes with multiplicity [0..∗], we omit the whole assertion, and that,
when the multiplicity is missing (i.e., [1..1] is assumed) the above assertion becomes:

C � ∃[1]a � (≤ 1 [1]a)

Let
f(P1, . . . , Pm) : R

be an operation of a class C that has m parameters belonging to the classes P1, . . . , Pm respectively and
a result belonging to R. We formalize such an operation as a DLRifd relation, named opf(P1,...,Pm), of
arity 1+m+1 among instances of the DLRifd concepts C, P1, . . . , Pm, R. On such a relation we enforce the
following assertions.

• An assertion imposing the correct types to the parameters:

opf(P1,...,Pm) � (2 : P1) � · · · � (m + 1 :Pm)

• An assertion imposing that invoking the operation on a given object with given parameters determines
in a unique way the result (i.e., the relation corresponding to the operation is in fact a function from
the invocation object and the parameters to the result):

(fd opf(P1,...,Pm) 1, . . . , m + 1 → m + 2)

In case the operation has no parameters (i.e., m = 0), instead of the above functional dependency we
make use of the assertion:

�1 � (≤ 1 [1]opf())

These assertions are determined only by the number of parameters, and not by the specific class for
which the operation is defined, nor by the types of parameters and of the result.

• An assertion imposing the correct type of the result, when the operation is invoked on instances of the
class C:

C � ∀[1](opf(P1,...,Pm) ⇒(m + 2 : R))

As discussed in Section 3, the chosen way of naming relations corresponding to operations does not pose
any difficulty in the formalization of overloading of operations within the same class, since an operation is
represented in DLRifd by a relation having as name the signature of the operation, which consists not only
of the operation name but also of the parameter types. Observe that the formalization of operations in
DLRifd allows one to have operations with the same name or even with the same signature in two different
classes. As discussed in Section 3, overriding of operations may show up as a restriction on the return type.

Example 6.1 The DLRifd assertions that capture the attributes of class phone in Figure 2 are:

phone � ∀[1](number⇒(2 :String))
phone � (≥ 1 [1]number)
phone � ∀[1](brand⇒(2 : String))

Operation lastDialed() is captured by the DLRifd assertions:

phone � ∀[1](oplastDialed())⇒(2 : String)
�1 � (≤ 1 [1]oplastDialed())
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Operation lengthCall(String) is captured by the DLRifd assertions:

oplengthCall(String) � (2 : String)
(fd oplengthCall(String) 1, 2 → 3)

phone � ∀[1](oplengthCall(String) ⇒(3 : int))

6.1.2 Associations

We have to distinguish between associations not having an association class and those having one. In the
former case, we can encode an n-ary association A between classes C1, . . . , Cn (see Figure 4) simply as a
DLRifd n-ary relation A, together with the following typing assertion:

A � (1 : C1) � (2 :C2) � · · · � (n : Cn)

An n-ary association A with an association class (see Figure 6) is formalized in DLRifd by reifying A
into a DLRifd concept A with n binary relations r1, . . . , rn, one for each component of the association A.
We enforce the following assertion:

A � ∃[1]r1 � (≤ 1 [1]r1) � ∀[1](r1 ⇒ (2 :C1)) �
∃[1]r2 � (≤ 1 [1]r2) � ∀[1](r2 ⇒ (2 :C2)) �

...
∃[1]rn � (≤ 1 [1]rn) � ∀[1](rn ⇒ (2 :Cn))

where ∃[1]ri (with i ∈ {1, . . . , n}) specifies that the concept A must have all components r1, . . . , rn of the
association A, (≤ 1 [1]ri) (with i ∈ {1, . . . , n}) specifies that each such component is single-valued, and
∀[1](ri ⇒ (2 : Ci)) (with i ∈ {1, . . . , n}) specifies the class each component has to belong to. Finally, in order
to faithfully represent the association by a class, we assert

(id A [1]r1, . . . , [1]rn)

which specifies that each instance of A represents a distinct tuple in C1 × · · · × Cn.
We can easily represent in DLRifd a multiplicity on a binary association. If the association has no related

association class, we capture multiplicities by the following DLRifd assertions (referring to Figure 3):

�1 � (≥ n� [1]A) � (≤ nu [1]A)
�1 � (≥ m� [2]A) � (≤ mu [2]A)

Example 6.2 The DLRifd assertions that capture the aggregation15 in Figure 9, are:

reference � (1 : phone bill) � (2 : phone call)
�1 � (≥ 1 [1]reference)
�1 � (≥ 1 [2]reference) � (≤ 1 [2]reference)

If, instead, the association has a related class, we can impose a number restriction on the relations
modeling the components of the association. Since the names of such relations (which correspond to roles)
are unique with respect to the association only, and not with respect to the entire diagram, we have to state
such constraints in DLRifd as follows (referring to Figure 5):

�1 � (≥ n� [2](r1 � (1 :A))) � (≤ nu [2](r1 � (1 :A)))
�1 � (≥ m� [2](r2 � (1 :A))) � (≤ mu [2](r2 � (1 :A)))

Example 6.3 The DLRifd assertions modeling the association in Figure 7 are:

origin � ∀[1](call⇒(2 : phone call)) � ∃[1]call � (≤ 1 [1]call) �
∀[1](from⇒(2 : phone)) � ∃[1]from � (≤ 1 [1]from)

�1 � (≥ 1 [2](call � (1 : origin))) � (≤ 1 [2](call � (1 : origin)))
origin � ∀[1](place⇒(2 :String))
origin � ∃[1]place � (≤ 1 [1]place)

15Recall that an aggregation is a special case of binary association without association class.
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6.1.3 Generalizations and hierarchies

Generalization is naturally supported in DLRifd . If an UML class C2 generalizes a class C1, we can express
this by the DLRifd assertion:

C1 � C2.

Inheritance between DLRifd concepts works exactly as inheritance between UML classes. This is an obvious
consequence of the semantics of �, which is based on sub-setting. Observe that the encoding in DLRifd also
captures correctly inheritance among association classes and multiple inheritance between classes.

A class hierarchy as the one in Figure 10 can be represented by the assertions

Ci � C for each i ∈ {1, . . . , n}
A disjointness constraint among classes C1, . . . , Cn can be formalized as

Ci �
n�

j=i+1
¬Cj for each i ∈ {1, . . . , n}

while a covering constraint can be expressed as

C �
n⊔

j=1

Cj

Example 6.4 The hierarchy in Figure 11 can be formalized by means of the following DLRifd assertions:

cell phone � phone
fixed phone � phone
cell phone � ¬fixed phone

phone � cell phone � fixed phone

If needed, one can easily add DLRifd assertions to state that all classes that are not in the same hierarchy
are a priori disjoint, and that objects in the same hierarchy must belong to a most specific class.

Example 6.5 Finally, we show how the overall UML class diagram in Figure 13 can be modeled in DLRifd :

origin � ∀[1](place⇒(2 : String))
origin � ∃[1]place � (≤ 1 [1]place)
origin � ∀[1](call⇒(2 : phone call)) � ∃[1]call � (≤ 1 [1]call) �

∀[1](from⇒(2 : phone)) � ∃[1]from � (≤ 1 [1]from)
m origin � ∀[1](call⇒(2 :mobile call)) � ∃[1]call � (≤ 1 [1]call) �

∀[1](from⇒(2 : cell phone)) � ∃[1]from � (≤ 1 [1]from)
�1 � (≥ 1 [2](call � (1 : origin))) � (≤ 1 [2](call � (1 : origin)))

reference � (1 : phone bill) � (2 : phone call)
�1 � (≥ 1 [1]reference)
�1 � (≥ 1 [2]reference) � (≤ 1 [2]reference)

mobile call � phone call
m origin � origin

cell phone � phone
fixed phone � phone
cell phone � ¬fixed phone

phone � cell phone � fixed phone

6.2 Correctness of the Encoding

We now show that the encoding presented above is indeed correct. In particular, we show that there is a
direct correspondence between instantiations of the UML class diagram and models of the corresponding
DLRifd knowledge base. This is captured by the following theorem.

24



Theorem 6.6 Let D be an UML class diagram and KD the DLRifd knowledge base constructed as described
above. Then every instantiation of D is a model of KD, and vice-versa.

Proof. First of all, we observe that both (the FOL formalization of) the UML class diagram D and the
DLRifd knowledge base KD are over the same alphabet. So interpretations are compatible. Considering each
UML class diagram construct separately, it is easy to see that an interpretation satisfies its FOL formalization
if and only if it satisfies the corresponding DLRifd assertions. We show this in some detail below, also to
make apparent the very close correspondence between the two formalizations.

• Class attributes. An attribute a of type T of the class C with multiplicity [i..j] is captured in D by the
FOL assertions:

∀x, y. (C(x) ∧ a(x, y)) ⊃ T (y)
∀x, y. C(x) ⊃ i ≤ �{y | a(x, y)} ≤ j

The corresponding DLRifd assertions in KD are

C � ∀[1](a⇒(2 : T ))
C � (≥ i [1]a) � (≤ j [1]a)

Now, given an instantiation I for D, each x ∈ CI is such that x is connected through the binary
relation aI only to elements of T I , and x participates at least i and at most j times to aI . Hence I
satisfies the DLRifd assertions above. Conversely, given a model I of KD, it is easy to see that each
x ∈ CI is connected through the binary relation aI only to elements of T I , and x participates at least
i and at most j times to aI . Therefore, I satisfies the FOL formulas above.

• Class operations. An operation f(P1, . . . , Pm) : R of class C is expressed by the FOL assertions16:

∀x, p1, . . . , pm, r. f(x, p1, . . . , pm, r) ⊃ ∧n
i=1 Pi(pi)

∀x, p1, . . . , pm, r, r′. f(x, p1, . . . , pm, r) ∧ f(x, p1, . . . , pm, r′) ⊃ r = r′

∀x, p1, . . . , pm, r. C(x) ∧ f(x, p1, . . . , pm, r) ⊃ R(r)

The corresponding DLRifd assertions in KD are

opf(P1,...,Pm) � (2 : P1) � · · · � (m + 1 :Pm)
(fd opf(P1,...,Pm) 1, . . . , m + 1 → m + 2)
C � ∀[1](opf(P1,...,Pm) ⇒(m + 2 :R))

Given an instantiation I for D, it is such that for each x ∈ CI , if x participates to y ∈ fI as first
component, the components 2, . . . , m+2 of y belong to P I

1 , . . . , P I
m, R respectively, and the component

m + 2 is univocally determined by the first m + 1. Hence I satisfies the DLRifd assertions above.
Conversely, by the inclusion assertion, a model I of KD is such that for any x ∈ CI , if x participates to
y ∈ opIf(P1,...,Pm), the components 2, . . . , m+2 of y belong to P I

1 , . . . , P I
m, R respectively. Moreover, by

the functional dependency, the component m+2 is univocally determined by the first m+1. Therefore,
I satisfies the FOL formulas above.

• Associations without association class. Typing of an n-ary association A without association class is
captured in D by the FOL assertion:

∀x1, . . . , xn. A(x1, . . . , xn) ⊃ C1(x1) ∧ . . . ∧ Cn(xn).

The corresponding DLRifd assertion in KD is

A � (1 :C1) � (2 : C2) � . . . � (n : Cn),

Given an instantiation I for D, we have that for any x ∈ AI , the components of x belong to CI
1 , . . . , CI

n

respectively. Hence I satisfies the DLRifd assertion above. Conversely, given an interpretation I for

16To simplify the notation, we again denote fP1,...,Pm simply by f .
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KD, the DLRifd assertion above requires that for any x ∈ AI , the components of x belong to CI
1 , . . . , CI

n

respectively. Therefore I satisfies the FOL formula above.
Multiplicities of a binary association without association class are expressed by the FOL assertions:

∀x. (n� ≤ �{y | A(x, y)} ≤ nu)
∀y. (m� ≤ �{x | A(x, y)} ≤ mu)

The corresponding DLRifd assertions in KD are

�1 � (≥ n� [1]A) � (≤ nu [1]A)
�1 � (≥ m� [2]A) � (≤ mu [2]A)

Again, considering the semantics of the assertions in FOL and in DLRifd , it is immediate to verify
that they are satisfied by exactly the same models.

• Associations with association class. An n-ary association A with association class is formalized in D
by the following FOL assertions:

∀x, y. ri(x, y) ∧ A(x) ⊃ Ci(y) for i = 1, . . . , n
∀x. A(x) ⊃ ∃y. ri(x, y) for i = 1, . . . , n
∀x, y, y′. A(x) ∧ ri(x, y) ∧ ri(x, y′) ⊃ y = y′ for i = 1, . . . , n
∀y1, . . . , yn, x, x′. A(x) ∧ A(x′) ∧ ∧n

i=1(ri(x, yi) ∧ ri(x′, yi)) ⊃ x = x′

The corresponding DLRifd assertions in KD are

A � ∃[1]r1 � (≤ 1 [1]r1) � ∀[1](r1 ⇒ (2 : C1)) �
∃[1]r2 � (≤ 1 [1]r2) � ∀[1](r2 ⇒ (2 : C2)) �

...
∃[1]rn � (≤ 1 [1]rn) � ∀[1](rn ⇒ (2 : Cn))

(id A [1]r1, . . . , [1]rn)

Given an instantiation I for D, by the FOL assertion above, we have that for each x ∈ AI , x participates
exactly once as first component to each of the binary relations rIi , and x is connected through rI1 , . . . , rIn
to elements of CI

1 , . . . , CI
n respectively; moreover, no two instances of AI can agree on the participation

to rI1 , . . . , rIn . Hence I satisfies all the DLRifd assertions above. Similarly, it is easy to see that a model
I of KD, which has to satisfy the DLRifd assertions above, satisfies the corresponding FOL assertions
as well.

Multiplicities of a binary association A with association class are expressed by the FOL assertions:

∀y. (n� ≤ �{y | A(x) ∧ r1(x, y)} ≤ nu)
∀y. (m� ≤ �{y | A(x) ∧ r2(x, y)} ≤ mu)

The corresponding DLRifd assertions in KD are

�1 � (≥ n� [2](r1 � (1 :A))) � (≤ nu [2](r1 � (1 : A)))
�1 � (≥ m� [2](r2 � (1 :A))) � (≤ mu [2](r2 � (1 : A)))

Again, considering the semantics of the assertions in FOL and in DLRifd , it is immediate to verify
that they are satisfied by exactly the same models.

• Generalizations. The generalization between a more general class C a more specific class C1 is formal-
ized by the FOL assertion:

∀x. C1(x) ⊃ C(x)

The corresponding DLRifd assertion in KD is:

C1 � C

Considering the semantics of such assertions, it is immediate to verify that they are satisfied by exactly
the same models. It is also immediate to verify that the FOL and DLRifd assertions expressing covering
constraints and disjointness constraints on class hierarchies are satisfied by exactly the same models.
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A consequence of the above result is that reasoning on UML class diagrams can be performed by reasoning
on DLRifd knowledge bases. In particular, the following result holds.

Theorem 6.7 Let D be an UML class diagram and KD the DLRifd knowledge base constructed as described
above. Then a class C is consistent in D if and only if the concept C is satisfiable in KD.

Proof. The claim is a straightforward consequence of Theorem 6.6.

Since we can reduce reasoning on UML class diagrams to reasoning on DLRifd knowledge bases, from
the results about reasoning in DLRifd [12, 15] we get an EXPTIME upper bound for reasoning on UML
class diagrams.

Theorem 6.8 Class consistency in UML class diagrams is EXPTIME-complete.

Proof. Theorem 5.6 gives us the EXPTIME-hardness. The completeness follows from Theorem 6.7, by
considering that the size of KD is polynomial in D and that concept satisfiability in DLRifd knowledge bases
is EXPTIME-complete [12, 15].

7 Reasoning in ALCQI
The results in the previous section show that we can exploit reasoning tools developed for DLs to reason on
UML class diagrams. However, current state-of-the-art DL based reasoning systems do not support yet all
constructs of DLRifd . In particular, this holds for functional dependencies and identification constraints,
since their implementation requires very advanced forms of reasoning on individuals [15]. In this section we
show that, as far as reasoning on UML class diagrams is concerned (cf. Section 4), we can resort to a less
expressive DL, namely ALCQI, which is accepted by state-of-the-art DL based reasoning system [41, 31].
In this way, we can exploit such reasoning systems as core engines for advanced UML CASE tools [30].

Notably, ALCQI does not include functional dependencies and identification constraints, which play a
special role, since they allow us to correctly capture the FOL semantics of n-ary associations represented in
DLRifd in a reified way, and of operations.

Interestingly, when we do not want to specifically reason about functional dependencies or identification
constraints, which is the case for the UML reasoning tasks, we can drop such constraints from DLRifd knowl-
edge bases, while still preserving soundness and completeness of reasoning on concepts and relations [15].
This is due to the tree model property DLRifd [14, 15]: intuitively, if a knowledge base admits a model, it ad-
mits one having a tree structure, and since in such models the tuples cannot have more than one component
in common, functional dependencies and identification constraints are trivially satisfied. Another potential
difficulty is that, in ALCQI, relations are only binary, while DLRifd admits relations of arbitrary arity. We
overcome this difficulty by translating a DLRifd relation of arity n > 2 in a reified way, by introducing a
concept, denoting the tuples of the relation, and n ALCQI (binary) functional roles, one for each component
of the relation. Observe that the tree-model property guarantees that such a translation is faithful, in the
sense that there will be no two instances of the concept representing the same tuple of the relation [16].

Building on these observations we now present an encoding of UML class diagrams directly in ALCQI
that, although it does not preserve models, is sound and complete with respect to reasoning on UML class
diagrams.

7.1 Encoding of UML Class Diagrams in ALCQI
We show how to construct from an UML class diagram an ALCQI knowledge base that preserves reasoning.
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7.1.1 Classes

An UML class C is represented by an atomic concept C. Each attribute a of type T for class C is represented
by an atomic role a, together with an inclusion assertion encoding the typing of the attribute a for the class
C:

C � ∀a.T

We formalize the multiplicity [i..j] of attribute a as

C � (≥ i a.�) � (≤ j a.�)

expressing that for each instance of the concept C there are at least i and at most j role fillers for role
a. As we did for DLRifd , for attributes with multiplicity [0..∗] we omit the whole assertion, and when the
multiplicity is missing (i.e., [1..1] is assumed) the above assertion becomes:

C � ∃a.� � (≤ 1 a.�)

An operation f() : R without parameters for class C is modeled directly as a (binary) role Rf(), for which
the following assertion holds:

C � ∀Rf().R � (≤ 1 Rf().�)

Instead, an operation with one or more parameters f(P1, . . . , Pm) : R of class C, which formally corresponds
to an (m+2)-ary relation that is functional on the last component, cannot be directly expressed in ALCQI.
Therefore, we make use of reification, and introduce an atomic concept Cf(P1,...,Pm), m + 2 ALCQI roles
r1, . . . , rm+2 and the following assertions, which type the input parameters and the return value:

Cf(P1,...,Pm) � ∃r1.� � (≤ 1 r1.�) �
...

∃rm+1.� � (≤ 1 rm+1.�)
Cf(P1,...,Pm) � ∀r2.P1 � · · · � ∀rm+1.Pm

C � ∀r−1 .(Cf(P1,...,Pm) ⇒∀rm+2.R)

The first assertion states that each instance of Cf(P1,...,Pm), representing a tuple, correctly is connected to
exactly one object for each of the roles r1, . . . , rm+1. Instead, note that in general there may be two instances
of Cf(P1,...,Pm) representing the same tuple. However, this cannot be the case in a tree-like model (cf., tree-
model property). The other two assertions impose the correct typing of the parameters, depending only on
the name of the operation, and of the return value, depending also on the class.

7.1.2 Associations

Each binary association (or aggregation) A between a class C1 and a class C2 is represented by the atomic
role A, together with the inclusion assertion

� � ∀A.C2 � ∀A−.C1

encoding the typing of A. The multiplicities of A (see Figure 3) are formalized by the assertions

� � (≥ n� A.�) � (≤ nu A.�)
� � (≥ m� A−.�) � (≤ mu A−.�)

Binary associations with association class, and n-ary (with n > 2) associations, with or without associa-
tion class, are modeled through reification. More precisely, each association A relating classes C1, . . . , Cn is
represented by an atomic concept A together with the inclusion assertion

A � ∃r1.C1 � · · · � ∃rn.Cn � (≤ 1 r1) � · · · � (≤ 1 rn)

If the association A has explicit role names in the UML class diagram, then r1, . . . , rn above are such names.
Otherwise, they are arbitrary names used to denote the components of A. As we did for operations, we
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are not requiring that each instance of the concept A denotes a distinct tuple, but again this is the case in
tree-like models.

Multiplicities on binary associations with association class (see Figure 5) are represented by

� � (≥ n� r−1 .A) � (≤ nu r−1 .A)
� � (≥ m� r−2 .A) � (≤ mu r−2 .A)

7.1.3 Generalizations

Generalizations between classes, and disjointness and covering constraints on hierarchies are immediately
expressed in ALCQI, as for DLRifd . In particular, a generalization between a class C and its child class C1

can be represented using the ALCQI inclusion assertion C1 � C. A class hierarchy as the one in Figure 10
can be represented by the assertions C1 � C, . . . , Cn � C. A disjointness constraint among classes C1, . . . , Cn

can be modeled as Ci � �n
j=i+1¬Cj , with 1 ≤ i ≤ n − 1, while a covering constraint can be expressed as

C � �n
i=1Ci.

Example 7.1 Considering the UML class diagram shown in Figure 13, the correspondingALCQI knowledge
base, defined as above, is the following:

origin � ∀place.String
origin � ∃place.� � (≤ 1 place)
origin � ∃call.phone call � (≤ 1 call) �

∃from.phone � (≤ 1 from)
m origin � ∃m call.mobile call � (≤ 1 m call) �

∃m from.cell phone � (≤ 1 m from)
� � (≥ 1 call−.origin) � (≤ 1 call−.origin)
� � ∀reference−.phone bill � ∀reference.phone call
� � (≥ 1 reference−)
� � (≥ 1 reference) � (≤ 1 reference)

mobile call � phone call
m origin � origin

cell phone � phone
fixed phone � phone
cell phone � ¬fixed phone

phone � cell phone � fixed phone

7.2 Correctness of the Encoding

We now show that the encoding of an UML class diagram into an ALCQI knowledge base is correct, in the
sense that it preserves the reasoning services over UML class diagrams. Formally, the following result holds.

Theorem 7.2 Let D be an UML class diagram and KD the ALCQI knowledge base constructed as specified
above. Then a class C is consistent in D if and only if the concept C is satisfiable in KD.

Proof. “⇒” Let I = (∆I , ·I) be an instantiation of D (i.e., a model of the corresponding FOL assertions)
such that CI �= ∅. Then we can build a model J = (∆J , ·J ) of KD such that CJ �= ∅ as follows.

• ∆J = ∆I ∪ ⋃
A∈A{t(d1,...,dn) | (d1, . . . , dn) ∈ AI} ∪ ⋃

F∈F{t(d1,...,dn) | (d1, . . . , dn) ∈ F I}, where
A denotes the set of all non-binary associations without association class in D, and F denotes all
functional relations that model class operations.

• CJ = CI for all concepts C corresponding to classes C in D.

• RJ = RI for all ALCQI roles R corresponding to attributes, operations without parameters, aggre-
gations, binary associations without association class, and association class roles in D.

29



• For each operation f(P1, . . . , Pm) : R with one or more parameters, we define CJf(P1,...,Pm) =
{t(d0,d1,...,dm+1) | (d0, d1, . . . , dm+1) ∈ fI

(P1,...,Pm)}, and for each ALCQI role ri modeling the i-th
component of the relation f(P1,...,Pm), we define rJi = {(t(d0,d1,...,dm+1), di) | (d0, d1, . . . , dm+1) ∈
fI
(P1,...,Pm)}.

• Finally, for each n-ary association A with arity n > 2 and without association class, we define
AJ = {t(d1,...,dn) | d1, . . . , dn ∈ AI} and for each ALCQI role ri modeling the i-th component of
the association A, we define rJi = {(t(d1,...,dn), di) | (d1, . . . , dn) ∈ AI}.

Trivially CJ = CI �= ∅. It is also immediate to check that J satisfies all the assertions in KD. Again
one can proceed by focusing on the assertions that each kind of UML class diagram construct gives rise to.

As an example, we explicit the proof for operations, since proving the statement in this case is less
straightforward than in all the others cases. An operation f(P1, . . . , Pm) : R of a class C in the diagram D
is represented by the FOL formulas:

∀x, p1, . . . , pm, r. f(x, p1, . . . , pm, r) ⊃ ∧m
i=1 Pi(pi)

∀x, p1, . . . , pm, r, r′. f(x, p1, . . . , pm, r) ∧ f(x, p1, . . . , pm, r′) ⊃ r = r′

∀x, p1, . . . , pm, r. C(x) ∧ f(x, p1, . . . , pm, r) ⊃ R(r)

that correspond to the ALCQI assertions:

Cf(P1,...,Pm) � ∃r1.� � (≤ 1 r1.�) �
...

∃rm+2.� � (≤ 1 rm+2.�)
Cf(P1,...,Pm) � ∀r2.P1 � · · · � ∀rm+1.Pm

C � ∀r−1 .(Cf(P1,...,Pm) ⇒∀rm+2.R)

Given an instantiation I of D, for all y ∈ fI , the components 2, . . . , m + 1 of y belong to P I
1 , . . . , P I

m,
and for all x ∈ CI if x participates as first component to y ∈ fI , the component m + 2 of y belongs to RI .
Additionally, the first m + 1 components univocally determine the component m + 2.

The interpretation J , built from I as shown above, instantiates the concept Cf(P1,...,Pm), which models
f(P1, . . . , Pm) : R, with the (m + 2)-tuples of fI

(P1,...,Pm), and instantiates each role ri with pairs where
the first component is a tuple (d0, d1, . . . , dm+1) of fI

(P1,...,Pm) and the second one is the component di of
(d0, d1, . . . , dm+1) to which ri refers. In particular, each tuple of ri connects each element of Cf(P1,...,Pm) to
the element of the correct type (and only to it) and no two elements of Cf(P1,...,Pm) represent the same tuple.
Hence, J it satisfies the above ALCQI assertions.

“⇐” By the tree model property we know that if C is satisfiable in the ALCQI knowledge base KD
then there exists a tree-like model J = (∆J , ·J ) of KD, such that CJ �= ∅. From such a tree-like model we
can build an instantiation I = (∆I , ·I) of D such that CI �= ∅ as follows.

• ∆J =
⋃

C∈C CJ , where C denotes the set of all classes in D.

• CI = CJ for all classes C in D.

• RI = RJ for all attributes, operations without parameters, aggregations, binary associations without
association class, and association class roles in D.

• For each operation f(P1, . . . , Pm) : R with one or more parameters, we define fI
(P1,...,Pm) =

{(d0, d1, . . . , dm+1) | ∃t ∈ CJf(P1,...,Pm).
∧m+1

i=0 (t, di) ∈ rJi }.

• Finally for each n-ary association A with arity n > 2 and without association class, we define AI =
{(d1, . . . , dn) | ∃t ∈ AJ .

∧m+1
i=0 (t, di) ∈ rJi }.
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Observe that, since J is a tree-like model, it is guaranteed that there is only one object t in Cf(P1,...,Pm)

that represents a given tuple, similarly for the concepts A representing n-ary associations with or without
association class. Hence tuples of n-ary associations, tuples of relations corresponding to class operations, as
well as key constraints for association classes and uniqueness of the operation results is guaranteed. Keeping
such an observation in mind is easy to check that I is indeed an instantiation of K with CI �= ∅.

Analogously to the previous case, we detail the proof for operations.
Given a model J for KD, each y ∈ CJf(P1,...,Pm) is connected to elements of CJ , PJ

1 , . . . , PJ
m , RJ via roles

rJ1 , . . . , rJm+2, respectively; y participates to each rJi exactly once, as first component.
The instantiation I, built from J as shown above, populates fI

(P1,...,Pm) with m+2-tuples
(d0, d1, . . . , dm+1) that correspond to the elements of CJf(P1,...,Pm), and such that each di is the second com-
ponent of rJi . In particular, each parameter and return value of f(P1,...,Pm) is correctly typed and, from J
and the tree model property, f(P1,...,Pm) is a function from the invocation object and the parameters to the
result value. Hence, I correctly instantiates f(P1,...,Pm).

Note that the notion of correctness that can be adopted for the encoding in ALCQI is the one that
results from Theorem 7.2. Such a notion is much weaker than the one for the encoding in DLRifd given by
Theorem 6.6. Indeed, differently from the encoding in DLRifd , the encoding in ALCQI does not preserve
models since ALCQI is not equipped with means to express n-ary relations and identification and functional
dependency constrains, which are needed to fully express UML class diagrams. However, as Theorem 7.2
shows, the encoding in ALCQI preserves enough semantics to carry out sound and complete reasoning on
UML class diagrams.

Finally, note that the size of the ALCQI knowledge base KD, obtained by encoding a UML class diagram
D in ALCQI, is linear in the size of D. Hence the EXPTIME upper bound for reasoning on UML class
diagrams is preserved by the encoding in ALCQI.

7.3 Description Logics Reasoners

Current state-of-the-art DL reasoning systems [34] support arbitrary complex ALCQI knowledge bases and
implement sound and complete reasoning algorithms. These algorithms are based on tableaux techniques
and are in fact not optimal from the computational complexity point of view. Indeed, they are NEXP-
TIME [22], while reasoning over ALCQI knowledge bases is EXPTIME-complete. However, state-of-the-art
DL reasoning systems implement highly optimized versions of the standard tableaux based algorithms [39],
and exhibit good average case performance [44, 5].

Two of the best-known systems are FaCT17, developed at the University of Manchester [38, 41, 40]
and Racer18, developed at the University of Hamburg [33, 32]. Both these systems perform a preliminary
classification (see [2]) of the concepts of the ALCQI knowledge base. Classification iteratively computes, by
subsequent subsumption tests, a taxonomy of classes, making explicit all subsumption relationships among
the concepts of the knowledge base. Once this classification step is performed, reasoning services can take
advantage of it to speed up inferences.

Encoding a UML class diagram in an ALCQI knowledge base allows the designer of the diagram for
exlpoiting the reasoning services offered by the DL reasoners. In such a way, relevant properties of the
diagram can be formally verified, as discussed in Section 4. Indeed, classification builds a hierarchy of the
(concepts corresponding to the) UML classes belonging to the diagram. This hierarchy reflects the various
constraints that the diagram enforces on the classes, as well as their properties and the relations among
them. In the next section, we apply these ideas to an application domain of industrial interest.

8 A Case Study

In the previous section we showed that UML class diagrams can be encoded as ALCQI knowledge bases
preserving enough semantics to keep reasoning sound and complete. On the other hand ALCQI is the

17http://www.cs.man.ac.uk/~horrocks/FaCT/
18http://kogs-www.informatik.uni-hamburg.de/~race
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DL implemented in current state-of-the-art DL-based systems. Hence these systems could serve as a core
reasoning engine in advanced CASE tools equipped with automated reasoning capabilities on UML class
diagrams. In order to verify such an idea, we did some experimentation on both UML class diagrams
developed for educational purposes, and on UML class diagrams of industrial interest [6, 5]. In this section
we give a brief overview of our experience, with an industrial scale example, namely, the UML class diagrams
forming CIM.

Common Information Model (CIM)19 is a model defined by the Distributed Management Task Force
(DMTF), with the purpose of providing a rigorous approach for modeling systems and networks using the
object-oriented paradigm. CIM has a Meta Schema, expressed as a set of UML class diagrams that form
the basis of a sort of vocabulary for analyzing and describing managed systems. According to the particular
needs of a given application, such schemas can be extended through subclassing to include aspects specific
to the application. CIM offers three main conceptual schemas, each expressed as a UML class diagram: the
Core Model, the Common Model and the Extension Schemas. The Core Model and the Common Model
together form the CIM Schema.

• The Core Model is an information model capturing basic notions that are applicable to all areas of
management (e.g., logical device or system component).

• The Common Model is an information model that expresses concepts related to specific management
areas, but still independent of a particular technology or implementation. The common areas defined
in the Common Model are: Systems, Devices, Applications, Networks, and Physical.

• Extension Schemas are made up of classes that represent managed objects that are technology specific
additions to the Common Model.

Such schemas are constituted by UML class diagrams of substantial size (hundreds of classes and of asso-
ciations) and include multiplicity constraints on binary association and aggregations, class and association
hierarchies, covering and disjointness constraints. Such diagrams are written in MOF (Meta Object Facility)
format, so as to be easily used in applications such as meta-information repositories, software development
management systems, information management systems, and data warehousing.

We developed a translator that reads a MOF file and generates an ALCQI knowledge base that corre-
sponds to the UML class diagram described in the MOF file. We run such translator and then we use a
DL-based system, namely FaCT or Racer, to classify the resulting ALCQI knowledge base. Observe that
this step, although exponential in theory, takes just a few seconds for each of the CIM models above on both
FaCT and Racer. Once these preliminary steps are done, we are ready to ask for interesting properties
of the UML class diagrams, making use of reasoning provided by the DL-based systems on the ALCQI
counterpart of the diagrams. Typically, these properties can be verified in fractions of seconds.

The UML class diagrams forming CIM are very well designed making most interesting properties explicitly
available or verifiable by scanning the diagram, and avoiding as much as possible redundancy. However, by
automated reasoning, we were able to show, in few cases indeed, that it is possible to refine the diagrams
in order to make explicit some properties otherwise hidden in the interaction of the various classes and
associations. Here we illustrate one of such cases.

Example 8.1 We focus on the CIM Core Model and, in particular, on the sub-schema shown in Figure 21.
This sub-schema models the relation between managed system elements and their statistical information.

Since there may be different kinds of statistical information, depending on the managed system element
it refers to, the class Statistical Information and the association class related to association Statistics have
several sub-classes20. Observe that there is an implicit covering constraint and a disjointness constraint on
each ISA hierarchy. Therefore, each child of Statistics contains tuples that are made up of elements from
one sub-class of Managed System Element and the suitable sub-class of Statistical Information. Additionally,
each element of the sub-classes of Statistical Information participates exactly once to the suitable association
sub-classes of Statistics.

19http://www.dmtf.org/standards/cim_schema_v26.php
20The latter information is not shown in the fragment of the CIM Core Model in Figure 21.
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Figure 21: A fragment of the CIM Core Model UML class diagram
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Now we can wonder whether an instance of Statistical Information has to participate exactly once to the
association Statistics; observe that this is not explicitly written in the diagram. Let Kcm be the ALCQI
knowledge base corresponding to the UML class diagram of the CIM Core Model. What we want to know
can be checked by asking for the satisfiability of the concept (≥ 2 r−1 .Statistics)�¬∃r−1 .Statistics with respect
to Kcm, where we are assuming that class Statistical Information participates to association Statistics via role
r1.

The answer to this inference query is “No”. Let us explain why. The covering and disjointness con-
straints impose that each tuple of Statistics belongs to exactly one of its sub-classes and that each element of
Statistical Information belongs to exactly one of its children. Hence, if an instance of Statistical Information
participates twice to association Statistics, since it belongs to exactly one of the sub-classes of Statisti-
cal Information, then the maximal multiplicity related to it is violated. On the other hand, if an instance
does not participate at all in the association Statistics, then, by the same reason, the minimal multiplicity is
violated.

As a result we can refine the multiplicity of the participation of instances of the class Statistical Information
to the association Statistics and state that such a multiplicity is 1..1, instead of just 0..∗21.

Observe that there may be several reasons for the designers of CIM to leave out such a refinement. The
point here is not to detect a bug on the CIM Core Model, but to show that automated tools can point out
situations that arise due to bugs.

9 Conclusions

In this paper we have shown that reasoning on UML class diagrams can be quite a complex task. Indeed
we have proved that it is EXPTIME-complete, without considering arbitrary OCL constraints (which would
lead to undecidability). This result suggests that it is highly desirable to provide automated reasoning
support for detecting relevant properties of the diagram. With respect to this, we have shown that the DL
ALCQI, implemented in current state-of-the-art DL-based systems, is already equipped with the capabilities
necessary to reason on UML class diagrams. The experimentation we did, while certainly limited and not
providing a definitive answer, indicate that current state-of-the-art DL-based systems are ready to serve as
a core reasoning engine in advanced CASE tools.

Various issues remain to be addressed. First of all, the reasoning tasks we have analyzed in this paper do
not include reasoning on keys and identification constraints. While these are not among the basic reasoning
services that should be supported, they may be of interest for dealing with class diagrams in which keys
are introduced for classes, together with complex class hierarchies. Such forms of reasoning can be directly
supported in DLRifd [15]. Instead, DL-based systems need to be substantially enhanced to fully implement
DLRifd (in particular sophisticated abilities to deal with individuals need to be added). Another aspect that
deserves further treatment are multiplicities on associations of arbitrary arity, which UML defines to be look-
across [47, 27]. Reasoning on look-across multiplicity constraints is largely unexplored. While multiplicities
on n-ary associations appear rarely in UML class diagrams, more work needs to be done to understand their
interaction with other constructs in order to take them into account during reasoning. It is also of interest
to characterize interesting fragments of OCL constraints that do not lead to undecidability. Although we
did not treat it in this paper, DLRifd (and even ALCQI) can express interesting forms of OCL constraints,
such as rich typing restrictions on associations and refinement of properties along class hierarchies.

Finally, it is worth noting that the results presented here hold also for other conceptual modeling for-
malisms typically used in software engineering and databases. In particular, the EXPTIME-completeness
result applies to the Entity-Relationship model enhanced with ISA on entities and relationships [4].
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