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Abstract. Virtual Knowledge Graph (VKQ) is a well-established frame-
work in which users can access a relational data source through an ontol-
ogy and declarative mappings. VKG systems traditionally assume uni-
form access rights for all users, an assumption that does not always
hold in real-world scenarios involving diverse user roles and sensitive
information requiring protection. Controlled Query Evaluation (CQE)
provides a privacy-preserving framework by enforcing policies that de-
fine confidential information and implementing censors to prevent policy
violations. However, it does not account for differences in user privi-
leges during query answering. To address this gap, we extend the Policy-
Protected VKG (PPVKG) framework, which embeds CQE policies into
VKG mappings, by enabling role-sensitive query answering. Specifically,
we incorporate Role-Based Access Control (RBAC) into PPVKG, by as-
sociating to each user role a specific set of policies, and ensuring that
during query evaluation, only the policies relevant to the user’s role are
applied. We validate our RBAC enhanced PPVKG approach using the
MIMIC-IIT critical-care database, mapped to the Fast Healthcare In-
teroperability Resources (FHIR) ontology. Our experiments, conducted
with the open-source VKG system Ontop, demonstrate effective policy
enforcement with RBAC.

Keywords: Virtual Knowledge Graph - Controlled Query Evaluation -
Policy-protected VKG - Role-Based Access Control

1 Introduction

The Virtual Knowledge Graph (VKG) paradigm [16,20] enables seamless inte-
gration and querying of heterogeneous relational databases through an ontology
layer, typically expressed in OWL 2 QL [15], using declarative mappings (e.g.,
R2RML [7]) that connect database schema elements to ontology classes and
properties. This allows users to pose high-level semantic queries over the ontol-
ogy without directly engaging with the underlying data sources.

Despite its strengths, VKG inherits critical privacy and inference risks, since
TBox axioms may implicitly reveal sensitive information through logical entail-
ments. Controlled Query Evaluation (CQE) addresses this by modeling confiden-
tiality requirements as policies and applying censoring functions that evaluate
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Fig. 1. Query processing in VKG (left) vs. RBAC-PPVKG (right)

and restrict query answers [3,11,14]. Extending this concept, Policy-Protected
VKG (PPVKGQG) integrates CQE in VKG [6,2]. PPVKG specifies policies that
are first-order denial constraints. These policies are then embedded into VKG
mapping assertions, resulting in new mapping assertion that enforce policy com-
pliance during the rewriting process. However, both VKG and PPVKG assume
a uniform access model, granting identical data visibility to all authenticated
users regardless of their operational context or responsibilities. This one-size-
fits-all paradigm proves inadequate in sensitive domains like healthcare, where
granular access differentiation based on professional roles is essential not only
to prevent data leakage but also to comply with stringent regulations like the
General Data Protection Regulation (GDPR) [19].

Role-Based Access Control (RBAC) [18,9] provides the necessary conceptual
framework to address these limitations by enforcing the privacy principle of least
privilege, restricting users to the minimum level of access required for their or-
ganizational roles or responsibilities. In this work, we show that mappings can
be enriched with RBAC, thereby ensuring that query results are dynamically fil-
tered based on user roles and data exposure is minimized. We have implemented
constrained RBAC, enforcing session-specific separation-of-duty rules and limit-
ing role activations per session, in compliance with the NIST RBAC standard’s
more secure models. This integration enables enterprise-grade features such as
role-differentiated views and dynamic session-aware policy enforcement. The re-
sulting RBAC-enhanced PPVKG framework combines static privacy policies
with runtime, context-aware access control, making it suitable for deployment
in complex domains like healthcare and finance, where both confidentiality and
compliance are paramount. As illustrated in Figure 1, our approach activates
role-specific mapping assertions during query processing. For example, when
User 1 (specified with red color) queries the ontology, only policy augmented
mappings applicable to their role with the specific policy (e.g., M1P1) are acti-
vated.

In the rest of the paper, after introducing technical preliminaries on VKG and
PPVKG (Section 2), we define the notion of RBAC (Section 3) and introduce
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PPVKG with RBAC functionalities (Section 4). We evaluate our implemen-
tation of role-base policy embedding into mappings on the MIMIC-III clinical
dataset [13], demonstrating that role-aware query answering delivers fine-grained
access control with minimal performance overhead (Section 5).

Our implementation and experimental evaluation is available on GitHub?.

2 Preliminaries

2.1 Virtual Knowledge Graph

In VKG, users can query a data source through an ontology TBox linked to
the data source via declarative mappings [16,20]. We formalize VKG using the
notion of VKG specification, which is a triple V = (T, S, M), where T is a TBox,
S a relational database (DB) schema, and M a mapping between 7 and S. The
TBox captures knowledge at the intensional level about the classes (denoting sets
of individuals) and properties (denoting binary relations between individuals or
values) of the domain of interest. It is expressed in the lightweight description
logic (DL) DL-Liter [5], which is the formal counterpart of the ontology language
OWL 2 QL, standardized by the W3C [15]. For the formal details about DL-Liter
and OWL 2 QL we refer to [5,15]. The mapping M is a finite set of mapping
assertions from S to T, each of the form p(x) ~~ ¢ (IRI(x)). Here, ¢(x) denotes
a FOL (or SQL) source query over S with answer variables @, while ¢(IRI(x)),
referred to as the target of the mapping, is an atom whose predicate is a class or
property of T over the variables in @ and so-called IRI-templates IRI(x). Each
IRI-template iri(xz) in IRI(x) is a term that concatenates string values and the
answer variables in «, and is used to construct values (i.e., literals) and object
identifiers (i.e., IRIs) from the DB values returned by ¢(x). A concrete mapping
language that provides such mappings is R2RML, standardized by the W3C [7].
In our examples we provide mappings in the mapping language of the Ontop
system (see Section 2.3), where the source query is expressed in SQL, the target
atom is specified in RDF syntax as a triple template (in which the SQL answer
variables of the IRI-templates are enclosed in {...3}), and multiple mapping
assertions with the same source query might be grouped together, resulting in a
target consisting of multiple RDF triple templates.

Given a VKG specification V = (7,8, M) and a DB instance D for S, the
pair (V, D) is called a VKG instance. The retrieved ABox for (V,D), denoted
ret(V, D), consists of all facts ¢ (IRI(t)), where ¢(x) ~ ¥(IRl(x)) is a mapping
assertion in M, and t € eval(p(z),D) is a tuple of constants in the evaluation
of p(x) over D. Notice that the fact ¢ (IRI(¢)) contains IRIs of the form iri(t)
constructed from the answer tuple ¢ using the IRI template iri(x) in the mapping
target. Hence, ret(V, D) is an ABox over constants in the set Ap p, consisting
of: (i) all DB values in D and (ii) all possible IRIs iri(t) constructed from some
tuple t of values in D and some IRI template iri(z) in a mapping assertion in M.

3 https://github.com/divyabaura/PPVKG-role-based-policies
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A model of the VKG instance (V, D) is defined as a model of the DL knowl-
edge base (T, ret(V,D)). We denote the set of models of (V, D) by Mod(V, D),
and we say that (V, D) is inconsistent if Mod(V, D) = (). Moreover, (V,D) = a,
indicating that (V, D) entails a sentence «, holds if « is true in every model in
Mod(V, D). Here, we adopt the standard name assumption, i.e., given a VKG
instance (V, D), we consider interpretations over a fixed domain A containing
Ap.p such that all values in Ap p are interpreted as themselves.

We provide an example of VKG mappings in a medical domain, on which we
will build in the rest of the paper.

Example 1. We assume to have in the ontology a class :Patient with data
property :Patient.gender, and a class :Prescription with object property
:Prescription.subject relating a prescription to the patient who is the sub-
ject of the prescription. In the data source we have a table Person, which
is mapped to the class :Patient and the :Patient.gender data property, and
a table DrugExposure, which is mapped to the class :Prescription and the
:Prescription.subject object property, as follows:

mappingId ml
target :Patient/{person_id} a :Patient ; :Patient.gender {gender}*Axsd:string .
source SELECT person_id, gender FROM Person P

mappingId m2

target :Prescription/{drug_exposure_id} a :Prescription ;
:Prescription.subject :Patient/{person_id} .

source SELECT drug_exposure_id, person_id FROM DrugExposure

2.2 Policy-Protected VKG

Policy-Protected VKG (PPVKG) extends the traditional VKG paradigm by em-
bedding data protection policies directly into VKG mapping definitions [6,2].
While standard VKG enables querying heterogeneous sources through an onto-
logical semantic layer, PPVKG makes use of policies to specify information that
should be protected. Specifically, policies in PPVKG are expressed as denial
constraints and the disclosure of protected information, i.e., information that
causes a violation of the denial constraint, is prevented by dynamically rewrit-
ing queries in such a way that protected information is suppressed from query
results. This is achieved by compiling the policy rules into the declarative VKG
mappings. In this way, a policy-aware VKG is transformed into a standard VKG
that transparently enforces the policies.

PPVKG builds upon the principles of controlled query evaluation (CQE),
which is a privacy-preserving framework for query answering in the presence of
ontologies [3,11,14], and it extends the VKG framework to incorporate CQE. To
formally introduce the PPVKG setting, we first define a denial (assertion) as
a first-order logic (FOL) sentence of the form Va.p(x) — L, where Jz.p(x) is
a Boolean conjunctive query (BCQ). Given a set V of FOL sentences (e.g., a
TBox) and a denial §, we say that V U {0} is consistent if V = Jz.¢(x).
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Following [6], we define a PPVKG specification as a 4-tuple £ = (T, S, M, P),
where (7,8, M) is a VKG specification and P is a policy, i.e., a finite set of
denials over the signature of T, such that 7 U P is consistent. The semantics of
a PPVKG specification is the same as that of the underlying VKG specification,
and all other notions (source DB D, instance (£, D), retrieved ABox ret(€, D),
and set Mod(€, D) of models) naturally extend to PPVKG.

For a query language L (e.g., the language CQ of conjunctive queries or
GA of ground atoms), let £(7) denote the restriction of £ to the predicates
in 7, and Lp the formulas in £ mentioning only constants in D. An optimal
censor for € in L is a function cens(-) that, for each source DB D for £, returns
a set cens(D) C Lp such that (i) ((T,S,M),D) = ¢, for each ¢ € cens(D),
and (4) T U P U cens(D) is consistent. £ is called the censor language. We
are interested in optimal censors, i.e., those that return as many formulas as
possible. The set of all optimal censors in £ for a PPVKG specification £ is
denoted £-OptCensg.

To obtain a notion of censor that allows for embedding a policy into the
mapping, [6] define censors that approximate censors for £ in GA [14].

Definition 2 (IGA censor [6]). Given a PPVKG specification & =
(T,S, M, P), the intersection GA (IGA) censor for & 1is the function
censiga(-) such that, for every DB instance D for S, censijga(D) =

ﬂcensEGA—OptCensS CenS(D) . <

Thus, an IGA censor, when applied to a DB instance D for the source schema
S of &, returns the intersection of the sets of ground atoms computed by all
optimal censors. In [2], an algorithm called ENCODEMAPPING is presented, which
generates a new VKG mapping M’ that embeds a policy P into a given mapping
M. When the VKG engine processes queries posed over the ontology using M’,
the obtained answers comply with P according to an IGA censor.

Example 3 (Example 1 cont’d). Let us now consider two policies p;
Vx.Vy.Patient.gender(x,y) A Vz.Patient.address(x,z) — L, which ensures the
confidentiality of the combination of a patient’s gender and address, and ps :
Va.Prescription(z) A Vy.Prescription.subject(xz,y) — L, which ensures the con-
fidentiality of patient ids for which a prescription is made. Let us assume that
the Person table contains also a location_id attribute that is mapped to the
Patient.address data property. By compiling these policies into m; and mo, we
obtain the following policy-protected mapping assertions:

mappingId mpl
target :Patient/{person_id} a :Patient ; :Patient.gender {gender}*Axsd:string .
source SELECT person_id, gender FROM Person WHERE location_id IS NULL

mappingId mp2
target :Prescription/{drug_exposure_id} a :Prescription ;
:Prescription.subject :Patient/{person_id} .
source SELECT drug_exposure_id, person_id FROM DrugExposure WHERE person_id IS NULL

Intuitively, the condition location_id IS NULL in mp; ensures that the gender
location can be returned only for patients whose location_id is not known. Sim-
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ilarly, mp, ensures that prescriptions can only be disclosed when the person_id
is not known. <

2.3 The VKG System Ontop

We utilize the state-of-the-art open-source VKG system Ontop [4,21], which
supports query answering over a VKG instance through query transformation
and sophisticated optimization techniques. An Ontop installation operates on a
VKG specification V = (T, S, M), where T is an OWL 2 QL TBox, S a relational
schema with constraints, and M an R2RML [7] mapping. Ontop supports also a
proprietary mapping language that is more user-friendly and fully interoperable
with R2RML, and in our examples we have used such language.

Ontop efficiently answers SPARQL queries [12] over a VKG instance (V, D),
where D is a DB instance for S, using the OWL 2 QL entailment regime [10].
It does so by implementing query answering by rewriting. This process involves
pre-processing 7, S, and M for optimization purposes. At runtime, Ontop trans-
forms a given SPARQL query into an equivalent SQL query and optimizes it
using mapping information and database constraints in S. The resulting SQL
query gets then executed by the underlying DB engine.

3 Role Based Access Control

Role-Based Access Control (RBAC) is a well-established authorization model
that assigns permissions based on organizational roles rather than individual
identities. This abstraction simplifies policy management by aligning access
rights with job responsibilities, reducing administrative overhead and mitigating
risks from over-privileged users [18]. In the RBAC paradigm, three core entities
interact: users (human or system agents), roles (functional positions within an
organization), and permissions (authorizations to perform operations on pro-
tected resources).

The foundational variant of RBAC, known as Flat RBAC or Core RBAC,
mandates many-to-many relations between users and roles and between roles and
permissions, it also requires that users can activate multiple roles concurrently.
Building upon this, Hierarchical RBAC introduces role inheritance, where senior
roles automatically inherit permissions from their juniors, supporting partial-
order structures or restricted hierarchies. A further enhancement, Constrained
RBAC, enforces separation of duty constraints, static or dynamic, to prevent
incompatible roles from being assigned or activated simultaneously. The Sym-
metric RBAC (or RBAC3), retains all the functionality of Constrained RBAC
and adds the crucial capability of permission-role review. In effect, the four
RBAC levels—Flat, Hierarchical, Constrained, and Symmetric—form a cumu-
lative hierarchy in which each level builds upon the previous one by introduc-
ing a single new dimension of control: role hierarchy, separation of duties, and
role-permission auditability, respectively. [17].
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In this work, we present a technique to incorporate the principles of con-
strained role-based access Control within the PPVKG framework. This is
achieved by enforcing access control through the concept of sessions, where each
session represents a specific user operating under a defined access role.

We formalize the Flat RBAC model through the following notion.

Definition 4 (RBAC specification). A role-based access control (RBAC)
specification is a tuple (O, A,U, R, UR, P, perms), where:

— O is a finite set of objects, representing protected resources;

— A is a finite set of actions, representing operations that can be performed
on the objects;

U is a finite set of users;

— R is a finite set of roles (e.g., doctor, nurse);

UR C U x R is a user-role assignment relation;

P C O x A represents permissions, where each pair {0,a) € P represents a
permission to perform action a on object o; and

perms : R — 2P is a function mapping roles to sets of their permissions. <

Modern RBAC implementations increasingly incorporate dynamic policy-
driven mechanisms where role assignments become context-sensitive rather than
static. Such user to role mappings may dynamically activate based on temporal
constraints (e.g., emergency room physicians gaining after-hours access), envi-
ronmental conditions (e.g., location-based restrictions for mobile clinicians) or
runtime attributes (e.g., current patient treatment relationships). This dynamic
capability transforms RBAC from a rigid structure into an adaptive policy en-
forcement engine, where roles serve as policy anchors that respond to real-world
operational contexts. We will take into account the dynamicity of actual role as-
signments by allowing users to log into a PPOBDA system with a specific role,
and it is such role that determines the access rights of the user, and hence the
PPVKG policies that should be applied.

The GDPR compliance [8] advantages of RBAC are particularly pronounced
in policy-driven implementations. Article 5(1)(c)’s data minimization principle
is reinforced through just-in-time permission activation, ensuring users access
only currently necessary data. Similarly, Article 32(1)(b)’s confidentiality re-
quirements benefit from dynamic permission revocation when contexts change
(e.g., automatically downgrading access when clinicians rotate between depart-
ments). By enabling fine-grained, context-aware authorization that restricts data
visibility to the minimal necessary set, policy-driven RBAC provides a robust
technical foundation for fulfilling legal obligations while enforcing least-privilege
access across evolving operational scenarios.

4 PPVKG with RBAC Functionalities

In this section, we extend the PPVKG framework by integrating RBAC to over-
come the limitations of traditional policy-protected VKGs that expose the same
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data to all users regardless of their roles, thus enforcing static policies that lack
adaptability and failing to align with real-world organizational structures. We do
so by (i) suitably duplicating mappings according to user roles and embedding
policies associated to roles where appropriate, (i) enabling for each user role
only the relevant mapping copies during query unfolding, and (74) ensuring that
the proper mappings are taken into account when, for query answering, a user
logs into the system with a specific roles.

4.1 Formalizing PPVKG with RBAC functionalities

We start by providing the formalization of the proposed extension of PPVKG
with RBAC functionalities.

Definition 5 (RBAC-PPVKG specification). An RBAC policy-protected
VKG (RBAC-PPVKG) is a tuple H = (£, R,RP, U, UR), where:

- &=(T,5,M,P) is a PPVKG,

— R is a finite set of roles,

— RP: R — 27 is a function assigning to each role a set of policies,

— U is a finite set of users, and

— UR C U x R is a user-role assignment. <

To relate an RBAC-PPVKG specification to an RBAC specification accord-
ing to Definition 4, we observe that we are interested in answering queries posed
by a user over a PPVKG, and the information the user is allowed to access,
according to their role, depends on the policy-protected mappings that they can
access while unfolding the query. Hence, A consists of the single action of ac-
cessing a mapping during query unfolding. Instead, the set O of objects (to be
accessed) consists of the union of suitable copies of mapping assertions, with one
copy M, for each role r € R, obtained from M by applying to all its mapping
assertions the policies RP(r) assigned to 7.

With this correspondence in mind, we want now to transform an RBAC-
PPVKG specification into an ordinary VKG specification, which can be pro-
cessed by a VKG engine like Ontop, and that automatically enforces the ap-
propriate policies for the role with which a user logs into the systems for query
answering. We perform this transformation in two steps:

1. For each role r € R, we create from M the set M,. of mapping assertions
that embed in M the policies relevant for role 7.

2. We ensure that the mapping assertions in M, are activated only for users
that log into the system with role r.

Step 2 of the transformation is achieved by making use of a special boolean
SQL function ontop_contains_role(r), which takes a role r as argument, and
evaluates to true only if it is executed while the user is logged in the system
with role r. Such function is treated by Ontop in a special way during query
processing. Specifically, Ontop evaluates the function at query unfolding time
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(rather than leaving it in the generated SQL query), and substitutes the function
call with the boolean constant true or false resulting from this evaluation. Then,
the query optimization algorithm of Ontop can take into account the value of
such constant and simplify the generated SQL query accordingly. We exploit
ontop_contains_role by embedding in the source query of a mapping assertion
m the condition ontop_contains_role(r), in conjunction (at the top level of the
WHERE clause) with the existing condition. Hence: (i) If the user is logged with
role r, at query unfolding time the condition evaluates to true and the mapping
assertion m is actually used for the unfolding. (7i) Instead, if the user is logged
with a role different from r, the condition evaluates to false and the overall
source query of m is considered by Ontop as equivalent to a query that returns
the empty answer. As a result, m is effectively ignored in query unfolding.

To concretely realize the described mapping transformation approach, we
make use of two functions that manipulate mapping assertions:

— The function ENCODEP takes as arguments a set M of mapping assertions
and a set P of policies, and returns the set ENCODEP (M, P) of mapping
assertions in which all policies in P have been encoded into the mapping
assertions of M, according to the technique described in [6,2].4

— The function ENCODER takes as arguments a mapping assertion m and a role
r € R and returns a new mapping assertion ENCODER (m,r) in which the
source query of m is modified by conjoining the condition it its WHERE clause
with an additional filtering condition of the form ontop_contains_role(r).
We then extend ENCODER to a set M of mapping assertions by defining
ENCODER(M, ) = UU,,c \{ ENCODER (m, 7) }.

We are now ready to describe how to construct, given an RBAC-PPVKG
specification H = (€, R,RP,U,UR), where & = (7,5, M, P), a VKG specifi-
cation Vy = (T, S, My) with an enriched set My of mapping assertions that
encode both the appropriate role-specific policies according to P and RP, and
the role-based activation conditions for each role in R. Specifically, for a role
r € R, we define ENCODERP(M,r) = ENCODER(ENCODEP(M,RP(r)),r).
Then, M3 = U,cr ENCODERP (M, 7). Algorithm 1 (ENCODEROLEPOLICIES)
computes the function My according to this definition.

Example 6 (Example 3 cont’d). Consider a healthcare domain with

users U = {alice,bob} and roles R = {pharmacist, receptionist},
and assume that RP(pharmacist) = {p1} and RP(receptionist) =
{p2}. Then, ENCODEP({mi,ms}, RP(pharmacist)) = {mp;,ma} and
ENCODEP ({m1,ma2}, RP(receptionist)) = {my, mpy}. Moreover, by em-

bedding also the role-based activation conditions, we obtain the following
mapping assertions:

mappingId mrpl

target :Patient/{person_id} a :Patient ;
:Patient.gender {gender}*Axsd:string .

source SELECT person_id, gender FROM Person

* The function ENCODEP was called ENCODEMAPPING in [2].
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Algorithm 1: ENCODEROLEPOLICIES
Input: A PPVKG specification (7,S, M, P), a finite set R of roles, a
role-policy assignment RP
Output: A role-based permission assigned mapping My
/V17{ — @;
for each role r € R do
Mg + ENCODEP (M, RP(1));
M+ 0;
for each mapping assertion m € My do

L M, +— M, U{ENCODER(m,7)};
My — My UM,

return Moy

® N o w R W N R

WHERE location_id IS NULL AND
ontop_contains_role (’pharmacist’)

mappingId mr2
target :Prescription/{drug_exposure_id} a :Prescription ;
:Prescription.subject :Patient/{person_id}
source SELECT drug_exposure_id, person_id FROM DrugExposure
WHERE ontop_contains_role (’pharmacist’)

mappingId mrl
target :Patient/{person_id} a :Patient ;
:Patient.gender {gender}*Axsd:string
source SELECT person_id, gender FROM Person P
WHERE ontop_contains_role (’receptionist’)

mappingId mrp2
target :Prescription/{drug_exposure_id} a :Prescription ;
:Prescription.subject :Patient/{person_id}
source SELECT drug_exposure_id, person_id FROM DrugExposure
WHERE person_id IS NULL AND
ontop_contains_role (’receptionist’)

Specifically, ENCODERP ({m1, ms}, pharmacist) {mrpy, mra} and
ENCODERP ({m1, ma}, receptionist) = {mry, mrp,}. q

These role-conditioned mappings ensure that only users with the appropri-
ate role can access the corresponding data, thereby enforcing both confidentiality
and RBAC-based access control. The approach of extending PPVKG with RBAC
enables for the policy embedded mappings activation of particular mapping as-
sertion based on the roles of the user querying the data . Hence, the permission
now represents the activation or inactivation of such mappings in accordance of
user’s roles.

4.2 RBAC-PPVKG Query Answering Sessions

In an RBAC specification, a user may be assigned multiple roles by the user-role
assignment UR. However, when a user interested in query answering logs into
an RBAC-PPVKG system, they will do so by assuming a specific role, and such
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role should be compatible with the roles assigned to that user. We capture this
through the following definition.

Definition 7 (RBAC-PPVKG session). Let H = (£,R,RP,U,UR) be an
RBAC-PPVKG specification, r € R arole, and u € U a user. An RBAC-PPVKG
session is a triple (H,r, u) such that (u,r) € UR. <

Intuitively, an RBAC-PPVKG session (H,r,u) represents a user u logged into
an RBAC-PPVKG system formalized by H with a role r that is one of the roles
assigned to u in H.

In its setup phase, an RBAC-PPVKG system with specification H =
(E,R,RP,U,UR), where & = (T,S, M, P), uses algorithm ENCODEROLES to
construct the mapping My, and exposes the VKG Vy = (7,5, My) as a
SPARQL endpoint. Consider now a session (H,r,u), where a user u, who is
logged into H with role r, issues queries to the SPARQL endpoint. Then, a
given query is processed by the system according to V. However, of the overall
set My, of mapping assertions, the ones actually used to unfold the query are
only those in M, C My, i.e., those policy-protected according to the policies
relevant for role r and activated for r. This ensures that while processing the
query, the role-specific RBAC permissions are enforced on top of the role-specific
PPVKG confidentiality policies.

5 Use Case in the Healthcare Domain

We now describe the main elements of a use case in the healthcare domain on
which we carried out our experimental evaluation. We detail the VKG-related
aspects of the use case and discuss a categorization of relevant roles.

VKG Specification and Dataset. For our experimentation, we make use of the
Medical Information Mart for Intensive Care (MIMIC)-III clinical dataset [13],
which aggregates de-identified healthcare records spanning 46,000 unique pa-
tients and over 60,000 intensive-care unit admissions across two ICU systems
at Boston’s Beth Israel Deaconess Medical Center (2001-2012). To standard-
ize this heterogeneous data for semantic processing, we employed the open-
source MIMIC-OMOP ETL Tool® for conversion into the Observational Medical
Outcomes Partnership Common Data Model (OMOP-CDM)®. This community-
developed standard normalizes observational health data structures to facilitate
reproducible evidence generation through systematic analysis [1]. To represent
the information of OMOP-CDM at the semantic level, me make use of the FHIR
Model Ontology specified in the OWL ontology language”.

For relating the FHIR Ontology to OMOP-CDM, we adopted the R2RML-
compliant mappings developed by Xiao et al. [22], which establish precise corre-
spondences between OMOP-CDM schemas and Fuast Healthcare Interoperability

5 https://github.com/MIT-LCP/mimic-omop
6 https://ohdsi.github.io/CommonDataModel
" http://build. fhir.org/fhir.ttl
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Table 1. Mapping of roles to accessible FHIR classes

RBAC roles Role name|Accessible FHIR class
Physician/Nurse r1 all classes

Receptionist 72 Encounter, Practitioner

Researcher T3 all classes (since data are de-identified)
Data Administrator T4 Encounter

Pharmacist 5 Prescription, Observation

Patient T6 no class

Resources (FHIR) RDF representations. These mappings, executable within the
Ontop platform, maintain a predominantly direct alignment where OMOP ele-
ments map to singular FHIR components (e.g., person_id maps to Resource.id).
We observe, however, that certain temporal constructs necessitate intermediate
blank node generation and therefore have a more complex structure, and that the
mappings intentionally exclude redundant OMOP elements to optimize semantic
representation, such as omitting duplicate temporal fields.

Role Definitions for the Hospital Domain (MIMIC-IIT Dataset). Using the
MIMIC-III clinical care dataset, we define representative hospital roles and their
access scopes for the RBAC framework (See Table 1):

— Clinician (Physician/Nurse): Full access to patient-level clinical data
including demographics, lab results, medication orders, and clinical notes.

— Receptionist: Access limited to non-clinical patient demographics (e.g.,
contact information, appointment records) with exclusion of medical data.

— Researcher: Access to data of any type, provided they are de-identified.

— Data Administrator: Access to current medical procedures, and data for
system maintenance, excluding patient-level clinical data.

— Pharmacist: Access to medication-focused data (e.g., medication order,
dosage, and allergy) without direct patient identifiers.

— Patient: Access to their own records, but not to those of other patients.

5.1 Implementation

To implement the RBAC-PPVKG framework, we utilize the open-source imple-
mentation of PPVKG described in [2], based on Ontop. Our system operates over
an RBAC-PPVKG specification H = (£, R, RP,U, UR), where £ = (T, S, M, P),
and creates, for each role r € R, a separate copy ENCODEP (M, RP(r)) of the
mapping M in which all role-specific policies RP(r) are embedded.

To merge these into a unified, role-aware mapping M+, we developed a Java
utility class called MappingCombinerRBAC, which takes as input a file with multiple
paths to a mapping file and an associated role. It then implements ENCODER
by parsing the mappings and injecting directly into the SQL WHERE clause of the
source part of each mapping assertion conditions that make use of Ontop’s built-
in Boolean function ontop_contains_role(roleName). When Ontop is configured
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with ontop.authorization=true, this function checks if the user role specified in
the x-roles HT'TP header equals roleName. As a result, such conditions encode
RBAC that activates the mapping assertion according to the user role.

To execute queries against this RBAC-enforced mapping, we developed an-
other Java class called QueryExecutor, which allows users to authenticate with
their role and issue SPARQL queries. It issues an HTTP POST request to the
Ontop endpoint using HttpURLConnection, setting headers such as Content-Type,
Accept, and most importantly, x-roles to specify the user’s role. One can also
use a reverse proxy to let the user authenticate, inject these HT' TP headers and
send the modified HTTP request to the Ontop WebAPI.

The Ontop engine evaluates the query while applying the embedded access
control logic from the mappings. Results are returned in SPARQL-JSON for-
mat. For our evaluation, we executed queries across different roles over multiple
iterations to compute and report the average query execution time.

5.2 Experimental Evaluation

For our evaluation, we examine the impact of six roles and their associated policy
sets on query execution, specifically analyzing how they affect the number of
query results returned as well as the overall query evaluation time using the
setup described above.

We employ the following seven denial policies (expressed over FHIR)®:

p1: Vx.Vy.Vz. Patient.gender(x, y) A Patient.address(z, z) — L

p2: V. Vy.Prescription(z) A Prescription.subject(x,y) — L

p3: V. Vy.Vz.Patient.condition(x, y) A Condition.code(y, z) — L

pa: Vx.Vy.Vz.Practitioner.qualification(z, y) A Practitioner.qualification.code(y, z) — L
ps: V. Vy.Vz.Procedure.code(z, y) A Procedure.performedDateTime(y, z) — L

pe: V. Vy.Vz.Observation.valueQuantity(x, y) A Quantity.value(y, z) — L

p7: V. Vy.Vz.Encounter.location(z,y) A Location.name(y, z) — L

They are assigned to roles r1—7¢ as specified below, coherently with Table 1:

r1: All data are accessible. Hence, no policy applies.
T2t P2, P3, Ps, and pe.

r3: All data are de-identified. Hence, no policy applies.
T4 P1, P2, P3, Pa, p5 and pe.

51 D1, P3s P4, P5 and pr.

T6: D1, P2; P3; P4, P5, P6, and pr.

Notice that, since patients can access only information about themselves,
and in RBAC-PPVKG policies are enforced based on roles (and not individual
users), in order to avoid that a user accesses the data of other patients, we also
have to forbid that they access their own data. Hence, for role Patient (rg) we
have to activate all policies. This represents a limitation of utility (in line with
the tradeoff between utility and privacy).

8 Additional policies are available in our Git repository.
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Table 2. Impact of privacy policies with roles on execution times (in ms) and number
of query results

q1 92 q3 q4 ds ds
Pol. | time #res.| time Fres.| time #res.| time #res.| time F#res.| time #res.
None| 815 4730 | 1655 34 (15282 4547 | 1042 944 |18136 5155|1253 93
r1 | 820 4730|1668 34 |15376 4547 | 1186 944 (18198 5155|1498 93
ro | 823 4730 | 490 0 1709 O 298 0 |18193 5155|1499 93
rg | 828 4730|1664 34 (15372 4547|1184 944 |18194 5155|1496 93
rg | 212 0 491 0 1702 O 285 0 (1191 0 |1493 93
s | 227 0 496 0 (15371 4547|1181 944 | 1189 O 158 0
re | 223 0 493 0 (1692 O 286 0 (1159 O 154 0

We have chosen six representative SPARQL queries, some of which are
adapted from [22], covering a variety of clinical use cases. For each query, we
have specified the roles for which it is answered, according to the policies:

q1: Male patients with inpatient admissions lasting > 5 days. — 1, ro, and r3
q2: Patients who delivered a baby. — r; and 73

qs3: Patients taking Trazodone. — rq, r3 and r5

qs: Patients with an HbAlc > 10%. — 71, 73 and 73

qs: Specialty of a Practitioner. — r1, 7o and 73

qs: Patient’s treatment location name. — rq, 79, r3 and 74

Our experiments demonstrate that data can be effectively hidden based on
user roles, validating the correctness of role-based access control within the
PPVKG framework. Furthermore, the results show that enforcing role-based pri-
vacy policies introduces only a modest overhead in query execution time, thereby
confirming the practical feasibility of such mechanisms for privacy-preserving
query answering. As expected, execution times are notably reduced in cases
where the applied policies yield empty query results, due to early pruning of the
result set during query evaluation.

6 Conclusions

In this paper, we presented an extension of the PPVKG framework to support
Role-Based Access Control (RBAC), enabling privacy-preserving query answer-
ing that adapts to the access privileges of different user roles. Our approach en-
forces the principle of least privilege by injecting role-specific policy constraints
directly into the VKG mappings, ensuring that users can only access ontology
classes and properties permitted by their assigned roles. Our experiments con-
firm that this mechanism effectively restricts access according to roles, while
introducing only minimal query performance overhead. These findings validate
the practical applicability of role-based privacy enforcement in real-world knowl-
edge graph settings. For future work, we aim to extend the RBAC-PPVKG
framework by incorporating Hierarchical Role-Based Access Control, enabling
structured role inheritance and more flexible policy management.
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